Advertisement

Striatal Astrocytes Shape Behavioral Flexibility via Regulation of the Glutamate Transporter EAAT2

Published:November 23, 2020DOI:https://doi.org/10.1016/j.biopsych.2020.11.015

      Abstract

      Background

      Striatal circuits must be modulated for behavioral flexibility, the ability to adapt to environmental changes. Striatal astrocytes contribute to circuit neuromodulation by controlling the activity of ambient neurotransmitters. In particular, extracellular glutamate levels are tightly controlled by the astrocytic glutamate transporter EAAT2, influencing synaptic functioning and neural network activity. However, it remains unclear if EAAT2 responds to environmental cues to specifically shape action control.

      Methods

      To investigate the relationship between behavioral flexibility and experience-dependent regulation of EAAT2 expression in the dorsal striatum, mice were trained on an instrumental task. We manipulated EAAT2 expression using chemogenetic activation of astrocytic Gq signaling or in vivo morpholinos and determined the ability to adapt to novel environmental contingencies.

      Results

      The loss of behavioral flexibility with task overtraining is associated with the upregulation of EAAT2, which results in enhanced glutamate clearance and altered modulation of glutamatergic neurotransmission in the lateral part of the dorsal striatum. Interfering with EAAT2 upregulation in this striatal area preserves behavioral flexibility.

