Advertisement
Archival Report| Volume 89, ISSUE 6, P541-549, March 15, 2021

Download started.

Ok

Cord Serum Cytokines at Birth and Children’s Anxiety-Depression Trajectories From 3 to 8 Years: The EDEN Mother–Child Cohort

  • Author Footnotes
    1 CG and SB contributed equally to this work.
    Cédric Galera
    Correspondence
    Address correspondence to Cédric Galéra, M.D., Ph.D.
    Footnotes
    1 CG and SB contributed equally to this work.
    Affiliations
    Departments of Public Health and Neurocampus, University of Bordeaux, Bordeaux, France

    Institut National de la Santé et de la Recherche Médicale, Bordeaux Population Health Center, Bordeaux, France

    Centre Hospitalier Perrens, Bordeaux, France

    Research Unit on Children’s Psychosocial Maladjustment, Montreal, Quebec, Canada
    Search for articles by this author
  • Author Footnotes
    1 CG and SB contributed equally to this work.
    Susana Barbosa
    Footnotes
    1 CG and SB contributed equally to this work.
    Affiliations
    Université Côte d’Azur, Nice, France

    Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
    Search for articles by this author
  • Ophélie Collet
    Affiliations
    Departments of Public Health and Neurocampus, University of Bordeaux, Bordeaux, France

    Research Unit on Children’s Psychosocial Maladjustment, Montreal, Quebec, Canada
    Search for articles by this author
  • Olfa Khalfallah
    Affiliations
    Université Côte d’Azur, Nice, France

    Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
    Search for articles by this author
  • Bruno Aouizerate
    Affiliations
    Departments of Public Health and Neurocampus, University of Bordeaux, Bordeaux, France

    Centre Hospitalier Perrens, Bordeaux, France

    Bordeaux INP, NutriNeuro UMR 1286, Bordeaux, France
    Search for articles by this author
  • Anne-Laure Sutter-Dalley
    Affiliations
    Institut National de la Santé et de la Recherche Médicale, Bordeaux Population Health Center, Bordeaux, France

    Centre Hospitalier Perrens, Bordeaux, France
    Search for articles by this author
  • Muriel Koehl
    Affiliations
    Departments of Public Health and Neurocampus, University of Bordeaux, Bordeaux, France

    Institut national de recherche pour l’agriculture, l’alimentation et l’environnement, Neurocentre Magendie U1215, and Institut National de la Santé et de la Recherche Médicale, Bordeaux, France
    Search for articles by this author
  • Lucile Capuron
    Affiliations
    Departments of Public Health and Neurocampus, University of Bordeaux, Bordeaux, France

    Bordeaux INP, NutriNeuro UMR 1286, Bordeaux, France
    Search for articles by this author
  • Judith Van der Waerden
    Affiliations
    Institut Pierre Louis d'Epidémiologie et de Santé Publique, Sorbonne Université, Paris, France
    Search for articles by this author
  • Maria Melchior
    Affiliations
    Institut Pierre Louis d'Epidémiologie et de Santé Publique, Sorbonne Université, Paris, France
    Search for articles by this author
  • Sylvana Côté
    Affiliations
    Departments of Public Health and Neurocampus, University of Bordeaux, Bordeaux, France

    Institut National de la Santé et de la Recherche Médicale, Bordeaux Population Health Center, Bordeaux, France

    Research Unit on Children’s Psychosocial Maladjustment, Montreal, Quebec, Canada

    Department of Social and Preventive Medicine, University of Montreal, Montreal, Quebec, Canada
    Search for articles by this author
  • Barbara Heude
    Affiliations
    Institut National de la Santé et de la Recherche Médicale, INSERM, UMR1153 Epidemiology and Biostatistics Sorbonne Paris Cité Center, ORCHAD Team, Paris, France

    Institut National de la Santé et de la Recherche Médicale, Paris, France

    Paris University, Paris, France
    Search for articles by this author
  • Nicolas Glaichenhaus
    Affiliations
    Université Côte d’Azur, Nice, France

    Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
    Search for articles by this author
  • Laetitia Davidovic
    Affiliations
    Université Côte d’Azur, Nice, France

    Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
    Search for articles by this author
  • on behalf of theEDEN Mother–Child Cohort Study Group
  • Author Footnotes
    1 CG and SB contributed equally to this work.

