Advertisement

Ketamine Rapidly Enhances Glutamate-Evoked Dendritic Spinogenesis in Medial Prefrontal Cortex Through Dopaminergic Mechanisms

      Abstract

      Background

      Ketamine elicits rapid onset antidepressant effects in patients with clinical depression through mechanisms hypothesized to involve the genesis of neocortical dendritic spines and synapses. Yet, the observed changes in dendritic spine morphology usually emerge well after ketamine clearance, raising questions about the link between rapid behavioral effects of ketamine and plasticity.

      Methods

      Here, we used two-photon glutamate uncaging/imaging to focally induce spinogenesis in the medial prefrontal cortex, directly interrogating baseline and ketamine-associated plasticity of deep layer pyramidal neurons in C57BL/6 mice. We combined pharmacological, genetic, optogenetic, and chemogenetic manipulations to interrogate dopaminergic mechanisms underlying ketamine-induced rapid enhancement in evoked plasticity and associated behavioral changes.

      Results

      We found that ketamine rapidly enhances glutamate-evoked spinogenesis in the medial prefrontal cortex, with timing that matches the onset of its behavioral efficacy and precedes changes in dendritic spine density. Ketamine increases evoked cortical spinogenesis through dopamine Drd1 receptor (Drd1) activation that requires dopamine release, compensating blunted plasticity in a learned helplessness paradigm. The enhancement in evoked spinogenesis after Drd1 activation or ketamine treatment depends on postsynaptic protein kinase A activity. Furthermore, ketamine’s behavioral effects are blocked by chemogenetic inhibition of dopamine release and mimicked by activating presynaptic dopaminergic terminals or postsynaptic Gαs-coupled cascades in the medial prefrontal cortex.

