Advertisement
Archival Report| Volume 89, ISSUE 9, P896-910, May 01, 2021

Download started.

Ok

Alterations in Retrotransposition, Synaptic Connectivity, and Myelination Implicated by Transcriptomic Changes Following Maternal Immune Activation in Nonhuman Primates

  • Author Footnotes
    1 NFP and MJG contributed equally to this work as joint first authors.
    Nicholas F. Page
    Footnotes
    1 NFP and MJG contributed equally to this work as joint first authors.
    Affiliations
    Department of Psychiatry, Center for Autism Research and Treatment, Los Angeles, California

    Department of Cell Biology and Neuroscience, Rutgers University—New Brunswick, Piscataway, New Jersey
    Search for articles by this author
  • Author Footnotes
    1 NFP and MJG contributed equally to this work as joint first authors.
    Michael J. Gandal
    Footnotes
    1 NFP and MJG contributed equally to this work as joint first authors.
    Affiliations
    Department of Psychiatry, Center for Autism Research and Treatment, Los Angeles, California
    Search for articles by this author
  • Myka L. Estes
    Affiliations
    Center for Neuroscience, School of Medicine, University of California, Davis, Davis, California
    Search for articles by this author
  • Scott Cameron
    Affiliations
    Center for Neuroscience, School of Medicine, University of California, Davis, Davis, California
    Search for articles by this author
  • Jessie Buth
    Affiliations
    Department of Psychiatry, Center for Autism Research and Treatment, Los Angeles, California

    Program in Neurobehavioral Genetics, Center for Autism Research and Treatment, Los Angeles, California
    Search for articles by this author
  • Sepideh Parhami
    Affiliations
    Department of Psychiatry, Center for Autism Research and Treatment, Los Angeles, California

    Program in Neurobehavioral Genetics, Center for Autism Research and Treatment, Los Angeles, California
    Search for articles by this author
  • Gokul Ramaswami
    Affiliations
    Department of Psychiatry, Center for Autism Research and Treatment, Los Angeles, California

    Program in Neurobehavioral Genetics, Center for Autism Research and Treatment, Los Angeles, California
    Search for articles by this author
  • Karl Murray
    Affiliations
    Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Davis, California
    Search for articles by this author
  • David G. Amaral
    Affiliations
    Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Davis, California
    Search for articles by this author
  • Judy A. Van de Water
    Affiliations
    Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Davis, California
    Search for articles by this author
  • Cynthia M. Schumann
    Affiliations
    Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Davis, California
    Search for articles by this author
  • Cameron S. Carter
    Affiliations
    Center for Neuroscience, School of Medicine, University of California, Davis, Davis, California

    Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Davis, California
    Search for articles by this author
  • Melissa D. Bauman
    Affiliations
    Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Davis, California
    Search for articles by this author
  • A. Kimberley McAllister
    Affiliations
    Center for Neuroscience, School of Medicine, University of California, Davis, Davis, California

    Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Davis, California
    Search for articles by this author
  • Daniel H. Geschwind
    Correspondence
    Address correspondence to Daniel H. Geschwind, M.D., Ph.D.
    Affiliations
    Department of Psychiatry, Center for Autism Research and Treatment, Los Angeles, California

    Program in Neurobehavioral Genetics, Center for Autism Research and Treatment, Los Angeles, California

    Department of Neurology, Center for Autism Research and Treatment, Los Angeles, California

    Department of Human Genetics, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
    Search for articles by this author
  • Author Footnotes
    1 NFP and MJG contributed equally to this work as joint first authors.
Published:November 02, 2020DOI:https://doi.org/10.1016/j.biopsych.2020.10.016

      Abstract

      Background

      Maternal immune activation (MIA) is a proposed risk factor for multiple neuropsychiatric disorders, including schizophrenia. However, the molecular mechanisms through which MIA imparts risk remain poorly understood. A recently developed nonhuman primate model of exposure to the viral mimic poly:ICLC during pregnancy shows abnormal social and repetitive behaviors and elevated striatal dopamine, a molecular hallmark of human psychosis, providing an unprecedented opportunity for studying underlying molecular correlates.