      Conclusions

      Astrocytes are emerging as critical regulators of striatal functions. This work demonstrates that plasticity of EAAT2 expression in the lateral part of the dorsal striatum shapes behavior, thus providing novel mechanistic insights into how flexibility in action control is regulated.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Araque A.
        • Carmignoto G.
        • Haydon P.G.
        • Oliet S.H.
        • Robitaille R.
        • Volterra A.
        Gliotransmitters travel in time and space.
        Neuron. 2014; 81: 728-739
        • Perea G.
        • Navarrete M.
        • Araque A.
        Tripartite synapses: Astrocytes process and control synaptic information.
        Trends Neurosci. 2009; 32: 421-431
        • Clements J.D.
        • Lester R.A.
        • Tong G.
        • Jahr C.E.
        • Westbrook G.L.
        The time course of glutamate in the synaptic cleft.
        Science. 1992; 258: 1498-1501
        • Clark B.A.
        • Barbour B.
        Currents evoked in Bergmann glial cells by parallel fibre stimulation in rat cerebellar slices.
        J Physiol. 1997; 502: 335-350
        • Bergles D.E.
        • Jahr C.E.
        Synaptic activation of glutamate transporters in hippocampal astrocytes.
        Neuron. 1997; 19: 1297-1308
        • Murphy-Royal C.
        • Dupuis J.
        • Groc L.
        • Oliet S.H.R.
        Astroglial glutamate transporters in the brain: Regulating neurotransmitter homeostasis and synaptic transmission.
        J Neurosci Res. 2017; 95: 2140-2151
        • Martin-Fernandez M.
        • Jamison S.
        • Robin L.M.
        • Zhao Z.
        • Martin E.D.
        • Aguilar J.
        • et al.
        Synapse-specific astrocyte gating of amygdala-related behavior.
        Nat Neurosci. 2017; 20: 1540-1548
        • Sardinha V.M.
        • Guerra-Gomes S.
        • Caetano I.
        • Tavares G.
        • Martins M.
        • Reis J.S.
        • et al.
        Astrocytic signaling supports hippocampal-prefrontal theta synchronization and cognitive function.
        Glia. 2017; 65: 1944-1960
        • Valtcheva S.
        • Venance L.
        Control of long-term plasticity by glutamate transporters.
        Front Synaptic Neurosci. 2019; 11: 10
        • Divito C.B.
        • Underhill S.M.
        Excitatory amino acid transporters: Roles in glutamatergic neurotransmission.
        Neurochem Int. 2014; 73: 172-180
        • Danbolt N.C.
        Glutamate uptake.
        Prog Neurobiol. 2001; 65: 1-105
        • Petr G.T.
        • Sun Y.
        • Frederick N.M.
        • Zhou Y.
        • Dhamne S.C.
        • Hameed M.Q.
        • et al.
        Conditional deletion of the glutamate transporter GLT-1 reveals that astrocytic GLT-1 protects against fatal epilepsy while neuronal GLT-1 contributes significantly to glutamate uptake into synaptosomes.
        J Neurosci. 2015; 35: 5187-5201
        • Aida T.
        • Yoshida J.
        • Nomura M.
        • Tanimura A.
        • Iino Y.
        • Soma M.
        • et al.
        Astroglial glutamate transporter deficiency increases synaptic excitability and leads to pathological repetitive behaviors in mice.
        Neuropsychopharmacology. 2015; 40: 1569-1579
        • Sharma A.
        • Kazim S.F.
        • Larson C.S.
        • Ramakrishnan A.
        • Gray J.D.
        • McEwen B.S.
        • et al.
        Divergent roles of astrocytic versus neuronal EAAT2 deficiency on cognition and overlap with aging and Alzheimer’s molecular signatures.
        Proc Natl Acad Sci U S A. 2019; 116: 21800-21811
        • Valtcheva S.
        • Venance L.
        Astrocytes gate Hebbian synaptic plasticity in the striatum.
        Nat Commun. 2016; 7: 13845
        • Min R.
        • Nevian T.
        Astrocyte signaling controls spike timing-dependent depression at neocortical synapses.
        Nat Neurosci. 2012; 15: 746-753
        • Balleine B.W.
        • Delgado M.R.
        • Hikosaka O.
        The role of the dorsal striatum in reward and decision-making.
        J Neurosci. 2007; 27: 8161-8165
        • Graybiel A.M.
        Habits, rituals, and the evaluative brain.
        Annu Rev Neurosci. 2008; 31: 359-387
        • Salamone J.D.
        • Correa M.
        • Ferrigno S.
        • Yang J.H.
        • Rotolo R.A.
        • Presby R.E.
        The psychopharmacology of effort-related decision making: Dopamine, adenosine, and insights into the neurochemistry of motivation.