      Abstract

      Background

      Recent research suggests that immune dysregulation in pregnancy could be a risk factor for anxiety and depression symptoms in offspring. Whereas animal studies have demonstrated the importance of the link between perinatal cytokines and abnormal behaviors in offspring, human epidemiological studies in this area remain limited. The objectives of the study were to describe the network of cord serum cytokines at birth and test whether they are associated with subsequent anxiety and depression symptom trajectories in offspring.

      Methods

      We used data and biological samples from 871 mother–child pairs followed up from pregnancy to 8 years of age and participating in the French mother–child cohort EDEN (a study on the pre- and early postnatal determinants of child health and development). Cord serum cytokines were measured at birth. Children’s symptoms of anxiety and depression were assessed with the emotional difficulties subscore of the Strength and Difficulties Questionnaire at ages 3, 5, and 8 years, from which trajectories of anxiety-depression symptoms were derived.

      Results

      Results showed a significant association between cord serum interleukin-7 at birth and the trajectories of children’s anxiety-depression symptoms between ages 3 to 8 years (adjusted odds ratio, 0.73; 95% confidence interval, 0.57–0.93). The associations considered relevant confounders, including prenatal maternal depressive symptoms.

      Conclusions

      Early immune changes may contribute to subsequent anxiety and depression symptoms in childhood. Beyond the understanding of mechanisms underlying the occurrence of emotional difficulties in children, our findings open avenues for future research in human and animals.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Guma E.
        • Plitman E.
        • Chakravarty M.M.
        The role of maternal immune activation in altering the neurodevelopmental trajectories of offspring: A translational review of neuroimaging studies with implications for autism spectrum disorder and schizophrenia.
        Neurosci Biobehav Rev. 2019; 104: 141-157
        • Nazzari S.
        • Frigerio A.
        The programming role of maternal antenatal inflammation on infants’ early neurodevelopment: A review of human studies: Special Section on “Translational and Neuroscience Studies in Affective Disorders,” Section Editor, Maria Nobile, M.D., Ph.D.
        J Affect Disord. 2020; 263: 739-746
        • al-Haddad B.J.S.
        • Oler E.
        • Armistead B.
        • Elsayed N.A.
        • Weinberger D.R.
        • Bernier R.
        • et al.
        The fetal origins of mental illness.
        Am J Obstet Gynecol. 2019; 221: 549-562
        • Estes M.L.
        • McAllister A.K.
        Maternal immune activation: Implications for neuropsychiatric disorders.
        Science. 2016; 353: 772-777
        • Gumusoglu S.B.
        • Stevens H.E.
        Maternal inflammation and neurodevelopmental programming: A review of preclinical outcomes and implications for translational psychiatry.
        Biol Psychiatry. 2019; 85: 107-121
        • al-Haddad B.J.S.
        • Jacobsson B.
        • Chabra S.
        • Modzelewska D.
        • Olson E.M.
        • Bernier R.
        • et al.
        Long-term risk of neuropsychiatric disease after exposure to infection in utero.
        JAMA Psychiatry. 2019; 76: 594
        • Brown A.S.
        • Derkits E.J.
        Prenatal infection and schizophrenia: A review of epidemiologic and translational studies.
        Am J Psychiatry. 2010; 167: 261-280
        • Lee B.K.
        • Magnusson C.
        • Gardner R.M.
        • Blomström Å.
        • Newschaffer C.J.
        • Burstyn I.
        • et al.
        Maternal hospitalization with infection during pregnancy and risk of autism spectrum disorders.
        Brain Behav Immun. 2015; 44: 100-105
        • Lydholm C.N.
        • Köhler-Forsberg O.
        • Nordentoft M.
        • Yolken R.H.
        • Mortensen P.B.
        • Petersen L.
        • et al.
        Parental infections before, during, and after pregnancy as risk factors for mental disorders in childhood and adolescence: A nationwide Danish study.