      Conclusions

      Our findings highlight dopaminergic mediation of rapid enhancement in activity-dependent dendritic spinogenesis and behavioral effects induced by ketamine.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Daly E.J.
        • Singh J.B.
        • Fedgchin M.
        • Cooper K.
        • Lim P.
        • Shelton R.C.
        • et al.
        Efficacy and safety of intranasal esketamine adjunctive to oral antidepressant therapy in treatment-resistant depression: A randomized clinical trial.
        JAMA Psychiatry. 2018; 75: 139-148
        • Berman R.M.
        • Cappiello A.
        • Anand A.
        • Oren D.A.
        • Heninger G.R.
        • Charney D.S.
        • Krystal J.H.
        Antidepressant effects of ketamine in depressed patients.
        Biol Psychiatry. 2000; 47: 351-354
        • Kim J.
        • Farchione T.
        • Potter A.
        • Chen Q.
        • Temple R.
        Esketamine for treatment-resistant depression—First FDA-approved antidepressant in a new class.
        N Engl J Med. 2019; 381: 1-4
        • Duman R.S.
        Ketamine and rapid-acting antidepressants: A new era in the battle against depression and suicide.
        F1000Research. 2018; 7: 659
        • Zanos P.
        • Gould T.D.
        Mechanisms of ketamine action as an antidepressant.
        Mol Psychiatry. 2018; 23: 801-811
        • Miller O.H.
        • Yang L.
        • Wang C.-C.
        • Hargroder E.A.
        • Zhang Y.
        • Delpire E.
        • Hall B.J.
        GluN2B-containing NMDA receptors regulate depression-like behavior and are critical for the rapid antidepressant actions of ketamine.
        eLife. 2014; 3e3581
        • Abdallah C.G.
        • Sanacora G.
        • Duman R.S.
        • Krystal J.H.
        Ketamine and rapid-acting antidepressants: A window into a new neurobiology for mood disorder therapeutics.
        Annu Rev Med. 2015; 66: 509-523
        • Holmes S.E.
        • Scheinost D.
        • Finnema S.J.
        • Naganawa M.
        • Davis M.T.
        • DellaGioia N.
        • et al.
        Lower synaptic density is associated with depression severity and network alterations.
        Nat Commun. 2019; 10: 1529
        • Zanos P.
        • Moaddel R.
        • Morris P.J.
        • Georgiou P.
        • Fischell J.
        • Elmer G.I.
        • et al.
        NMDAR inhibition-independent antidepressant actions of ketamine metabolites.
        Nature. 2016; 533: 481-486
        • Wray N.H.
        • Schappi J.M.
        • Singh H.
        • Senese N.B.
        • Rasenick M.M.
        NMDAR-independent, cAMP-dependent antidepressant actions of ketamine.
        Mol Psychiatry. 2019; 24: 1833-1843
        • Harmer C.J.
        • Duman R.S.
        • Cowen P.J.
        How do antidepressants work? New perspectives for refining future treatment approaches.
        Lancet Psychiatry. 2017; 4: 409-418
        • Fuchikami M.
        • Thomas A.
        • Liu R.
        • Wohleb E.S.
        • Land B.B.
        • DiLeone R.J.
        • et al.
        Optogenetic stimulation of infralimbic PFC reproduces ketamine’s rapid and sustained antidepressant actions.
        Proc Natl Acad Sci U S A. 2015; 112: 8106-8111
        • Duman R.S.
        • Aghajanian G.K.
        Synaptic dysfunction in depression: Potential therapeutic targets.
        Science. 2012; 338: 68-72
        • Duman R.S.
        • Aghajanian G.K.
        • Sanacora G.
        • Krystal J.H.
        Synaptic plasticity and depression: New insights from stress and rapid-acting antidepressants.
        Nat Med. 2016; 22: 238-249
        • Krishnan V.
        • Nestler E.J.
        Animal models of depression: Molecular perspectives.
        Curr Top Behav Neurosci. 2011; 7: 121-147
        • Li N.
        • Lee B.
        • Liu R.-J.
        • Banasr M.
        • Dwyer J.M.
        • Iwata M.
        • et al.
        mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists.
        Science. 2010; 329: 959-964
        • Popoli M.
        • Yan Z.
        • McEwen B.S.
        • Sanacora G.
        The stressed synapse: The impact of stress and glucocorticoids on glutamate transmission.
        Nat Rev Neurosci. 2012; 13: 22-37
