Advertisement
Review| Volume 91, ISSUE 1, P72-80, January 01, 2022

Sex Differences in Neurodegeneration: The Role of the Immune System in Humans

  • Chloe Lopez-Lee
    Affiliations
    Neuroscience Graduate Program, Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York

    Helen and Robert Appel Alzheimer’s Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York
    Search for articles by this author
  • Lay Kodama
    Correspondence
    Address correspondence to Lay Kodama, Ph.D.
    Affiliations
    Helen and Robert Appel Alzheimer’s Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York

    Medical Scientist Training Program and Neuroscience Graduate Program, University of California San Francisco, San Francisco, California
    Search for articles by this author
  • Li Gan
    Correspondence
    Li Gan, Ph.D.
    Affiliations
    Neuroscience Graduate Program, Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York

    Helen and Robert Appel Alzheimer’s Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York
    Search for articles by this author

      Abstract

      Growing evidence supports significant involvement of immune dysfunction in the etiology of neurodegenerative diseases, several of which also display prominent sex differences across prevalence, pathology, and symptomology. In this review, we summarize evidence from human studies of established and recent findings of sex differences in multiple sclerosis, Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis and discuss how sex-specific central nervous system innate immune activity could contribute to downstream sex differences in these diseases. We examine human genomic and transcriptomics studies in each neurodegenerative disease through the lens of sex differences in the neuroimmune system and highlight the importance of stratifying sex in clinical and translational research studies. Finally, we discuss the limitations of the existing studies and outline recommendations for further advancing sex-based analyses to uncover novel disease mechanisms that could ultimately help treat both sexes.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Voskuhl R.
        Sex differences in autoimmune diseases.
        Biol Sex Differ. 2011; 2: 1
        • Clocchiatti A.
        • Cora E.
        • Zhang Y.
        • Dotto G.P.
        Sexual dimorphism in cancer.
        Nat Rev Cancer. 2016; 16: 330-339
        • Hanamsagar R.
        • Bilbo S.D.
        Sex differences in neurodevelopmental and neurodegenerative disorders: Focus on microglial function and neuroinflammation during development.
        J Steroid Biochem Mol Biol. 2016; 160: 127-133
        • Kodama L.
        • Gan L.
        Do microglial sex differences contribute to sex differences in neurodegenerative diseases?.
        Trends Mol Med. 2019; 25: 741-749
        • Villa A.
        • Gelosa P.
        • Castiglioni L.
        • Cimino M.
        • Rizzi N.
        • Pepe G.
        • et al.
        Sex-specific features of microglia from adult mice.
        Cell Rep. 2018; 23: 3501-3511
        • Hammond T.R.
        • Dufort C.
        • Dissing-Olesen L.
        • Giera S.
        • Young A.
        • Wysoker A.
        • et al.
        Single-cell RNA sequencing of microglia throughout the mouse lifespan and in the injured brain reveals complex cell-state changes.
        Immunity. 2019; 50: 253-271.e6
        • Guneykaya D.
        • Ivanov A.
        • Hernandez D.P.
        • Haage V.
        • Wojtas B.
        • Meyer N.
        • et al.
        Transcriptional and translational differences of microglia from male and female brains.
        Cell Rep. 2018; 24: 2773-2783.e6
        • Kodama L.
        • Guzman E.
        • Etchegaray J.I.
        • Li Y.
        • Sayed F.A.
        • Zhou L.
        • et al.
        Microglial microRNAs mediate sex-specific responses to tau pathology.
        Nat Neurosci. 2020; 23: 167-171
        • Gosselin D.
        • Skola D.
        • Coufal N.G.
        • Holtman I.R.
        • Schlachetzki J.C.M.
        • Sajti E.
        • et al.
        An environment-dependent transcriptional network specifies human microglia identity.
        Science. 2017; 356eaal3222
        • Kang S.S.
        • Ebbert M.T.W.
        • Baker K.E.
        • Cook C.
        • Wang X.
        • Sens J.P.
        • et al.
        Microglial translational profiling reveals a convergent APOE pathway from aging, amyloid, and tau.
        J Exp Med. 2018; 215: 2235-2245
        • Hanamsagar R.
