Advertisement

Transcriptomic Regulations Underlying Pair-bond Formation and Maintenance in the Socially Monogamous Male and Female Prairie Vole

Published:December 08, 2020DOI:https://doi.org/10.1016/j.biopsych.2020.11.022

      Abstract

      Background

      The ability to form enduring social bonds is characteristic of human nature, and impairments in social affiliation are central features of severe neuropsychiatric disorders including autism spectrum disorder and schizophrenia. Owing to its ability to form long-term pair-bonds, the socially monogamous prairie vole has emerged as an excellent model to study the neurobiology of social attachment. Despite the enduring nature of the bond, however, surprisingly few genes have been implicated in the pair-bonding process in either sex.

      Methods

      Male and female prairie voles (Microtus ochrogaster) were cohabitated with an opposite-sex partner for 24 hours or 3 weeks, and transcriptomic regulations in the nucleus accumbens were measured by RNA sequencing.

      Results

      We found sex-specific response patterns despite similar behavioral indicators of pair-bond establishment. Indeed, 24 hours of cohabitation with an opposite-sex partner induced widespread transcriptomic changes that remained sustained to some extent in females after 3 weeks but returned to baseline before a second set of regulations in males. This led to a highly sexually biased nucleus accumbens transcriptome at 3 weeks related to processes such as neurotransmission, protein turnover, and DNA transcription. In particular, we found sex-specific alterations of mitochondrial dynamics following cohabitation, with a shift toward fission in males.