        • Gerhard D.M.
        • Wohleb E.S.
        • Duman R.S.
        Emerging treatment mechanisms for depression: Focus on glutamate and synaptic plasticity.
        Drug Discov Today. 2016; 21: 454-464
        • Moda-Sava R.N.
        • Murdock M.H.
        • Parekh P.K.
        • Fetcho R.N.
        • Huang B.S.
        • Huynh T.N.
        • et al.
        Sustained rescue of prefrontal circuit dysfunction by antidepressant-induced spine formation.
        Science. 2019; 364eaat8078
        • Phoumthipphavong V.
        • Barthas F.
        • Hassett S.
        • Kwan A.C.
        Longitudinal effects of ketamine on dendritic architecture in vivo in the mouse medial frontal cortex.
        eNeuro. 2016; 3: 91-95
        • Sarkar A.
        • Kabbaj M.
        Sex differences in effects of ketamine on behavior, spine density, and synaptic proteins in socially isolated rats.
        Biol Psychiatry. 2016; 80: 448-456
        • Ng L.H.L.
        • Huang Y.
        • Han L.
        • Chang R.C.-C.
        • Chan Y.S.
        • Lai C.S.W.
        Ketamine and selective activation of parvalbumin interneurons inhibit stress-induced dendritic spine elimination.
        Transl Psychiatry. 2018; 8: 272
        • Liu R.J.
        • Fuchikami M.
        • Dwyer J.M.
        • Lepack A.E.
        • Duman R.S.
        • Aghajanian G.K.
        GSK-3 inhibition potentiates the synaptogenic and antidepressant-like effects of subthreshold doses of ketamine.
        Neuropsychopharmacology. 2013; 38: 2268-2277
        • Krystal J.H.
        • Sanacora G.
        • Duman R.S.
        Rapid-acting glutamatergic antidepressants: The path to ketamine and beyond.
        Biol Psychiatry. 2013; 73: 1133-1141
        • Krystal J.H.
        • Abdallah C.G.
        • Sanacora G.
        • Charney D.S.
        • Duman R.S.
        Ketamine: A paradigm shift for depression research and treatment.
        Neuron. 2019; 101: 774-778
        • Proulx C.D.
        • Hikosaka O.
        • Malinow R.
        Reward processing by the lateral habenula in normal and depressive behaviors.
        Nat Neurosci. 2014; 17: 1146-1152
        • Abler B.
        • Erk S.
        • Herwig U.
        • Walter H.
        Anticipation of aversive stimuli activates extended amygdala in unipolar depression.
        J Psychiatr Res. 2007; 41: 511-522
        • Heldt S.A.
        • Stanek L.
        • Chhatwal J.P.
        • Ressler K.J.
        Hippocampus-specific deletion of BDNF in adult mice impairs spatial memory and extinction of aversive memories.
        Mol Psychiatry. 2007; 12: 656-670
        • Luking K.R.
        • Pagliaccio D.
        • Luby J.L.
        • Barch D.M.
        Reward processing and risk for depression across development.
        Trends Cogn Sci. 2016; 20: 456-468
        • Morales M.
        • Margolis E.B.
        Ventral tegmental area: Cellular heterogeneity, connectivity and behaviour.
        Nat Rev Neurosci. 2017; 18: 73-85
        • Berridge K.C.
        • Kringelbach M.L.
        Pleasure systems in the brain.
        Neuron. 2015; 86: 646-664
        • Bromberg-Martin E.S.
        • Matsumoto M.
        • Hikosaka O.
        Dopamine in motivational control: Rewarding, aversive, and alerting.
        Neuron. 2010; 68: 815-834
        • de Jong J.W.
        • Afjei S.A.
        • Pollak Dorocic I.
        • Peck J.R.
        • Liu C.
        • Kim C.K.
        • et al.
        A neural circuit mechanism for encoding aversive stimuli in the mesolimbic dopamine system.
        Neuron. 2019; 101: 133-151.e7
        • Lammel S.
        • Lim B.K.
        • Malenka R.C.
        Reward and aversion in a heterogeneous midbrain dopamine system.
        Neuropharmacology. 2014; 76: 351-359
        • Vander Weele C.M.
        • Siciliano C.A.
        • Matthews G.A.
        • Namburi P.
        • Izadmehr E.M.
        • Espinel I.C.
        • et al.
        Dopamine enhances signal-to-noise ratio in cortical-brainstem encoding of aversive stimuli.
        Nature. 2018; 563: 397-401
        • Dunlop B.W.
        • Nemeroff C.B.
        The role of dopamine in the pathophysiology of depression.
        Arch Gen Psychiatry. 2007; 64: 327-337