        • Alter M.D.
        • Block C.S.
        • Sullivan H.
        • Bolton J.L.
        • Bilbo S.D.
        Generation of a microglial developmental index in mice and in humans reveals a sex difference in maturation and immune reactivity.
        Glia. 2017; 65: 1504-1520
        • Gerrits E.
        • Heng Y.
        • Boddeke E.W.G.M.
        • Eggen B.J.L.
        Transcriptional profiling of microglia; current state of the art and future perspectives.
        Glia. 2020; 68: 740-755
        • Mu Q.
        • Chen Y.
        • Wang J.
        Deciphering brain complexity using single-cell sequencing.
        Genomics Proteomics Bioinformatics. 2019; 17: 344-366
        • Gal-Oz S.T.
        • Maier B.
        • Yoshida H.
        • Seddu K.
        • Elbaz N.
        • Czysz C.
        • et al.
        ImmGen report: Sexual dimorphism in the immune system transcriptome.
        Nat Commun. 2019; 10: 4295
        • Bordeleau M.
        • Carrier M.
        • Luheshi G.N.
        • Tremblay M.È.
        Microglia along sex lines: From brain colonization, maturation and function, to implication in neurodevelopmental disorders.
        Semin Cell Dev Biol. 2019; 94: 152-163
        • Miller D.H.
        • Leary S.M.
        Primary-progressive multiple sclerosis.
        Lancet Neurol. 2007; 6: 903-912
        • Koch-Henriksen N.
        • Sørensen P.S.
        The changing demographic pattern of multiple sclerosis epidemiology.
        Lancet Neurol. 2010; 9: 520-532
        • Trojano M.
        • Lucchese G.
        • Graziano G.
        • Taylor B.V.
        • Simpson Jr., S.
        • Lepore V.
        • et al.
        Geographical variations in sex ratio trends over time in multiple sclerosis.
        PLoS One. 2012; 7e48078
        • Voskuhl R.R.
        • Gold S.M.
        Sex-related factors in multiple sclerosis susceptibility and progression.
        Nat Rev Neurol. 2012; 8: 255-263
        • Kalincik T.
        • Vivek V.
        • Jokubaitis V.
        • Lechner-Scott J.
        • Trojano M.
        • Izquierdo G.
        • et al.
        Sex as a determinant of relapse incidence and progressive course of multiple sclerosis.
        Brain. 2013; 136: 3609-3617
        • Pozzilli C.
        • Tomassini V.
        • Marinelli F.
        • Paolillo A.
        • Gasperini C.
        • Bastianello S.
        'Gender gap' in multiple sclerosis: Magnetic resonance imaging evidence.
        Eur J Neurol. 2003; 10: 95-97
        • Antulov R.
        • Weinstock-Guttman B.
        • Cox J.L.
        • Hussein S.
        • Durfee J.
        • Caiola C.
        • et al.
        Gender-related differences in MS: A study of conventional and nonconventional MRI measures.
        Mult Scler. 2009; 15: 345-354
        • Tolaymat B.
        • Zheng W.
        • Chen H.
        • Choi S.
        • Li X.
        • Harrison D.M.
        Sex-specific differences in rim appearance of multiple sclerosis lesions on quantitative susceptibility mapping.
        Mult Scler Relat Disord. 2020; 45: 102317
        • Luchetti S.
        • van Eden C.G.
        • Schuurman K.
        • van Strien M.E.
        • Swaab D.F.
        • Huitinga I.
        Gender differences in multiple sclerosis: Induction of estrogen signaling in male and progesterone signaling in female lesions.
        J Neuropathol Exp Neurol. 2014; 73: 123-135
        • Luchetti S.
        • Fransen N.L.
        • van Eden C.G.
        • Ramaglia V.
        • Mason M.
        • Huitinga I.
        Progressive multiple sclerosis patients show substantial lesion activity that correlates with clinical disease severity and sex: A retrospective autopsy cohort analysis.
        Acta Neuropathol. 2018; 135: 511-528
        • Houtchens M.K.
        • Bove R.
        A case for gender-based approach to multiple sclerosis therapeutics.