      Methods

      We performed RNA sequencing across psychiatrically relevant brain regions (prefrontal cortex, anterior cingulate, hippocampus) and primary visual cortex for comparison from 3.5- to 4-year-old male MIA-exposed and control offspring—an age comparable to mid adolescence in humans.

      Results

      We identify 266 unique genes differentially expressed in at least one brain region, with the greatest number observed in hippocampus. Co-expression networks identified region-specific alterations in synaptic signaling and oligodendrocytes. Although we observed temporal and regional differences, transcriptomic changes were shared across first- and second-trimester exposures, including for the top differentially expressed genes—PIWIL2 and MGARP. In addition to PIWIL2, several other regulators of retrotransposition and endogenous transposable elements were dysregulated following MIA, potentially connecting MIA to retrotransposition.

      Conclusions

      Together, these results begin to elucidate the brain-level molecular processes through which MIA may impart risk for psychiatric disease.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Estes M.L.
        • McAllister A.K.
        Immune mediators in the brain and peripheral tissues in autism spectrum disorder.
        Nat Rev Neurosci. 2015; 16: 469-486
        • Hornig M.
        • Bresnahan M.A.
        • Che X.
        • Schultz A.F.
        • Ukaigwe J.E.
        • Eddy M.L.
        • et al.
        Prenatal fever and autism risk.
        Mol Psychiatry. 2018; 23: 759-766
        • Brucato M.
        • Ladd-Acosta C.
        • Li M.
        • Caruso D.
        • Hong X.
        • Kaczaniuk J.
        • et al.
        Prenatal exposure to fever is associated with autism spectrum disorder in the Boston birth cohort.
        Autism Res. 2017; 10: 1878-1890
        • Sørensen H.J.
        • Mortensen E.L.
        • Reinisch J.M.
        • Mednick S.A.
        Association between prenatal exposure to bacterial infection and risk of schizophrenia.
        Schizophr Bull. 2009; 35: 631-637
        • Nielsen P.R.
        • Laursen T.M.
        • Mortensen P.B.
        Association between parental hospital-treated infection and the risk of schizophrenia in adolescence and early adulthood.
        Schizophr Bull. 2013; 39: 230-237
        • Khandaker G.M.
        • Zimbron J.
        • Lewis G.
        • Jones P.B.
        Prenatal maternal infection, neurodevelopment and adult schizophrenia: A systematic review of population-based studies.
        Psychol Med. 2013; 43: 239-257
        • Estes M.
        • McAllister A.
        Maternal immune activation: Implications for neuropsychiatric disorders.
        Science. 2016; 353: 772-777
        • Lichtenstein P.
        • Yip B.H.
        • Björk C.
        • Pawitan Y.
        • Cannon T.D.
        • Sullivan P.F.
        • Hultman C.M.
        Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: A population-based study.
        Lancet. 2009; 373: 234-239
        • Smith S.E.P.
        • Li J.
        • Garbett K.
        • Mirnics K.
        • Patterson P.H.
        Maternal immune activation alters fetal brain development through interleukin-6.
        J Neurosci. 2007; 27: 10695-10702
        • Careaga M.
        • Murai T.
        • Bauman M.D.
        Maternal immune activation and autism spectrum disorder: from rodents to nonhuman and human primates.
        Biol Psychiatry. 2017; 81: 391-401
        • Meyer U.
        Prenatal Poly(I:C) exposure and other developmental immune activation models in rodent systems.
        Biol Psychiatry. 2014; 75: 307-315
        • Knuesel I.
        • Chicha L.
        • Britschgi M.
        • Schobel S.
        • Bodmer M.
        • Hellings J.
        • et al.
        Maternal immune activation and abnormal brain development across CNS disorders.
        Nat Rev Neurol. 2014; 10: 643-660