        • Dailly E.
        • Chenu F.
        • Renard C.E.
        • Bourin M.
        Dopamine, depression and antidepressants.
        Fundam Clin Pharmacol. 2004; 18: 601-607
        • Belujon P.
        • Grace A.A.
        Restoring mood balance in depression: Ketamine reverses deficit in dopamine-dependent synaptic plasticity.
        Biol Psychiatry. 2014; 76: 927-936
        • Chaudhury D.
        • Walsh J.J.
        • Friedman A.K.
        • Juarez B.
        • Ku S.M.
        • Koo J.W.
        • et al.
        Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons.
        Nature. 2013; 493: 532-536
        • Tye K.M.
        • Mirzabekov J.J.
        • Warden M.R.
        • Ferenczi E.A.
        • Tsai H.-C.
        • Finkelstein J.
        • et al.
        Dopamine neurons modulate neural encoding and expression of depression-related behaviour.
        Nature. 2012; 493: 537-541
        • Belujon P.
        • Grace A.A.
        Dopamine system dysregulation in major depressive disorders.
        Int J Neuropsychopharmacol. 2017; 20: 1036-1046
        • Friedman A.K.
        • Walsh J.J.
        • Juarez B.
        • Ku S.M.
        • Chaudhury D.
        • Wang J.
        • et al.
        Enhancing depression mechanisms in midbrain dopamine neurons achieves homeostatic resilience.
        Science. 2014; 344: 313-319
        • Kokkinou M.
        • Ashok A.H.
        • Howes O.D.
        The effects of ketamine on dopaminergic function: Meta-analysis and review of the implications for neuropsychiatric disorders.
        Mol Psychiatry. 2018; 23: 59-69
        • Moghaddam B.
        • Adams B.
        • Verma A.
        • Daly D.
        Activation of glutamatergic neurotransmission by ketamine: A novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex.
        J Neurosci. 1997; 17: 2921-2927
        • Verma A.
        • Moghaddam B.
        NMDA receptor antagonists impair prefrontal cortex function as assessed via spatial delayed alternation performance in rats: Modulation by dopamine.
        J Neurosci. 1996; 16: 373-379
        • Chatterjee M.
        • Verma R.
        • Ganguly S.
        • Palit G.
        Neurochemical and molecular characterization of ketamine-induced experimental psychosis model in mice.
        Neuropharmacology. 2012; 63: 1161-1171
        • Lindefors N.
        • Barati S.
        • O’Connor W.T.
        Differential effects of single and repeated ketamine administration on dopamine, serotonin and GABA transmission in rat medial prefrontal cortex.
        Brain Res. 1997; 759: 205-212
        • Lorrain D.
        • Baccei C.
        • Bristow L.
        • Anderson J.
        • Varney M.
        Effects of ketamine and N-methyl-D-aspartate on glutamate and dopamine release in the rat prefrontal cortex: Modulation by a group II selective metabotropic glutamate receptor agonist LY379268.
        Neuroscience. 2003; 117: 697-706
        • Tseng K.Y.
        • O’Donnell P.
        Dopamine-glutamate interactions controlling prefrontal cortical pyramidal cell excitability involve multiple signaling mechanisms.
        J Neurosci. 2004; 24: 5131-5139
        • Wang J.
        • O’Donnell P.
        D1 dopamine receptors potentiate NMDA-mediated excitability increase in layer V prefrontal cortical pyramidal neurons.
        Cereb Cortex. 2001; 11: 452-462
        • Gulledge A.T.
        • Jaffe D.B.
        Multiple effects of dopamine on layer V pyramidal cell excitability in rat prefrontal cortex.
        J Neurophysiol. 2001; 86: 586-595
        • Chen L.
        • Bohanick J.D.
        • Nishihara M.
        • Seamans J.K.
        • Yang C.R.
        Dopamine D1/5 receptor-mediated long-term potentiation of intrinsic excitability in rat prefrontal cortical neurons: Ca2+-dependent intracellular signaling.
        J Neurophysiol. 2007; 97: 2448-2464
        • Kwon H.-B.
        • Sabatini B.L.
        Glutamate induces de novo growth of functional spines in developing cortex.
        Nature. 2011; 474: 100-104
        • Kozorovitskiy Y.
        • Saunders A.
        • Johnson C.A.
        • Lowell B.B.
        • Sabatini B.L.
        Recurrent network activity drives striatal synaptogenesis.