      Conclusions

      In addition to identifying the genes, networks, and pathways involved in the pair-bonding process in the nucleus accumbens, our work illustrates the vast extent of sex differences in the molecular mechanisms underlying pair-bonding in prairie voles and paves the way to further our understanding of the complex social bonding process.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Bora E.
        • Yucel M.
        • Allen N.B.
        Neurobiology of human affiliative behaviour: Implications for psychiatric disorders.
        Curr Opin Psychiatry. 2009; 22: 320-325
        • Kleiman D.G.
        Monogamy in mammals.
        Q Rev Biol. 1977; 52: 39-69
        • Thomas J.A.
        • Birney E.C.
        Parental care and mating system of the prairie vole, Microtus ochrogaster.
        Behav Ecol Sociobiol. 1979; 5: 171-186
        • Getz L.L.
        • Hofmann J.E.
        Social organization in free-living prairie voles, Microtus ochrogaster.
        Behav Ecol Sociobiol. 1986; 18: 275-282
        • Williams J.R.
        • Catania K.C.
        • Carter C.S.
        Development of partner preferences in female prairie voles (Microtus ochrogaster): The role of social and sexual experience.
        Horm Behav. 1992; 26: 339-349
        • Wang Z.
        • Young L.J.
        • Liu Y.
        • Insel T.R.
        Species differences in vasopressin receptor binding are evident early in development: Comparative anatomic studies in prairie and montane voles.
        J Comp Neurol. 1997; 378: 535-546
        • Winslow J.T.
        • Hastings N.
        • Carter C.S.
        • Harbaugh C.R.
        • Insel T.R.
        A role for central vasopressin in pair bonding in monogamous prairie voles.
        Nature. 1993; 365: 545-548
        • Resendez S.L.
        • Kuhnmuench M.
        • Krzywosinski T.
        • Aragona B.J.
        κ-Opioid receptors within the nucleus accumbens shell mediate pair bond maintenance.
        J Neurosci. 2012; 32: 6771-6784
        • Carter C.S.
        • DeVries A.C.
        • Getz L.L.
        Physiological substrates of mammalian monogamy: The prairie vole model.
        Neurosci Biobehav Rev. 1995; 19: 303-314
        • Lieberwirth C.
        • Wang Z.
        The neurobiology of pair bond formation, bond disruption, and social buffering.
        Curr Opin Neurobiol. 2016; 40: 8-13
        • Young L.J.
        • Wang Z.
        The neurobiology of pair bonding.
        Nat Neurosci. 2004; 7: 1048-1054
        • Amadei E.A.
        • Johnson Z.V.
        • Jun Kwon Y.
        • Shpiner A.C.
        • Saravanan V.
        • Mays W.D.
        • et al.
        Dynamic corticostriatal activity biases social bonding in monogamous female prairie voles.
        Nature. 2017; 546: 297-301
        • Scribner J.L.
        • Vance E.A.
        • Protter D.S.W.
        • Sheeran W.M.
        • Saslow E.
        • Cameron R.T.
        • et al.
        A neuronal signature for monogamous reunion.
        Proc Natl Acad Sci U S A. 2020; 117: 11076-11084
        • Young K.A.
        • Gobrogge K.L.
        • Liu Y.
        • Wang Z.
        The neurobiology of pair bonding: Insights from a socially monogamous rodent.
        Front Neuroendocrinol. 2011; 32: 53-69
        • Duclot F.
        • Wang H.
        • Youssef C.
        • Liu Y.
        • Wang Z.
        • Kabbaj M.
        Trichostatin A (TSA) facilitates formation of partner preference in male prairie voles (Microtus ochrogaster).
        Horm Behav. 2016; 81: 68-73
        • Wang H.
        • Duclot F.
        • Liu Y.
        • Wang Z.
        • Kabbaj M.
        Histone deacetylase inhibitors facilitate partner preference formation in female prairie voles.
        Nat Neurosci. 2013; 16: 919-924
        • Resendez S.L.
        • Keyes P.C.
        • Day J.J.
        • Hambro C.
        • Austin C.J.
        • Maina F.K.
        • et al.
        Dopamine and opioid systems interact within the nucleus accumbens to maintain monogamous pair bonds.
        Elife. 2016; 5e15325
        • Ross H.E.
        • Freeman S.M.
        • Spiegel L.L.
        • Ren X.
        • Terwilliger E.F.
        • Young L.J.
        Variation in oxytocin receptor density in the nucleus accumbens has differential effects on affiliative behaviors in monogamous and polygamous voles.
        J Neurosci. 2009; 29: 1312-1318
        • King L.B.
        • Walum H.
        • Inoue K.
        • Eyrich N.W.
        • Young L.J.
        Variation in the oxytocin receptor gene predicts brain region–specific expression and social attachment.
        Biol Psychiatry. 2016; 80: 160-169
        • Gobrogge K.L.
        • Liu Y.
        • Jia X.
        • Wang Z.
        Anterior hypothalamic neural activation and neurochemical associations with aggression in pair-bonded male prairie voles.