        • Reisinger S.
        • Khan D.
        • Kong E.
        • Berger A.
        • Pollak A.
        • Pollak D.
        The poly(I:C)-induced maternal immune activation model in preclinical neuropsychiatric drug discovery.
        Pharmacol Ther. 2015; 149: 213-226
        • Patterson P.
        Immune involvement in schizophrenia and autism: Etiology, pathology and animal models.
        Behav Brain Res. 2009; 204: 313-321
        • Richetto J.
        • Calabrese F.
        • Riva M.
        • Meyer U.
        Prenatal immune activation induces maturation-dependent alterations in the prefrontal GABAergic transcriptome.
        Schizophr Bull. 2013; 40: 351-361
        • Hoftman G.
        • Volk D.
        • Bazmi H.
        • Li S.
        • Sampson A.
        • Lewis D.
        Altered cortical expression of GABA-related genes in schizophrenia: Illness progression vs developmental disturbance.
        Schizophr Bull. 2013; 41: 180-191
        • Schmidt M.
        • Mirnics K.
        Neurodevelopment, GABA system dysfunction, and schizophrenia.
        Neuropsychopharmacology. 2014; 40: 190-206
        • Harvey L.
        • Boksa P.
        A stereological comparison of GAD67 and reelin expression in the hippocampal stratum oriens of offspring from two mouse models of maternal inflammation during pregnancy.
        Neuropharmacology. 2012; 62: 1767-1776
        • Canetta S.
        • Bolkan S.
        • Padilla-Coreano N.
        • Song L.
        • Sahn R.
        • Harrison N.
        • et al.
        Maternal immune activation leads to selective functional deficits in offspring parvalbumin interneurons.
        Mol Psychiatry. 2016; 21: 956-968
        • Wolff A.
        • Bilkey D.
        Prenatal immune activation alters hippocampal place cell firing characteristics in adult animals.
        Brain Behav Immun. 2015; 48: 232-243
        • Zhang Z.
        • van Praag H.
        Maternal immune activation differentially impacts mature and adult-born hippocampal neurons in male mice.
        Brain Behav Immun. 2015; 45: 60-70
        • Zuckerman L.
        • Rehavi M.
        • Nachman R.
        • Weiner I.
        Immune activation during pregnancy in rats leads to a postpubertal emergence of disrupted latent inhibition, dopaminergic hyperfunction, and altered limbic morphology in the offspring: A novel neurodevelopmental model of schizophrenia.
        Neuropsychopharmacology. 2003; 28: 1778-1789
        • Meyer U.
        • Spoerri E.
        • Yee B.
        • Schwarz M.
        • Feldon J.
        Evaluating early preventive antipsychotic and antidepressant drug treatment in an infection-based neurodevelopmental mouse model of schizophrenia.
        Schizophr Bull. 2008; 36: 607-623
        • Piontkewitz Y.
        • Assaf Y.
        • Weiner I.
        Clozapine administration in adolescence prevents postpubertal emergence of brain structural pathology in an animal model of schizophrenia.
        Biol Psychiatry. 2009; 66: 1038-1046
        • Piontkewitz Y.
        • Arad M.
        • Weiner I.
        Risperidone administered during asymptomatic period of adolescence prevents the emergence of brain structural pathology and behavioral abnormalities in an animal model of schizophrenia.
        Schizophr Bull. 2010; 37: 1257-1269
        • Bauman M.D.
        • Iosif A.-M.
        • Smith S.E.P.
        • Bregere C.
        • Amaral D.G.
        • Patterson P.H.
        Activation of the maternal immune system during pregnancy alters behavioral development of rhesus monkey offspring.
        Biol Psychiatry. 2014; 75: 332-341
        • Machado C.J.
        • Whitaker A.M.
        • Smith S.E.P.
        • Patterson P.H.
        • Bauman M.D.
        Maternal immune activation in nonhuman primates alters social attention in juvenile offspring.
        Biol Psychiatry. 2015; 77: 823-832
        • Bauman M.D.
        • Lesh T.A.