        Nature. 2012; 485: 646-650
        • Kozorovitskiy Y.
        • Peixoto R.
        • Wang W.
        • Saunders A.
        • Sabatini B.L.
        Neuromodulation of excitatory synaptogenesis in striatal development.
        eLife. 2015; 4e10111
        • Pologruto T.A.
        • Sabatini B.L.
        • Svoboda K.
        ScanImage: Flexible software for operating laser scanning microscopes.
        Biomed Eng Online. 2003; 2: 13
        • Coupé P.
        • Munz M.
        • Manjón J.V.
        • Ruthazer E.S.
        • Collins D.L.
        A CANDLE for a deeper in vivo insight.
        Med Image Anal. 2012; 16: 849-864
        • Guo L.
        • Xiong H.
        • Kim J.-I.
        • Wu Y.-W.
        • Lalchandani R.R.
        • Cui Y.
        • et al.
        Dynamic rewiring of neural circuits in the motor cortex in mouse models of Parkinson’s disease.
        Nat Neurosci. 2015; 18: 1299-1309
        • Tritsch N.X.
        • Sabatini B.L.
        Dopaminergic modulation of synaptic transmission in cortex and striatum.
        Neuron. 2012; 76: 33-50
        • Santana N.
        • Mengod G.
        • Artigas F.
        Quantitative analysis of the expression of dopamine D1 and D2 receptors in pyramidal and GABAergic neurons of the rat prefrontal cortex.
        Cereb Cortex. 2009; 19: 849-860
        • Waddington J.L.
        Behavioural correlates of the action of selective D-1 dopamine receptor antagonists: Impact of SCH 23390 and SKF 83566, and functionally interactive D-1:D-2 receptor systems.
        Biochem Pharmacol. 1986; 35: 3661-3667
        • Chourbaji S.
        • Zacher C.
        • Sanchis-Segura C.
        • Dormann C.
        • Vollmayr B.
        • Gass P.
        Learned helplessness: Validity and reliability of depressive-like states in mice.
        Brain Res Protoc. 2005; 16: 70-78
        • Radley J.J.
        • Rocher A.B.
        • Miller M.
        • Janssen W.G.M.
        • Liston C.
        • Hof P.R.
        • et al.
        Repeated stress induces dendritic spine loss in the rat medial prefrontal cortex.
        Cereb Cortex. 2006; 16: 313-320
        • Radley J.J.
        • Rocher A.B.
        • Rodriguez A.
        • Ehlenberger D.B.
        • Dammann M.
        • McEwen B.S.
        • et al.
        Repeated stress alters dendritic spine morphology in the rat medial prefrontal cortex.
        J Comp Neurol. 2008; 507: 1141-1150
        • Fasano C.
        • Bourque M.J.
        • Lapointe G.
        • Leo D.
        • Thibault D.
        • Haber M.
        • et al.
        Dopamine facilitates dendritic spine formation by cultured striatal medium spiny neurons through both D1 and D2 dopamine receptors.
        Neuropharmacology. 2013; 67: 432-443
        • Saunders A.
        • Macosko E.Z.
        • Wysoker A.
        • Goldman M.
        • Krienen F.M.
        • de Rivera H.
        • et al.
        Molecular diversity and specializations among the cells of the adult mouse brain.
        Cell. 2018; 174: 1015-1030.e16
        • Woolfrey K.M.
        • Srivastava D.P.
        Control of dendritic spine morphological and functional plasticity by small GTPases.
        Neural Plast. 2016; 2016: 3025948
        • Stachniak T.J.
        • Ghosh A.
        • Sternson S.M.
        Chemogenetic synaptic silencing of neural circuits localizes a hypothalamus→midbrain pathway for feeding behavior.
        Neuron. 2014; 82: 797-808
        • Mahler S.V.
        • Vazey E.M.
        • Beckley J.T.
        • Keistler C.R.
        • McGlinchey E.M.
        • Kaufling J.
        • et al.
        Designer receptors show role for ventral pallidum input to ventral tegmental area in cocaine seeking.
        Nat Neurosci. 2014; 17: 577-585
        • Roth B.L.
        DREADDs for neuroscientists.
        Neuron. 2016; 89: 683-694
        • Shen W.
        • Flajolet M.
        • Greengard P.
        • Surmeier D.J.
        Dichotomous dopaminergic control of striatal synaptic plasticity.
        Science. 2008; 321: 848-851
        • Hare B.D.
        • Shinohara R.
        • Liu R.J.
        • Pothula S.
        • DiLeone R.J.
        • Duman R.S.