        Front Neuroendocrinol. 2018; 50: 123-134
        • Confavreux C.
        • Hutchinson M.
        • Hours M.M.
        • Cortinovis-Tourniaire P.
        • Moreau T.
        Rate of pregnancy-related relapse in multiple sclerosis. Pregnancy in Multiple Sclerosis Group.
        N Engl J Med. 1998; 339: 285-291
        • Bove R.
        • Chitnis T.
        The role of gender and sex hormones in determining the onset and outcome of multiple sclerosis.
        Mult Scler. 2014; 20: 520-526
        • Sawcer S.
        • Hellenthal G.
        • Pirinen M.
        • Spencer C.C.
        • et al.
        • International Multiple Sclerosis Genetics Consortium, Wellcome Trust Case Control Consortium 2
        Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis.
        Nature. 2011; 476: 214-219
        • Gourraud P.A.
        • Harbo H.F.
        • Hauser S.L.
        • Baranzini S.E.
        The genetics of multiple sclerosis: An up-to-date review.
        Immunol Rev. 2012; 248: 87-103
        • Chao M.J.
        • Ramagopalan S.V.
        • Herrera B.M.
        • Orton S.M.
        • Handunnetthi L.
        • Lincoln M.R.
        • et al.
        MHC transmission: Insights into gender bias in MS susceptibility.
        Neurology. 2011; 76: 242-246
        • Nguyen L.T.
        • Ramanathan M.
        • Weinstock-Guttman B.
        • Baier M.
        • Brownscheidle C.
        • Jacobs L.D.
        Sex differences in in vitro pro-inflammatory cytokine production from peripheral blood of multiple sclerosis patients.
        J Neurol Sci. 2003; 209: 93-99
        • Fish E.N.
        The X-files in immunity: Sex-based differences predispose immune responses.
        Nat Rev Immunol. 2008; 8: 737-744
        • Guerrero B.L.
        • Sicotte N.L.
        Microglia in multiple sclerosis: Friend or foe?.
        Front Immunol. 2020; 11: 374
        • Benveniste E.N.
        Role of macrophages/microglia in multiple sclerosis and experimental allergic encephalomyelitis.
        J Mol Med (Berl). 1997; 75: 165-173
        • Lucchinetti C.
        • Brück W.
        • Parisi J.
        • Scheithauer B.
        • Rodriguez M.
        • Lassmann H.
        Heterogeneity of multiple sclerosis lesions: Implications for the pathogenesis of demyelination.
        Ann Neurol. 2000; 47: 707-717
        • Zrzavy T.
        • Hametner S.
        • Wimmer I.
        • Butovsky O.
        • Weiner H.L.
        • Lassmann H.
        Loss of ’homeostatic’ microglia and patterns of their activation in active multiple sclerosis.
        Brain. 2017; 140: 1900-1913
        • Moore C.S.
        • Ase A.R.
        • Kinsara A.
        • Rao V.T.
        • Michell-Robinson M.
        • Leong S.Y.
        • et al.
        P2Y12 expression and function in alternatively activated human microglia.
        Neurol Neuroimmunol Neuroinflamm. 2015; 2e80
        • Kuhlmann T.
        • Ludwin S.
        • Prat A.
        • Antel J.
        • Brück W.
        • Lassmann H.
        An updated histological classification system for multiple sclerosis lesions.
        Acta Neuropathol. 2017; 133: 13-24
        • van der Poel M.
        • Ulas T.
        • Mizee M.R.
        • Hsiao C.C.
        • Miedema S.S.M.
        • Adelia
        • et al.
        Transcriptional profiling of human microglia reveals grey-white matter heterogeneity and multiple sclerosis-associated changes.
        Nat Commun. 2019; 10: 1139
        • Keren-Shaul H.
        • Spinrad A.
        • Weiner A.
        • Matcovitch-Natan O.
        • Dvir-Szternfeld R.
        • Ulland T.K.
        • et al.
        A unique microglia type associated with restricting development of Alzheimer’s disease.
        Cell. 2017; 169: 1276-1290.e17
        • Masuda T.
        • Sankowski R.
        • Staszewski O.
        • Böttcher C.
        • Amann L.