        • Rowland D.J.
        • Schumann C.M.
        • Smucny J.
        • Kukis D.L.
        • et al.
        Preliminary evidence of increased striatal dopamine in a nonhuman primate model of maternal immune activation.
        Transl Psychiatry. 2019; 9: 135
        • Parikshak N.N.
        • Swarup V.
        • Belgard T.G.
        • Irimia M.
        • Ramaswami G.
        • Gandal M.J.
        • et al.
        Genome-wide changes in lncRNA, splicing, and regional gene expression patterns in autism.
        Nature. 2016; 540: 423-427
        • Gandal M.J.
        • Zhang P.
        • Hadjimichael E.
        • Walker R.L.
        • Chen C.
        • Liu S.
        • et al.
        Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder.
        Science. 2018; 362 (eaat8127)
        • Richetto J.
        • Chesters R.
        • Cattacneo A.
        • Labouesse M.
        • Gutierrez A.
        • Wood T.
        • et al.
        Genome-wide transcriptional profiling and structural magnetic resonance imaging in the maternal immune activation model of neurodevelopmental disorders.
        Cereb Cortex. 2017; 27: 3397-3413
        • Amodeo D.
        • Lai C.
        • Hassan O.
        • Mukamel E.
        • Behrens M.
        • Powell S.
        Maternal immune activation impairs cognitive flexibility and alters transcription in frontal cortex.
        Neurobiol Dis. 2019; 125: 211-218
        • Weber-Stadlbauer U.
        • Richetto J.
        • Labouesse M.A.
        • Bohacek J.
        • Mansuy I.M.
        • Meyer U.
        Transgenerational transmission and modification of pathological traits induced by prenatal immune activation.
        Mol Psychiatry. 2017; 22: 102-112
        • Mattei D.
        • Ivanov A.
        • Ferrai C.
        • Jordan P.
        • Guneykaya D.
        • Buonfiglioli A.
        • et al.
        Maternal immune activation results in complex microglial transcriptome signature in the adult offspring that is reversed by minocycline treatment.
        Transl Psychiatry. 2017; 7e1120
        • Purves-Tyson T.D.
        • Weber-Stadlbauer U.
        • Richetto J.
        • Rothmond D.A.
        • Labouesse M.A.
        • Polesel M.
        • et al.
        Increased levels of midbrain immune-related transcripts in schizophrenia and in murine offspring after maternal immune activation.
        Mol Psychiatry. 2021; 26: 849-863
        • Bray N.L.
        • Pimentel H.
        • Melsted P.
        • Pachter L.
        Near-optimal probabilistic RNA-seq quantification.
        Nat Biotechnol. 2016; 34: 525-527
        • Robinson M.D.
        • McCarthy D.J.
        • Smyth G.K.
        edgeR: A Bioconductor package for differential expression analysis of digital gene expression data.
        Bioinformatics. 2010; 26: 139-140
        • Law C.W.
        • Chen Y.
        • Shi W.
        • Smyth G.K.
        voom: Precision weights unlock linear model analysis tools for RNA-seq read counts.
        Genome Biol. 2014; 15: R29
        • Langfelder P.
        • Horvath S.
        WGCNA: An R package for weighted correlation network analysis.
        BMC Bioinformatics. 2008; 9: 559
        • Reimand J.
        • Arak T.
        • Adler P.
        • Kolberg L.
        • Reisberg S.
        • Peterson H.
        • Vilo J.
        g:Profiler—A web server for functional interpretation of gene lists (2016 update).
        Nucleic Acids Res. 2016; 44: W83-W89
        • Skene N.G.
        • Grant S.G.N.
        Identification of vulnerable cell types in major brain disorders using single cell transcriptomes and expression weighted cell type enrichment.
        Front Neurosci. 2016; 10: 16
        • Criscione S.W.
        • Zhang Y.
        • Thompson W.
        • Sedivy J.M.
        • Neretti N.
        Transcriptional landscape of repetitive elements in normal and cancer human cells.
        BMC Genomics. 2014; 15: 583
        • Plaisier S.B.