        J Comp Neurol. 2007; 502: 1109-1122
        • Duclot F.
        • Kabbaj M.
        The estrous cycle surpasses sex differences in regulating the transcriptome in the rat medial prefrontal cortex and reveals an underlying role of early growth response 1.
        Genome Biol. 2015; 16: 256
        • Chen S.
        • Zhou Y.
        • Chen Y.
        • Gu J.
        fastp: An ultra-fast all-in-one FASTQ preprocessor.
        Bioinformatics. 2018; 34: i884-i890
        • Patro R.
        • Duggal G.
        • Love M.I.
        • Irizarry R.A.
        • Kingsford C.
        Salmon provides fast and bias-aware quantification of transcript expression.
        Nat Methods. 2017; 14: 417-419
        • Love M.I.
        • Huber W.
        • Anders S.
        Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.
        Genome Biol. 2014; 15: 550
        • Huber W.
        • Carey V.J.
        • Gentleman R.
        • Anders S.
        • Carlson M.
        • Carvalho B.S.
        • et al.
        Orchestrating high-throughput genomic analysis with Bioconductor.
        Nat Methods. 2015; 12: 115-121
        • Subramanian A.
        • Tamayo P.
        • Mootha V.K.
        • Mukherjee S.
        • Ebert B.L.
        • Gillette M.A.
        • et al.
        Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles.
        Proc Natl Acad Sci U S A. 2005; 102: 15545-15550
        • Yu G.
        • Wang L.-G.
        • Han Y.
        • He Q.-Y.
        clusterProfiler: An R package for comparing biological themes among gene clusters.
        OMICS. 2012; 16: 284-287
        • Zhang B.
        • Horvath S.
        A general framework for weighted gene co-expression network analysis.
        Stat Appl Genet Mol Biol. 2005; 4
        • Langfelder P.
        • Horvath S.
        WGCNA: An R package for weighted correlation network analysis.
        BMC Bioinformatics. 2008; 9: 559
        • Langfelder P.
        • Horvath S.
        Fast R functions for robust correlations and hierarchical clustering.
        J Stat Softw. 2012; 46: i11
        • Lachmann A.
        • Giorgi F.M.
        • Lopez G.
        • Califano A.
        ARACNe-AP: Gene network reverse engineering through adaptive partitioning inference of mutual information.
        Bioinformatics. 2016; 32: 2233-2235
        • Bagot R.C.
        • Cates H.M.
        • Purushothaman I.
        • Lorsch Z.S.
        • Walker D.M.
        • Wang J.
        • et al.
        Circuit-wide transcriptional profiling reveals brain region-specific gene networks regulating depression susceptibility.
        Neuron. 2016; 90: 969-983
        • Zhang B.
        • Gaiteri C.
        • Bodea L.-G.
        • Wang Z.
        • McElwee J.
        • Podtelezhnikov A.A.
        • et al.
        Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer’s disease.
        Cell. 2013; 153: 707-720
        • Shu L.
        • Zhao Y.
        • Kurt Z.
        • Byars S.G.
        • Tukiainen T.
        • Kettunen J.
        • et al.
        Mergeomics: Multidimensional data integration to identify pathogenic perturbations to biological systems.
        BMC Genomics. 2016; 17: 874
        • Aragona B.J.
        • Liu Y.
        • Yu Y.J.
        • Curtis J.T.
        • Detwiler J.M.
        • Insel T.R.
        • Wang Z.
        Nucleus accumbens dopamine differentially mediates the formation and maintenance of monogamous pair bonds.
        Nat Neurosci. 2006; 9: 133-139
        • Firestone K.B.
        • Thompson K.V.
        • Carter C.S.
        Female-female interactions and social stress in prairie voles.
        Behav Neural Biol. 1991; 55: 31-41
        • Carter C.S.
        • DeVries A.C.
        • Taymans S.E.
        • Roberts R.L.
        • Williams J.R.
        • Getz L.L.
        Peptides, steroids, and pair bonding.
        Ann N Y Acad Sci. 1997; 807: 260-272
        • Hammock E.A.D.
        • Young L.J.
        Microsatellite instability generates diversity in brain and sociobehavioral traits.
        Science. 2005; 308: 1630-1634
        • Barrett C.E.
        • Keebaugh A.C.
        • Ahern T.H.
        • Bass C.E.
        • Terwilliger E.F.
        • Young L.J.
        Variation in vasopressin receptor (Avpr1a) expression creates diversity in behaviors related to monogamy in prairie voles.
        Horm Behav. 2013; 63: 518-526
        • Young L.J.
        Frank A. Beach Award. Oxytocin and vasopressin receptors and species-typical social behaviors.
        Horm Behav. 1999; 36: 212-221
        • Vogel A.R.
        • Patisaul H.B.
        • Arambula S.E.
        • Tiezzi F.
        • McGraw L.A.
        Individual variation in social behaviours of male lab-reared prairie voles (Microtus ochrogaster) is nonheritable and weakly associated with V1aR density.
        Sci Rep. 2018; 8: 1396