        Pharmacol Rev. 2018; 70: 747-762
        • Balleine B.W.
        • Dickinson A.
        Goal-directed instrumental action: Contingency and incentive learning and their cortical substrates.
        Neuropharmacology. 1998; 37: 407-419
        • Shiflett M.W.
        • Balleine B.W.
        Molecular substrates of action control in cortico-striatal circuits.
        Prog Neurobiol. 2011; 95: 1-13
        • Nazzaro C.
        • Greco B.
        • Cerovic M.
        • Baxter P.
        • Rubino T.
        • Trusel M.
        • et al.
        SK channel modulation rescues striatal plasticity and control over habit in cannabinoid tolerance.
        Nat Neurosci. 2012; 15: 284-293
        • O’Hare J.K.
        • Ade K.K.
        • Sukharnikova T.
        • Van Hooser S.D.
        • Palmeri M.L.
        • Yin H.H.
        • Calakos N.
        Pathway-specific striatal substrates for habitual behavior.
        Neuron. 2016; 89: 472-479
        • Peak J.
        • Hart G.
        • Balleine B.W.
        From learning to action: The integration of dorsal striatal input and output pathways in instrumental conditioning.
        Eur J Neurosci. 2019; 49: 658-671
        • Yin H.H.
        • Knowlton B.J.
        • Balleine B.W.
        Blockade of NMDA receptors in the dorsomedial striatum prevents action-outcome learning in instrumental conditioning.
        Eur J Neurosci. 2005; 22: 505-512
        • Yin H.H.
        • Knowlton B.J.
        • Balleine B.W.
        Lesions of dorsolateral striatum preserve outcome expectancy but disrupt habit formation in instrumental learning.
        Eur J Neurosci. 2004; 19: 181-189
        • Smith K.S.
        • Graybiel A.M.
        Habit formation.
        Dialogues Clin Neurosci. 2016; 18: 33-43
        • Gremel C.M.
        • Costa R.M.
        Orbitofrontal and striatal circuits dynamically encode the shift between goal-directed and habitual actions.
        Nat Commun. 2013; 4: 2264
        • Thorn C.A.
        • Atallah H.
        • Howe M.
        • Graybiel A.M.
        Differential dynamics of activity changes in dorsolateral and dorsomedial striatal loops during learning.
        Neuron. 2010; 66: 781-795
        • Smith K.S.
        • Graybiel A.M.
        Habit formation coincides with shifts in reinforcement representations in the sensorimotor striatum.
        J Neurophysiol. 2016; 115: 1487-1498
        • Genoud C.
        • Quairiaux C.
        • Steiner P.
        • Hirling H.
        • Welker E.
        • Knott G.W.
        Plasticity of astrocytic coverage and glutamate transporter expression in adult mouse cortex.
        PLoS Biol. 2006; 4: e343
        • Kilkenny C.
        • Browne W.J.
        • Cuthill I.C.
        • Emerson M.
        • Altman D.G.
        Improving bioscience research reporting: The ARRIVE guidelines for reporting animal research.
        J Pharmacol Pharmacother. 2010; 1: 94-99
        • Hilário M.R.
        • Clouse E.
        • Yin H.H.
        • Costa R.M.
        Endocannabinoid signaling is critical for habit formation.
        Front Integr Neurosci. 2007; 1: 6
        • Rossi M.A.
        • Yin H.H.
        Methods for studying habitual behavior in mice.
        Curr Protoc Neurosci. 2012; 60: 8.29.1-8.29.9
        • Yu C.
        • Gupta J.
        • Chen J.F.
        • Yin H.H.
        Genetic deletion of A2A adenosine receptors in the striatum selectively impairs habit formation.
        J Neurosci. 2009; 29: 15100-15103
        • Derusso A.L.
        • Fan D.
        • Gupta J.
        • Shelest O.
        • Costa R.M.
        • Yin H.H.
        Instrumental uncertainty as a determinant of behavior under interval schedules of reinforcement.
        Front Integr Neurosci. 2010; 4: 17
        • Balleine B.W.
        • O’Doherty J.P.
        Human and rodent homologies in action control: Corticostriatal determinants of goal-directed and habitual action.
        Neuropsychopharmacology. 2010; 35: 48-69
        • Malvaez M.
        • Greenfield V.Y.
        • Matheos D.P.
        • Angelillis N.A.
        • Murphy M.D.
        • Kennedy P.J.
        • et al.
        Habits are negatively regulated by histone deacetylase 3 in the dorsal striatum.
        Biol Psychiatry. 2018; 84: 383-392
        • Shiflett M.W.
        • Brown R.A.
        • Balleine B.W.