        • Taschereau R.
        • Wong J.A.
        • Graeber T.G.
        Rank–rank hypergeometric overlap: Identification of statistically significant overlap between gene-expression signatures.
        Nucleic Acids Res. 2010; 38 (e169–e169)
        • Kuramochi-Miyagawa S.
        • Watanabe T.
        • Gotoh K.
        • Totoki Y.
        • Toyoda A.
        • Ikawa M.
        • et al.
        DNA methylation of retrotransposon genes is regulated by Piwi family members MILI and MIWI2 in murine fetal testes.
        Genes Dev. 2008; 22: 908-917
        • Nandi S.
        • Chandramohan D.
        • Fioriti L.
        • Melnick A.M.
        • Hébert J.M.
        • Mason C.E.
        • et al.
        Roles for small noncoding RNAs in silencing of retrotransposons in the mammalian brain.
        Proc Natl Acad Sci U S A. 2016; 113: 12697-12702
        • Leighton L.
        • Wei W.
        • Marshall P.
        • Ratnu V.
        • Li X.
        • Zajaczkowski E.
        • et al.
        Disrupting the hippocampal Piwi pathway enhances contextual fear memory in mice.
        Neurobiol Learn Mem. 2019; 161: 202-209
        • Jia L.
        • Liang T.
        • Yu X.
        • Ma C.
        • Zhang S.
        MGARP regulates mouse neocortical development via mitochondrial positioning.
        Mol Neurobiol. 2013; 49: 1293-1308
        • Li M.
        • Jaffe A.E.
        • Straub R.E.
        • Tao R.
        • Shin J.H.
        • Wang Y.
        • et al.
        A human-specific AS3MT isoform and BORCS7 are molecular risk factors in the 10q24.32 schizophrenia-associated locus.
        Nat Med. 2016; 22: 649-656
        • Richetto J.
        • Massart R.
        • Weber-Stadlbauer U.
        • Szyf M.
        • Riva M.A.
        • Meyer U.
        Genome-wide DNA methylation changes in a mouse model of infection-mediated neurodevelopmental disorders.
        Biol Psychiatry. 2017; 81: 265-276
        • Meyer U.
        • Nyffeler M.
        • Yee B.
        • Knuesel I.
        • Feldon J.
        Adult brain and behavioral pathological markers of prenatal immune challenge during early/middle and late fetal development in mice.
        Brain Behav Immun. 2008; 22: 469-486
        • Meyer U.
        • Nyffeler M.
        • Engler A.
        • Urwyler A.
        • Schedlowski M.
        • Knuesel I.
        • et al.
        The time of prenatal immune challenge determines the specificity of inflammation-mediated brain and behavioral pathology.
        J Neurosci. 2006; 26: 4752-4762
        • Rahman T.
        • Weickert C.
        • Harms L.
        • Meehan C.
        • Schall U.
        • Todd J.
        • et al.
        Effect of immune activation during early gestation or late gestation on inhibitory markers in adult male rats.
        Sci Rep. 2020; 10: 1982
        • Meehan C.
        • Harms L.
        • Frost J.
        • Barreto R.
        • Todd J.
        • Schall U.
        • et al.
        Effects of immune activation during early or late gestation on schizophrenia-related behaviour in adult rat offspring.
        Brain Behav Immun. 2017; 63: 8-20
        • Workman A.D.
        • Charvet C.J.
        • Clancy B.
        • Darlington R.B.
        • Finlay B.L.
        Modeling transformations of neurodevelopmental sequences across mammalian species.
        J Neurosci. 2013; 33: 7368-7383
        • Volk D.W.
        • Chitrapu A.
        • Edelson J.R.
        • Roman K.M.
        • Moroco A.E.
        • Lewis D.A.
        Molecular mechanisms and timing of cortical immune activation in schizophrenia.
        Am J Psychiatry. 2015; 172: 1112-1121
        • Amini-Bavil-Olyaee S.
        • Choi Y.J.
        • Lee J.H.
        • Shi M.
        • Huang I.-C.
        • Farzan M.
        • Jung J.U.
        The antiviral effector IFITM3 disrupts intracellular cholesterol homeostasis to block viral entry.
        Cell Host Microbe. 2013; 13: 452-464