        Optogenetic stimulation of medial prefrontal cortex Drd1 neurons produces rapid and long-lasting antidepressant effects.
        Nat Commun. 2019; 10: 223
        • Feder A.
        • Parides M.K.
        • Murrough J.W.
        • Perez A.M.
        • Morgan J.E.
        • Saxena S.
        • et al.
        Efficacy of intravenous ketamine for treatment of chronic posttraumatic stress disorder.
        JAMA Psychiatry. 2014; 71: 681-688
        • Peltoniemi M.A.
        • Hagelberg N.M.
        • Olkkola K.T.
        • Saari T.I.
        Ketamine: A review of clinical pharmacokinetics and pharmacodynamics in anesthesia and pain therapy.
        Clin Pharmacokinet. 2016; 55: 1059-1077
        • Veilleux-Lemieux D.
        • Castel A.
        • Carrier D.
        • Beaudry F.
        • Vachon P.
        Pharmacokinetics of ketamine and xylazine in young and old Sprague-Dawley rats.
        J Am Assoc Lab Anim Sci. 2013; 52: 567-570
        • Wahlstrom D.
        • Collins P.
        • White T.
        • Luciana M.
        Developmental changes in dopamine neurotransmission in adolescence: Behavioral implications and issues in assessment.
        Brain Cogn. 2010; 72: 146-159
        • Freitas C.
        • Perez J.
        • Knobel M.
        • Tormos J.M.
        • Oberman L.
        • Eldaief M.
        • et al.
        Changes in cortical plasticity across the lifespan.
        Front Aging Neurosci. 2011; 3: 1-8
        • Li S.C.
        • Lindenberger U.
        • Bäckman L.
        Dopaminergic modulation of cognition across the life span.
        Neurosci Biobehav Rev. 2010; 34: 625-630
        • Spear L.P.
        The adolescent brain and age-related behavioral manifestations.
        Neurosci Biobehav Rev. 2000; 24: 417-463
        • Kalsbeek A.
        • Voorn P.
        • Buijs R.M.
        • Pool C.W.
        • Uylings H.B.M.
        Development of the dopaminergic innervation in the prefrontal cortex of the rat.
        J Comp Neurol. 1988; 269: 58-72
        • MacDonald S.W.S.
        • Karlsson S.
        • Rieckmann A.
        • Nyberg L.
        • Backman L.
        Aging-related increases in behavioral variability: Relations to losses of dopamine D1 receptors.
        J Neurosci. 2012; 32: 8186-8191
        • Rothmond D.A.
        • Weickert C.S.
        • Webster M.J.
        Developmental changes in human dopamine neurotransmission: Cortical receptors and terminators.
        BMC Neurosci. 2012; 13: 18
        • Bryant K.A.
        • Altinay M.
        • Finnegan N.
        • Cromer K.
        • Dale R.M.
        Effects of repeated intravenous ketamine in treatment-resistant geriatric depression.
        J Clin Psychopharmacol. 2019; 39: 158-161
        • Konietzny A.
        • Bär J.
        • Mikhaylova M.
        Dendritic actin cytoskeleton: Structure, functions, and regulations.
        Front Cell Neurosci. 2017; 11: 147
        • Bachmann V.A.
        • Riml A.
        • Huber R.G.
        • Baillie G.S.
        • Liedl K.R.
        • Valovka T.
        • Stefan E.
        Reciprocal regulation of PKA and Rac signaling.
        Proc Natl Acad Sci U S A. 2013; 110: 8531-8536
        • Nagai T.
        • Nakamuta S.
        • Kuroda K.
        • Nakauchi S.
        • Nishioka T.
        • Takano T.
        • et al.
        Phosphoproteomics of the dopamine pathway enables discovery of Rap1 activation as a reward signal in vivo.
        Neuron. 2016; 89: 550-565

      Linked Article

      • Ketamine for a Boost of Neural Plasticity: How, but Also When?
        Biological PsychiatryVol. 89Issue 11
        • Preview
          Major depressive disorder affects millions of people and leads to debilitating symptoms. Although conventional antidepressants have been available and are often beneficial, they have several limitations, including a slow onset of action and an inadequate response for a substantial fraction of patients. Recently, ketamine—primarily a noncompetitive NMDA receptor antagonist, among other actions—was approved as a novel treatment for treatment-resistant depression and suicidal ideation. This was an exciting development because ketamine can relieve depressive symptoms rapidly and with sustained effect.
        • Full-Text
        • PDF