        • Resendez S.L.
        • Dome M.
        • Gormley G.
        • Franco D.
        • Nevárez N.
        • Hamid A.A.
        • Aragona B.J.
        μ-Opioid receptors within subregions of the striatum mediate pair bond formation through parallel yet distinct reward mechanisms.
        J Neurosci. 2013; 33: 9140-9149
        • Gingrich B.
        • Liu Y.
        • Cascio C.
        • Wang Z.
        • Insel T.R.
        Dopamine D2 receptors in the nucleus accumbens are important for social attachment in female prairie voles (Microtus ochrogaster).
        Behav Neurosci. 2000; 114: 173-183
        • Sanogo Y.O.
        • Band M.
        • Blatti C.
        • Sinha S.
        • Bell A.M.
        Transcriptional regulation of brain gene expression in response to a territorial intrusion.
        Proc Biol Sci. 2012; 279: 4929-4938
        • Shpigler H.Y.
        • Saul M.C.
        • Murdoch E.E.
        • Cash-Ahmed A.C.
        • Seward C.H.
        • Sloofman L.
        • et al.
        Behavioral, transcriptomic and epigenetic responses to social challenge in honey bees.
        Genes Brain Behav. 2017; 16: 579-591
        • Rittschof C.C.
        • Bukhari S.A.
        • Sloofman L.G.
        • Troy J.M.
        • Caetano-Anollés D.
        • Cash-Ahmed A.
        • et al.
        Neuromolecular responses to social challenge: Common mechanisms across mouse, stickleback fish, and honey bee.
        Proc Natl Acad Sci U S A. 2014; 111: 17929-17934
        • Clayton D.F.
        The genomic action potential.
        Neurobiol Learn Mem. 2000; 74: 185-216
        • Tur G.
        • Georgieva E.I.
        • Gagete A.
        • López-Rodas G.
        • Rodríguez J.L.
        • Franco L.
        Factor binding and chromatin modification in the promoter of murine Egr1 gene upon induction.
        Cell Mol Life Sci. 2010; 67: 4065-4077
        • Arias-Reyes C.
        • Losantos-Ramos K.
        • Gonzales M.
        • Furrer D.
        • Soliz J.
        NADH-linked mitochondrial respiration in the developing mouse brain is sex-, age- and tissue-dependent.
        Respir Physiol Neurobiol. 2019; 266: 156-162
        • Belenguer P.
        • Duarte J.M.N.
        • Schuck P.F.
        • Ferreira G.C.
        Mitochondria and the brain: Bioenergetics and beyond.
        Neurotox Res. 2019; 36: 219-238
        • Bertholet A.M.
        • Delerue T.
        • Millet A.M.
        • Moulis M.F.
        • David C.
        • Daloyau M.
        • et al.
        Mitochondrial fusion/fission dynamics in neurodegeneration and neuronal plasticity.
        Neurobiol Dis. 2016; 90: 3-19
        • Li Z.
        • Okamoto K.-I.
        • Hayashi Y.
        • Sheng M.
        The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses.
        Cell. 2004; 119: 873-887
        • Chandra R.
        • Calarco C.A.
        • Lobo M.K.
        Differential mitochondrial morphology in ventral striatal projection neuron subtypes.
        J Neurosci Res. 2019; 97: 1579-1589
        • Chandra R.
        • Engeln M.
        • Schiefer C.
        • Patton M.H.
        • Martin J.A.
        • Werner C.T.
        • et al.
        Drp1 mitochondrial fission in D1 neurons mediates behavioral and cellular plasticity during early cocaine abstinence.
        Neuron. 2017; 96: 1327-1341.e6
        • Tang G.
        • Gutierrez Rios P.
        • Kuo S.-H.
        • Akman H.O.
        • Rosoklija G.
        • Tanji K.
        • et al.
        Mitochondrial abnormalities in temporal lobe of autistic brain.
        Neurobiol Dis. 2013; 54: 349-361
        • Becker J.B.
        Sex differences in addiction.
        Dialogues Clin Neurosci. 2016; 18: 395-402
        • LaRese T.P.
        • Rheaume B.A.
        • Abraham R.
        • Eipper B.A.
        • Mains R.E.
        Sex-specific gene expression in the mouse nucleus accumbens before and after cocaine exposure.
        J Endocr Soc. 2019; 3: 468-487
        • Pfau M.L.
        • Purushothaman I.
        • Feng J.
        • Golden S.A.
        • Aleyasin H.
        • Lorsch Z.S.
        • et al.
        Integrative analysis of sex-specific microRNA networks following stress in mouse nucleus accumbens.
        Front Mol Neurosci. 2016; 9: 144
        • Hodes G.E.
        • Pfau M.L.
        • Purushothaman I.
        • Ahn H.F.
        • Golden S.A.
        • Christoffel D.J.
        • et al.
        Sex differences in nucleus accumbens transcriptome profiles associated with susceptibility versus resilience to subchronic variable stress.
        J Neurosci. 2015; 35: 16362-16376
        • Labonté B.
        • Engmann O.
        • Purushothaman I.
        • Menard C.
        • Wang J.
        • Tan C.
        • et al.
        Sex-specific transcriptional signatures in human depression.
        Nat Med. 2017; 23: 1102-1111