        • Ibi D.
        • Nagai T.
        • Nakajima A.
        • Mizoguchi H.
        • Kawase T.
        • Tsuboi D.
        • et al.
        Astroglial IFITM3 mediates neuronal impairments following neonatal immune challenge in mice.
        Glia. 2013; 61: 679-693
        • Siegel B.
        • Sengupta E.
        • Edelson J.
        • Lewis D.
        • Volk D.
        Elevated viral restriction factor levels in cortical blood vessels in schizophrenia.
        Biol Psychiatry. 2014; 76: 160-167
        • Mi H.
        • Muruganujan A.
        • Ebert D.
        • Huang X.
        • Thomas P.
        PANTHER version 14: More genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools.
        Nucleic Acids Res. 2018; 47: D419-D426
        • Mager D.L.
        • Hunter D.G.
        • Schertzer M.
        • Freeman J.D.
        Endogenous retroviruses provide the primary polyadenylation signal for two new human genes (HHLA2 and HHLA3).
        Genomics. 1999; 59: 255-263
        • Ito J.
        • Sugimoto R.
        • Nakaoka H.
        • Yamada S.
        • Kimura T.
        • Hayano T.
        • Inoue I.
        Systematic identification and characterization of regulatory elements derived from human endogenous retroviruses.
        PLoS Genet. 2017; 13e1006883
        • Tam O.
        • Ostrow L.
        • Gale Hammell M.
        Diseases of the nERVous system: Retrotransposon activity in neurodegenerative disease.
        Mobile DNA. 2019; 10: 32
        • Gardner E.
        • Prigmore E.
        • Gallone G.
        • Danecek P.
        • Samocha K.
        • Handsaker J.
        • et al.
        Contribution of retrotransposition to developmental disorders.
        Nat Commun. 2019; 10: 4630
        • Nave K.-A.
        • Werner H.B.
        Myelination of the nervous system: Mechanisms and functions.
        Annu Rev Cell Dev Biol. 2014; 30: 503-533
        • Renden R.
        • Berwin B.
        • Davis W.
        • Ann K.
        • Chin C.
        • Kreber R.
        • et al.
        Drosophila CAPS is an essential gene that regulates dense-core vesicle release and synaptic vesicle fusion.
        Neuron. 2001; 31: 421-437
        • Garay P.
        • Hsiao E.
        • Patterson P.
        • McAllister A.
        Maternal immune activation causes age- and region-specific changes in brain cytokines in offspring throughout development.
        Brain Behav Immun. 2013; 31: 54-68
        • Giovanoli S.
        • Notter T.
        • Richetto J.
        • Labouesse M.A.
        • Vuillermot S.
        • Riva M.A.
        • Meyer U.
        Late prenatal immune activation causes hippocampal deficits in the absence of persistent inflammation across aging.
        J Neuroinflammation. 2015; 12: 221
        • Notter T.
        • Coughlin J.
        • Gschwind T.
        • Weber-Stadlbauer U.
        • Wang Y.
        • Kassiou M.
        • et al.
        Translational evaluation of translocator protein as a marker of neuroinflammation in schizophrenia.
        Mol Psychiatry. 2017; 23: 323-334
        • Winden K.
        • Oldham M.
        • Mirnics K.
        • Ebert P.
        • Swan C.
        • Levitt P.
        • et al.
        The organization of the transcriptional network in specific neuronal classes.
        Mol Syst Biol. 2009; 5: 291
        • Lieberman J.
        • Small S.
        • Girgis R.
        Early detection and preventive intervention in schizophrenia: From fantasy to reality.
        Am J Psychiatry. 2019; 176: 794-810
        • Labouesse M.A.
        • Dong E.
        • Grayson D.R.
        • Guidotti A.
        • Meyer U.
        Maternal immune activation induces GAD1 and GAD2 promoter remodeling in the offspring prefrontal cortex.
        Epigenetics. 2015; 10: 1143-1155
        • Basil P.
        • Li Q.
        • Dempster E.L.
        • Mill J.
        • Sham P.-C.
        • Wong C.C.Y.
        • McAlonan G.M.