        • Sagar
        • et al.
        Spatial and temporal heterogeneity of mouse and human microglia at single-cell resolution.
        Nature. 2019; 566: 388-392
        • Frischer J.M.
        • Bramow S.
        • Dal-Bianco A.
        • Lucchinetti C.F.
        • Rauschka H.
        • Schmidbauer M.
        • et al.
        The relation between inflammation and neurodegeneration in multiple sclerosis brains.
        Brain. 2009; 132: 1175-1189
        • Frischer J.M.
        • Weigand S.D.
        • Guo Y.
        • Kale N.
        • Parisi J.E.
        • Pirko I.
        • et al.
        Clinical and pathological insights into the dynamic nature of the white matter multiple sclerosis plaque.
        Ann Neurol. 2015; 78: 710-721
        • Brück W.
        • Porada P.
        • Poser S.
        • Rieckmann P.
        • Hanefeld F.
        • Kretzschmar H.A.
        • Lassmann H.
        Monocyte/macrophage differentiation in early multiple sclerosis lesions.
        Ann Neurol. 1995; 38: 788-796
        • Kovats S.
        Estrogen receptors regulate innate immune cells and signaling pathways.
        Cell Immunol. 2015; 294: 63-69
        • Khan D.
        • Ansar Ahmed S.
        The immune system is a natural target for estrogen action: Opposing effects of estrogen in two prototypical autoimmune diseases.
        Front Immunol. 2016; 6: 635
        • Lai J.J.
        • Lai K.P.
        • Zeng W.
        • Chuang K.H.
        • Altuwaijri S.
        • Chang C.
        Androgen receptor influences on body defense system via modulation of innate and adaptive immune systems: Lessons from conditional AR knockout mice.
        Am J Pathol. 2012; 181: 1504-1512
        • Ben-Batalla I.
        • Vargas-Delgado M.E.
        • von Amsberg G.
        • Janning M.
        • Loges S.
        Influence of androgens on immunity to self and foreign: Effects on immunity and cancer.
        Front Immunol. 2020; 11: 1184
        • Alzheimer's Association
        2020 Alzheimer’s disease facts and figures.
        Alzheimers Dement. 2020; 16: 391-460
        • Ferretti M.T.
        • Iulita M.F.
        • Cavedo E.
        • Chiesa P.A.
        • Schumacher Dimech A.
        • Santuccione Chadha A.
        • et al.
        Sex differences in Alzheimer disease - The gateway to precision medicine.
        Nat Rev Neurol. 2018; 14: 457-469
        • Laws K.R.
        • Irvine K.
        • Gale T.M.
        Sex differences in cognitive impairment in Alzheimer’s disease.
        World J Psychiatry. 2016; 6: 54-65
        • Pusswald G.
        • Tropper E.
        • Kryspin-Exner I.
        • Moser D.
        • Klug S.
        • Auff E.
        • et al.
        Health-related quality of life in patients with subjective cognitive decline and mild cognitive impairment and its relation to activities of daily living.
        J Alzheimers Dis. 2015; 47: 479-486
        • Benke T.
        • Delazer M.
        • Sanin G.
        • Schmidt H.
        • Seiler S.
        • Ransmayr G.
        • et al.
        Cognition, gender, and functional abilities in Alzheimer’s disease: How are they related?.
        J Alzheimers Dis. 2013; 35: 247-252
        • Holland D.
        • Desikan R.S.
        • Dale A.M.
        • McEvoy L.K.
        • Alzheimer's Disease Neuroimaging Initiative
        Higher rates of decline for women and apolipoprotein E epsilon4 carriers.
        AJNR Am J Neuroradiol. 2013; 34: 2287-2293
        • Lin K.A.
        • Choudhury K.R.
        • Rathakrishnan B.G.
        • Marks D.M.
        • Petrella J.R.
        • Doraiswamy P.M.
        • Alzheimer's Disease Neuroimaging Initiative
        Marked gender differences in progression of mild cognitive impairment over 8 years.
        Alzheimers Dement (N Y). 2015; 1: 103-110
        • Gamberger D.
        • Lavrač N.
        • Srivatsa S.