        Acquisition and performance of goal-directed instrumental actions depends on ERK signaling in distinct regions of dorsal striatum in rats.
        J Neurosci. 2010; 30: 2951-2959
        • Omrani A.
        • Melone M.
        • Bellesi M.
        • Safiulina V.
        • Aida T.
        • Tanaka K.
        • et al.
        Up-regulation of GLT-1 severely impairs LTD at mossy fibre--CA3 synapses.
        J Physiol. 2009; 587: 4575-4588
        • Henneberger C.
        • Bard L.
        • Panatier A.
        • Reynolds J.P.
        • Kopach O.
        • Medvedev N.I.
        • et al.
        LTP induction boosts glutamate spillover by driving withdrawal of perisynaptic astroglia.
        Neuron. 2020; 108: 919-936.e11
        • Marvin J.S.
        • Borghuis B.G.
        • Tian L.
        • Cichon J.
        • Harnett M.T.
        • Akerboom J.
        • et al.
        An optimized fluorescent probe for visualizing glutamate neurotransmission.
        Nat Methods. 2013; 10: 162-170
        • Parsons M.P.
        • Vanni M.P.
        • Woodard C.L.
        • Kang R.
        • Murphy T.H.
        • Raymond L.A.
        Real-time imaging of glutamate clearance reveals normal striatal uptake in Huntington disease mouse models.
        Nat Commun. 2016; 7: 11251
        • Reissner K.J.
        • Gipson C.D.
        • Tran P.K.
        • Knackstedt L.A.
        • Scofield M.D.
        • Kalivas P.W.
        Glutamate transporter GLT-1 mediates N-acetylcysteine inhibition of cocaine reinstatement.
        Addict Biol. 2015; 20: 316-323
        • Scofield M.D.
        • Boger H.A.
        • Smith R.J.
        • Li H.
        • Haydon P.G.
        • Kalivas P.W.
        Gq-DREADD selectively initiates glial glutamate release and inhibits cue-induced cocaine seeking.
        Biol Psychiatry. 2015; 78: 441-451
        • Scofield M.D.
        • Kalivas P.W.
        Astrocytic dysfunction and addiction: Consequences of impaired glutamate homeostasis.
        Neuroscientist. 2014; 20: 610-622
        • Diamond J.S.
        A broad view of glutamate spillover.
        Nat Neurosci. 2002; 5: 291-292
        • Tzingounis A.V.
        • Wadiche J.I.
        Glutamate transporters: Confining runaway excitation by shaping synaptic transmission.
        Nat Rev Neurosci. 2007; 8: 935-947
        • Klapoetke N.C.
        • Murata Y.
        • Kim S.S.
        • Pulver S.R.
        • Birdsey-Benson A.
        • Cho Y.K.
        • et al.
        Independent optical excitation of distinct neural populations.
        Nat Methods. 2014; 11: 338-346
        • Goubard V.
        • Fino E.
        • Venance L.
        Contribution of astrocytic glutamate and GABA uptake to corticostriatal information processing.
        J Physiol. 2011; 589: 2301-2319
        • Dayan P.
        • Balleine B.W.
        Reward, motivation, and reinforcement learning.
        Neuron. 2002; 36: 285-298
        • González-González I.M.
        • García-Tardón N.
        • Giménez C.
        • Zafra F.
        PKC-dependent endocytosis of the GLT1 glutamate transporter depends on ubiquitylation of lysines located in a C-terminal cluster.
        Glia. 2008; 56: 963-974
        • Agulhon C.
        • Boyt K.M.
        • Xie A.X.
        • Friocourt F.
        • Roth B.L.
        • McCarthy K.D.
        Modulation of the autonomic nervous system and behaviour by acute glial cell Gq protein-coupled receptor activation in vivo.
        J Physiol. 2013; 591: 5599-5609
        • Armbruster B.N.
        • Li X.
        • Pausch M.H.
        • Herlitze S.
        • Roth B.L.
        Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand.
        Proc Natl Acad Sci U S A. 2007; 104: 5163-5168
        • Gomez J.L.
        • Bonaventura J.
        • Lesniak W.
        • Mathews W.B.
        • Sysa-Shah P.
        • Rodriguez L.A.
        • et al.
        Chemogenetics revealed: DREADD occupancy and activation via converted clozapine.
        Science. 2017; 357: 503-507
        • Cahoy J.D.
        • Emery B.
        • Kaushal A.
        • Foo L.C.
        • Zamanian J.L.
        • Christopherson K.S.
        • et al.
        A transcriptome database for astrocytes, neurons, and oligodendrocytes: A new resource for understanding brain development and function.
        J Neurosci. 2008; 28: 264-278
        • Soltani M.H.
        • Pichardo R.
        • Song Z.
        • Sangha N.
        • Camacho F.
        • Satyamoorthy K.
        • et al.