        Prenatal maternal immune activation causes epigenetic differences in adolescent mouse brain.
        Transl Psychiatry. 2014; 4: e434
        • Connor C.M.
        • Dincer A.
        • Straubhaar J.
        • Galler J.R.
        • Houston I.B.
        • Akbarian S.
        Maternal immune activation alters behavior in adult offspring, with subtle changes in the cortical transcriptome and epigenome.
        Schizophr Res. 2012; 140: 175-184
        • Basil P.
        • Li Q.
        • Sham P.
        • McAlonan G.
        LINE1 and Mecp2 methylation of the adult striatum and prefrontal cortex exposed to prenatal immune activation.
        Data Brief. 2019; 25: 104003
        • Bundo M.
        • Toyoshima M.
        • Okada Y.
        • Akamatsu W.
        • Ueda J.
        • Nemoto-Miyauchi T.
        • et al.
        Increased l1 retrotransposition in the neuronal genome in schizophrenia.
        Neuron. 2014; 81: 306-313
        • Suarez N.
        • Macia A.
        • Muotri A.
        LINE-1 retrotransposons in healthy and diseased human brain.
        Dev Neurobiol. 2017; 78: 434-455
        • Erwin J.
        • Marchetto M.
        • Gage F.
        Mobile DNA elements in the generation of diversity and complexity in the brain.
        Nat Rev Neurosci. 2014; 15: 497-506
        • Muotri A.
        • Marchetto M.
        • Coufal N.
        • Oefner R.
        • Yeo G.
        • Nakashima K.
        • Gage F.
        L1 retrotransposition in neurons is modulated by MeCP2.
        Nature. 2010; 468: 443-446
        • Erwin J.
        • Paquola A.
        • Singer T.
        • Gallina I.
        • Novotny M.
        • Quayle C.
        • et al.
        L1-associated genomic regions are deleted in somatic cells of the healthy human brain.
        Nat Neurosci. 2016; 19: 1583-1591
        • Lim E.
        • Uddin M.
        • De Rubeis S.
        • Chan Y.
        • Kamumbu A.
        • Zhang X.
        • et al.
        Rates, distribution and implications of postzygotic mosaic mutations in autism spectrum disorder.
        Nat Neurosci. 2017; 20: 1217-1224
        • Davis K.
        • Stewart D.
        • Friedman J.
        • Buchsbaum M.
        • Harvey P.
        • Hof P.
        • et al.
        White matter changes in schizophrenia.
        Arch Gen Psychiatry. 2003; 60: 443
        • Scheel M.
        • Prokscha T.
        • Bayerl M.
        • Gallinat J.
        • Montag C.
        Myelination deficits in schizophrenia: Evidence from diffusion tensor imaging.
        Brain Struct Funct. 2012; 218: 151-156
        • Makinodan M.
        • Tatsumi K.
        • Manabe T.
        • Yamauchi T.
        • Makinodan E.
        • Matsuyoshi H.
        • et al.
        Maternal immune activation in mice delays myelination and axonal development in the hippocampus of the offspring.
        J Neurosci Res. 2008; 86: 2190-2200
        • Antonson A.M.
        • Balakrishnan B.
        • Radlowski E.C.
        • Petr G.
        • Johnson R.W.
        Altered hippocampal gene expression and morphology in fetal piglets following maternal respiratory viral infection.
        Dev Neurosci. 2018; 40: 104-119
        • Hakak Y.
        • Walker J.
        • Li C.
        • Wong W.
        • Davis K.
        • Buxbaum J.
        • et al.
        Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia.
        Proc Natl Acad Sci U S A. 2001; 98: 4746-4751
        • Graciarena M.
        • Seiffe A.
        • Nait-Oumesmar B.
        • Depino A.
        Hypomyelination and oligodendroglial alterations in a mouse model of autism spectrum disorder.
        Front Cell Neurosci. 2019; 12: 517
        • Kentner A.C.
        • Bilbo S.D.
        • Brown A.S.
        • Hsiao E.Y.
        • McAllister A.K.
        • Meyer U.
        • et al.
        Maternal immune activation: Reporting guidelines to improve the rigor, reproducibility, and transparency of the model.