        • Tanzi R.E.
        • Doraiswamy P.M.
        Identification of clusters of rapid and slow decliners among subjects at risk for Alzheimer’s disease.
        Sci Rep. 2017; 7: 6763
        • Tifratene K.
        • Robert P.
        • Metelkina A.
        • Pradier C.
        • Dartigues J.F.
        Progression of mild cognitive impairment to dementia due to AD in clinical settings.
        Neurology. 2015; 85: 331-338
        • Barnes L.L.
        • Wilson R.S.
        • Bienias J.L.
        • Schneider J.A.
        • Evans D.A.
        • Bennett D.A.
        Sex differences in the clinical manifestations of Alzheimer disease pathology.
        Arch Gen Psychiatry. 2005; 62: 685-691
        • Koran M.E.I.
        • Wagener M.
        • Hohman T.J.
        • Alzheimer’s Neuroimaging Initiative
        Sex differences in the association between AD biomarkers and cognitive decline.
        Brain Imaging Behav. 2017; 11: 205-213
        • Sohn D.
        • Shpanskaya K.
        • Lucas J.E.
        • Petrella J.R.
        • Saykin A.J.
        • Tanzi R.E.
        • et al.
        Sex differences in cognitive decline in subjects with high likelihood of mild cognitive impairment due to Alzheimer’s disease.
        Sci Rep. 2018; 8: 7490
        • Sinforiani E.
        • Citterio A.
        • Zucchella C.
        • Bono G.
        • Corbetta S.
        • Merlo P.
        • Mauri M.
        Impact of gender differences on the outcome of Alzheimer’s disease.
        Dement Geriatr Cogn Disord. 2010; 30: 147-154
        • Davis E.J.
        • Broestl L.
        • Abdulai-Saiku S.
        • Worden K.
        • Bonham L.W.
        • Miñones-Moyano E.
        • et al.
        A second X chromosome contributes to resilience in a mouse model of Alzheimer’s disease.
        Sci Transl Med. 2020; 12eaaz5677
        • Fan C.C.
        • Banks S.J.
        • Thompson W.K.
        • Chen C.H.
        • McEvoy L.K.
        • Tan C.H.
        • et al.
        Sex-dependent autosomal effects on clinical progression of Alzheimer’s disease.
        Brain. 2020; 143: 2272-2280
        • Farrer L.A.
        • Cupples L.A.
        • Haines J.L.
        • Hyman B.
        • Kukull W.A.
        • Mayeux R.
        • et al.
        Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium.
        JAMA. 1997; 278: 1349-1356
        • Altmann A.
        • Tian L.
        • Henderson V.W.
        • Greicius M.D.
        • Alzheimer's Disease Neuroimaging Initiative Investigators
        Sex modifies the APOE-related risk of developing Alzheimer disease.
        Ann Neurol. 2014; 75: 563-573
        • Neu S.C.
        • Pa J.
        • Kukull W.
        • Beekly D.
        • Kuzma A.
        • Gangadharan P.
        • et al.
        Apolipoprotein E genotype and sex risk factors for Alzheimer disease: A meta-analysis.
        JAMA Neurol. 2017; 74: 1178-1189
        • Riedel B.C.
        • Thompson P.M.
        • Brinton R.D.
        Age, APOE and sex: Triad of risk of Alzheimer’s disease.
        J Steroid Biochem Mol Biol. 2016; 160: 134-147
        • Hohman T.J.
        • Dumitrescu L.
        • Barnes L.L.
        • Thambisetty M.
        • Beecham G.
        • Kunkle B.
        • et al.
        Sex-specific association of apolipoprotein E with cerebrospinal fluid levels of tau.
        JAMA Neurol. 2018; 75: 989-998
        • Deming Y.
        • Dumitrescu L.
        • Barnes L.L.
        • Thambisetty M.
        • Kunkle B.
        • Gifford K.A.
        • et al.
        Sex-specific genetic predictors of Alzheimer’s disease biomarkers.
        Acta Neuropathol. 2018; 136: 857-872
        • Dumitrescu L.
        • Mayeda E.R.
        • Sharman K.
        • Moore A.M.
        • Hohman T.J.