        Microtubule-associated protein 2, a marker of neuronal differentiation, induces mitotic defects, inhibits growth of melanoma cells, and predicts metastatic potential of cutaneous melanoma.
        Am J Pathol. 2005; 166: 1841-1850
        • Yang L.
        • Qi Y.
        • Yang Y.
        Astrocytes control food intake by inhibiting AGRP neuron activity via adenosine A1 receptors.
        Cell Rep. 2015; 11: 798-807
        • Liddelow S.A.
        • Barres B.A.
        Reactive astrocytes: Production, function, and therapeutic potential.
        Immunity. 2017; 46: 957-967
        • Reissner K.J.
        • Sartor G.C.
        • Vazey E.M.
        • Dunn T.E.
        • Aston-Jones G.
        • Kalivas P.W.
        Use of vivo-morpholinos for control of protein expression in the adult rat brain.
        J Neurosci Methods. 2012; 203: 354-360
        • Eisen J.S.
        • Smith J.C.
        Controlling morpholino experiments: Don’t stop making antisense.
        Development. 2008; 135: 1735-1743
        • Bonnavion P.
        • Fernández E.P.
        • Varin C.
        • de Kerchove d’Exaerde A.
        It takes two to tango: Dorsal direct and indirect pathways orchestration of motor learning and behavioral flexibility.
        Neurochem Int. 2019; 124: 200-214
        • Yin H.H.
        • Knowlton B.J.
        • Balleine B.W.
        Inactivation of dorsolateral striatum enhances sensitivity to changes in the action-outcome contingency in instrumental conditioning.
        Behav Brain Res. 2006; 166: 189-196
        • Yin H.H.
        • Ostlund S.B.
        • Knowlton B.J.
        • Balleine B.W.
        The role of the dorsomedial striatum in instrumental conditioning.
        Eur J Neurosci. 2005; 22: 513-523
        • Corbit L.H.
        • Nie H.
        • Janak P.H.
        Habitual alcohol seeking: Time course and the contribution of subregions of the dorsal striatum.
        Biol Psychiatry. 2012; 72: 389-395
        • Gremel C.M.
        • Chancey J.H.
        • Atwood B.K.
        • Luo G.
        • Neve R.
        • Ramakrishnan C.
        • et al.
        Endocannabinoid modulation of orbitostriatal circuits gates habit formation.
        Neuron. 2016; 90: 1312-1324
        • Coutureau E.
        • Killcross S.
        Inactivation of the infralimbic prefrontal cortex reinstates goal-directed responding in overtrained rats.
        Behav Brain Res. 2003; 146: 167-174
        • Corbit L.H.
        • Chieng B.C.
        • Balleine B.W.
        Effects of repeated cocaine exposure on habit learning and reversal by N-acetylcysteine.
        Neuropsychopharmacology. 2014; 39: 1893-1901
        • Kalivas P.W.
        The glutamate homeostasis hypothesis of addiction.
        Nat Rev Neurosci. 2009; 10: 561-572
        • Bernardinelli Y.
        • Randall J.
        • Janett E.
        • Nikonenko I.
        • König S.
        • Jones E.V.
        • et al.
        Activity-dependent structural plasticity of perisynaptic astrocytic domains promotes excitatory synapse stability.
        Curr Biol. 2014; 24: 1679-1688
        • Sweeney A.M.
        • Fleming K.E.
        • McCauley J.P.
        • Rodriguez M.F.
        • Martin E.T.
        • Sousa A.A.
        • et al.
        PAR1 activation induces rapid changes in glutamate uptake and astrocyte morphology.
        Sci Rep. 2017; 7: 43606
        • Piet R.
        • Poulain D.A.
        • Oliet S.H.
        Contribution of astrocytes to synaptic transmission in the rat supraoptic nucleus.
        Neurochem Int. 2004; 45: 251-257
        • Oliet S.H.
        • Piet R.
        • Poulain D.A.
        Control of glutamate clearance and synaptic efficacy by glial coverage of neurons.
        Science. 2001; 292: 923-926

      Linked Article

      • Changing the Stars: Astrocytes Adapt to Coordinate Action Flexibility
        Biological PsychiatryVol. 89Issue 11
        • Preview
          The interaction between astrocytes and neurons is a rapidly growing research topic that continues to highlight the diverse roles astrocytes play in neuronal signal transduction. Astrocytes can influence synaptic transmission by coordinating synapse formation and elimination, facilitating changes in the strength of existing connections, regulating extracellular glutamate levels, and participating in homeostatic synaptic scaling. Such astrocyte–neuron interactions have been documented throughout the brain (1).
        • Full-Text
        • PDF