        Neuropsychopharmacology. 2018; 44: 245-258
        • Meyer U.
        Neurodevelopmental resilience and susceptibility to maternal immune activation.
        Trends Neurosci. 2019; 42: 793-806
        • Garbett K.A.
        • Hsiao E.Y.
        • Kálmán S.
        • Patterson P.H.
        • Mirnics K.
        Effects of maternal immune activation on gene expression patterns in the fetal brain.
        Transl Psychiatry. 2012; 2: e98
        • Lombardo M.V.
        • Moon H.M.
        • Su J.
        • Palmer T.D.
        • Courchesne E.
        • Pramparo T.
        Maternal immune activation dysregulation of the fetal brain transcriptome and relevance to the pathophysiology of autism spectrum disorder.
        Mol Psychiatry. 2018; 23: 1001-1013
        • Oskvig D.B.
        • Elkahloun A.G.
        • Johnson K.R.
        • Phillips T.M.
        • Herkenham M.
        Maternal immune activation by LPS selectively alters specific gene expression profiles of interneuron migration and oxidative stress in the fetus without triggering a fetal immune response.
        Brain Behav Immun. 2012; 26: 623-634
        • Farrelly L.
        • Föcking M.
        • Piontkewitz Y.
        • Dicker P.
        • English J.
        • Wynne K.
        • et al.
        Maternal immune activation induces changes in myelin and metabolic proteins, some of which can be prevented with risperidone in adolescence.
        Dev Neurosci. 2015; 37: 43-55
        • Zoghbi H.
        • Bear M.
        Synaptic dysfunction in neurodevelopmental disorders associated with autism and intellectual disabilities.
        Cold Spring Harb Perspect Biol. 2012; 4: a009886
        • Bourgeron T.
        From the genetic architecture to synaptic plasticity in autism spectrum disorder.
        Nat Rev Neurosci. 2015; 16: 551-563
        • Rodenas-Cuadrado P.
        • Ho J.
        • Vernes S.
        Shining a light on CNTNAP2: Complex functions to complex disorders.
        Eur J Hum Genet. 2013; 22: 171-178
        • Collins C.
        • Airey D.
        • Young N.
        • Leitch D.
        • Kaas J.
        Neuron densities vary across and within cortical areas in primates.
        Proc Natl Acad Sci U S A. 2010; 107: 15927-15932
        • Militerni R.
        • Bravaccio C.
        • Falco C.
        • Fico C.
        • Palermo M.
        Repetitive behaviors in autistic disorder.
        Eur Child Adolesc Psychiatry. 2002; 11: 210-218
        • Langen M.
        • Bos D.
        • Noordermeer S.
        • Nederveen H.
        • van Engeland H.
        • Durston S.
        Changes in the development of striatum are involved in repetitive behavior in autism.
        Biol Psychiatry. 2014; 76: 405-411
        • Lake B.
        • Chen S.
        • Sos B.
        • Fan J.
        • Kaeser G.
        • Yung Y.
        • et al.
        Integrative single-cell analysis of transcriptional and epigenetic states in the human adult brain.
        Nat Biotechnol. 2017; 36: 70-80

      Linked Article

      • Maternal Immune Activation and Retrotransposition in Neurodevelopmental Disorders
        Biological PsychiatryVol. 89Issue 9
        • Preview
          Epidemiologic studies have repeatedly implicated infectious and noninfectious maternal immune activation (MIA) in the etiology of neuropsychiatric illnesses (1). MIA can trigger several pathophysiological processes, including inflammation and oxidative stress in maternal and fetal compartments, activation of maternal stress response systems, and temporary micronutrient and/or macronutrient deficiencies, as well as disruption of placental functions (2). When occurring during sensitive periods of fetal development, these pathophysiological processes have the potential to change the offspring’s neurodevelopmental trajectories and increase their risk to develop neuropsychiatric disorders later in life (2).
        • Full-Text
        • PDF