        Sex differences in the genetic architecture of Alzheimer’s disease.
        Curr Genet Med Rep. 2019; 7: 13-21
        • Wes P.D.
        • Sayed F.A.
        • Bard F.
        • Gan L.
        Targeting microglia for the treatment of Alzheimer’s disease.
        Glia. 2016; 64: 1710-1732
        • Guerreiro R.
        • Wojtas A.
        • Bras J.
        • Carrasquillo M.
        • Rogaeva E.
        • Majounie E.
        • et al.
        TREM2 variants in Alzheimer’s disease.
        N Engl J Med. 2013; 368: 117-127
        • Jonsson T.
        • Stefansson K.
        TREM2 and neurodegenerative disease.
        N Engl J Med. 2013; 369: 1568-1569
        • Grubman A.
        • Chew G.
        • Ouyang J.F.
        • Sun G.
        • Choo X.Y.
        • McLean C.
        • et al.
        A single-cell atlas of entorhinal cortex from individuals with Alzheimer’s disease reveals cell-type-specific gene expression regulation.
        Nat Neurosci. 2019; 22: 2087-2097
        • Srinivasan K.
        • Friedman B.A.
        • Etxeberria A.
        • Huntley M.A.
        • van der Brug M.P.
        • Foreman O.
        • et al.
        Alzheimer’s patient microglia exhibit enhanced aging and unique transcriptional activation.
        Cell Rep. 2020; 31: 107843
        • Mathys H.
        • Davila-Velderrain J.
        • Peng Z.
        • Gao F.
        • Mohammadi S.
        • Young J.Z.
        • et al.
        Single-cell transcriptomic analysis of Alzheimer’s disease [published correction appears in Nature 2019; 571:E1].
        Nature. 2019; 570: 332-337
        • Pagano G.
        • Ferrara N.
        • Brooks D.J.
        • Pavese N.
        Age at onset and Parkinson disease phenotype.
        Neurology. 2016; 86: 1400-1407
        • Dickson D.W.
        Parkinson’s disease and parkinsonism: Neuropathology.
        Cold Spring Harb Perspect Med. 2012; 2: a009258
        • Alexander G.E.
        Biology of Parkinson’s disease: Pathogenesis and pathophysiology of a multisystem neurodegenerative disorder.
        Dialogues Clin Neurosci. 2004; 6: 259-280
        • Baldereschi M.
        • Di Carlo A.
        • Rocca W.A.
        • Vanni P.
        • Maggi S.
        • Perissinotto E.
        • et al.
        Parkinson’s disease and parkinsonism in a longitudinal study: two-fold higher incidence in men. ILSA Working Group. Italian Longitudinal Study on Aging.
        Neurology. 2000; 55: 1358-1363
        • Haaxma C.A.
        • Bloem B.R.
        • Borm G.F.
        • Oyen W.J.
        • Leenders K.L.
        • Eshuis S.
        • et al.
        Gender differences in Parkinson’s disease.
        J Neurol Neurosurg Psychiatry. 2007; 78: 819-824
        • Miller I.N.
        • Cronin-Golomb A.
        Gender differences in Parkinson’s disease: Clinical characteristics and cognition.
        Mov Disord. 2010; 25: 2695-2703
        • Iannuzzelli K.
        • Bakker C.
        • Alshaikh J.
        • Bang J.
        • Butala A.
        • Marvel C.
        • et al.
        Gender differences in distribution of Lewy body pathology in individuals with Parkinson’s disease.
        Neurology. 2020; 94: 4664
        • Marras C.
        • Saunders-Pullman R.
        The complexities of hormonal influences and risk of Parkinson’s disease.
        Mov Disord. 2014; 29: 845-848
        • Frentzel D.
        • Judanin G.
        • Borozdina O.
        • Klucken J.
        • Winkler J.
        • Schlachetzki J.C.M.
        Increase of reproductive life span delays age of onset of Parkinson’s disease.
        Front Neurol. 2017; 8: 397
        • Simon K.C.
        • Chen H.
        • Gao X.
        • Schwarzschild M.A.
        • Ascherio A.
        Reproductive factors, exogenous estrogen use, and risk of Parkinson’s disease.
        Mov Disord. 2009; 24: 1359-1365
        • Wu S.Y.
        • Chen Y.W.
        • Tsai S.F.
        • Wu S.N.
        • Shih Y.H.
        • Jiang-Shieh Y.F.
        • et al.
        Estrogen ameliorates microglial activation by inhibiting the Kir2.1 inward-rectifier K(+) channel.
        Sci Rep. 2016; 6: 22864
        • Doorn K.J.
        • Moors T.
        • Drukarch B.
        • van de Berg WDj
        • Lucassen P.J.
        • van Dam A.M.
        Microglial phenotypes and toll-like receptor 2 in the substantia nigra and hippocampus of incidental Lewy body disease cases and Parkinson’s disease patients.
        Acta Neuropathol Commun. 2014; 2: 90
        • Ferreira S.A.
        • Romero-Ramos M.
        Microglia response during Parkinson’s disease: Alpha-synuclein intervention.
        Front Cell Neurosci. 2018; 12: 247
        • Jucaite A.
        • Svenningsson P.
        • Rinne J.O.
        • Cselényi Z.
        • Varnäs K.
        • Johnström P.
        • et al.
        Effect of the myeloperoxidase inhibitor AZD3241 on microglia: A PET study in Parkinson’s disease.
        Brain. 2015; 138: 2687-2700
        • Campêlo C.L.C.
        • Cagni F.C.
        • de Siqueira Figueredo D.
        • Oliveira Jr., L.G.
        • Silva-Neto A.B.
        • Macêdo P.T.
        • et al.
        Variants in SNCA gene are associated with Parkinson’s disease risk and cognitive symptoms in a Brazilian sample.
        Front Aging Neurosci. 2017; 9: 198
        • Mata I.F.
        • Shi M.
        • Agarwal P.
        • Chung K.A.
        • Edwards K.L.
        • Factor S.A.
        • et al.
        SNCA variant associated with Parkinson disease and plasma alpha-synuclein level.
        Arch Neurol. 2010; 67: 1350-1356
        • Simunovic F.
        • Yi M.
        • Wang Y.
        • Macey L.
        • Brown L.T.
        • Krichevsky A.M.
        • et al.
        Gene expression profiling of substantia nigra dopamine neurons: Further insights into Parkinson’s disease pathology.
        Brain. 2009; 132: 1795-1809
        • Matsuo H.
        • Tomiyama H.
        • Satake W.
        • Chiba T.
        • Onoue H.
        • Kawamura Y.
        • et al.
        ABCG2 variant has opposing effects on onset ages of Parkinson’s disease and gout.
        Ann Clin Transl Neurol. 2015; 2: 302-306
        • Kueider A.M.
        • An Y.
        • Tanaka T.
        • Kitner-Triolo M.H.
        • Studenski S.
        • Ferrucci L.
        • Thambisetty M.
        Sex-dependent associations of serum uric acid with brain function during aging.
        J Alzheimers Dis. 2017; 60: 699-706
        • Sampson T.R.
        • Debelius J.W.
        • Thron T.
        • Janssen S.
        • Shastri G.G.
        • Ilhan Z.E.
        • et al.
        Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease.
        Cell. 2016; 167: 1469-1480.e12
        • Baldini F.
        • Hertel J.
        • Sandt E.
        • Thinnes C.C.
        • Neuberger-Castillo L.
        • Pavelka L.
        • et al.
        Parkinson’s disease-associated alterations of the gut microbiome predict disease-relevant changes in metabolic functions.
        BMC Biol. 2020; 18: 62
        • Lin J.C.
        • Lin C.S.
        • Hsu C.W.
        • Lin C.L.
        • Kao C.H.
        Association between Parkinson’s disease and inflammatory bowel disease: A nationwide Taiwanese retrospective cohort study.
        Inflamm Bowel Dis. 2016; 22: 1049-1055
        • Peter I.
        • Dubinsky M.
        • Bressman S.
        • Park A.
        • Lu C.
        • Chen N.
        • Wang A.
        Anti-tumor necrosis factor therapy and incidence of Parkinson disease among patients with inflammatory bowel disease.
        JAMA Neurol. 2018; 75: 939-946
        • Erny D.
        • Hrabě de Angelis A.L.
        • Jaitin D.
        • Wieghofer P.
        • Staszewski O.
        • David E.
        • et al.
        Host microbiota constantly control maturation and function of microglia in the CNS.
        Nat Neurosci. 2015; 18: 965-977
        • Thion M.S.
        • Low D.
        • Silvin A.
        • Chen J.
        • Grisel P.
        • Schulte-Schrepping J.
        • et al.
        Microbiome influences prenatal and adult microglia in a sex-specific manner.
        Cell. 2018; 172: 500-516.e16
        • Kiernan M.C.
        • Vucic S.
        • Cheah B.C.
        • Turner M.R.
        • Eisen A.
        • Hardiman O.
        • et al.
        Amyotrophic lateral sclerosis.
        Lancet. 2011; 377: 942-955
        • McCombe P.A.
        • Henderson R.D.
        Effects of gender in amyotrophic lateral sclerosis.
        Gend Med. 2010; 7: 557-570
        • Curtis A.F.
        • Masellis M.
        • Hsiung G.R.
        • Moineddin R.
        • Zhang K.
        • Au B.
        • et al.
        Sex differences in the prevalence of genetic mutations in FTD and ALS: A meta-analysis.
        Neurology. 2017; 89: 1633-1642
        • Trojsi F.
        • Siciliano M.
        • Femiano C.
        • Santangelo G.
        • Lunetta C.
        • Calvo A.
        • et al.
        Comparative analysis of C9orf72 and sporadic disease in a large multicenter ALS population: The effect of male sex on survival of C9orf72 positive patients.
        Front Neurosci. 2019; 13: 485
        • Gershoni M.
        • Pietrokovski S.
        The landscape of sex-differential transcriptome and its consequent selection in human adults.
        BMC Biol. 2017; 15: 7
        • Brettschneider J.
        • Toledo J.B.
        • Van Deerlin V.M.
        • Elman L.
        • McCluskey L.
        • Lee V.M.
        • Trojanowski J.Q.
        Microglial activation correlates with disease progression and upper motor neuron clinical symptoms in amyotrophic lateral sclerosis.
        PLoS One. 2012; 7e39216
        • Cooper-Knock J.
        • Green C.
        • Altschuler G.
        • Wei W.
        • Bury J.J.
        • Heath P.R.
        • et al.
        A data-driven approach links microglia to pathology and prognosis in amyotrophic lateral sclerosis.
        Acta Neuropathol Commun. 2017; 5: 23
        • McCauley M.E.
        • O’Rourke J.G.
        • Yáñez A.
        • Markman J.L.
        • Ho R.
        • Wang X.
        • et al.
        C9orf72 in myeloid cells suppresses STING-induced inflammation.
        Nature. 2020; 585: 96-101
        • McGeer P.L.
        • McGeer E.G.
        Inflammatory processes in amyotrophic lateral sclerosis.
        Muscle Nerve. 2002; 26: 459-470
        • Shibata N.
        • Kakita A.
        • Takahashi H.
        • Ihara Y.
        • Nobukuni K.
        • Fujimura H.
        • et al.
        Activation of signal transducer and activator of transcription-3 in the spinal cord of sporadic amyotrophic lateral sclerosis patients.
        Neurodegener Dis. 2009; 6: 118-126
        • Klein S.L.
        • Flanagan K.L.
        Sex differences in immune responses.
        Nat Rev Immunol. 2016; 16: 626-638
        • Zeng Y.
        • Nie C.
        • Min J.
        • Chen H.
        • Liu X.
        • Ye R.
        • et al.
        Sex differences in genetic associations with longevity.
        JAMA Netw Open. 2018; 1e181670
        • Editorial
        Accounting for sex in the genome.
        Nat Med. 2017; 23: 1243
        • Gao F.
        • Chang D.
        • Biddanda A.
        • Ma L.
        • Guo Y.
        • Zhou Z.
        • Keinan A.
        XWAS: A software toolset for genetic data analysis and association studies of the X chromosome.
        J Hered. 2015; 106: 666-671