        Biol Psychiatry. 2019; 85: 317-325
        • Depino A.M.
        Perinatal inflammation and adult psychopathology: From preclinical models to humans.
        Semin Cell Dev Biol. 2018; 77: 104-114
        • Knuesel I.
        • Chicha L.
        • Britschgi M.
        • Schobel S.A.
        • Bodmer M.
        • Hellings J.A.
        • et al.
        Maternal immune activation and abnormal brain development across CNS disorders.
        Nat Rev Neurol. 2014; 10: 643-660
        • Kreitz S.
        • Zambon A.
        • Ronovsky M.
        • Budinsky L.
        • Helbich T.H.
        • Sideromenos S.
        • et al.
        Maternal immune activation during pregnancy impacts on brain structure and function in the adult offspring.
        Brain Behav Immun. 2020; 83: 56-67
        • Ronovsky M.
        • Berger S.
        • Molz B.
        • Berger A.
        • Pollak D.D.
        Animal models of maternal immune activation in depression research.
        Curr Neuropharmacol. 2016; 14: 688-704
        • Ronovsky M.
        • Berger S.
        • Zambon A.
        • Reisinger S.N.
        • Horvath O.
        • Pollak A.
        • et al.
        Maternal immune activation transgenerationally modulates maternal care and offspring depression-like behavior.
        Brain Behav Immun. 2017; 63: 127-136
        • Goeden N.
        • Velasquez J.
        • Arnold K.A.
        • Chan Y.
        • Lund B.T.
        • Anderson G.M.
        • et al.
        Maternal inflammation disrupts fetal neurodevelopment via increased placental output of serotonin to the fetal brain.
        J Neurosci. 2016; 36: 6041-6049
        • Majidi J.
        • Kosari-Nasab M.
        • Salari A.-A.
        Developmental minocycline treatment reverses the effects of neonatal immune activation on anxiety- and depression-like behaviors, hippocampal inflammation, and HPA axis activity in adult mice.
        Brain Res Bull. 2016; 120: 1-13
        • Ander S.E.
        • Diamond M.S.
        • Coyne C.B.
        Immune responses at the maternal-fetal interface.
        Sci Immunol. 2019; 4eaat6114
        • Morimoto K.
        • Nakajima K.
        Role of the immune system in the development of the central nervous system.
        Front Neurosci. 2019; 13: 916
        • Nusslock R.
        • Miller G.E.
        Early-life adversity and physical and emotional health across the lifespan: a neuroimmune network hypothesis.
        Biol Psychiatry. 2016; 80: 23-32
        • Heude B.
        • Forhan A.
        • Slama R.
        • Douhaud L.
        • Bedel S.
        • Saurel-Cubizolles M.-J.
        • et al.
        Cohort profile: The EDEN mother-child cohort on the prenatal and early postnatal determinants of child health and development.
        Int J Epidemiol. 2016; 45: 353-363
        • Blondel B.
        • Supernant K.
        • Du Mazaubrun C.
        • Bréart G.
        • pour la Coordination nationale des Enquêtes Nationales Périnatales
        [Trends in perinatal health in metropolitan France between 1995 and 2003: Results from the National Perinatal Surveys].
        J Gynecol Obstet Biol Reprod (Paris). 2006; 35: 373-387
        • Goodman R.
        The Strengths and Difficulties Questionnaire: A research note.
        J Child Psychol Psychiatry. 1997; 38: 581-586
        • Uh H.-W.
        • Hartgers F.C.
        • Yazdanbakhsh M.
        • Houwing-Duistermaat J.J.
        Evaluation of regression methods when immunological measurements are constrained by detection limits.
        BMC Immunol. 2008; 9: 59
        • Radloff L.S.
        The CES-D Scale: A self-report depression scale for research in the general population.
        Appl Psychol Meas. 1977; 1: 385-401
        • Yuan W.L.
        • Nicklaus S.
        • Lioret S.
        • Lange C.
        • Forhan A.
        • Heude B.
        • et al.
        Early factors related to carbohydrate and fat intake at 8 and 12 months: results from the EDEN mother-child cohort.
        Eur J Clin Nutr. 2017; 71: 219-226
        • Zhao T.
        • Liu H.
        • Roeder K.
        • Lafferty J.
        • Wasserman L.
        The huge package for high-dimensional undirected graph estimation in R.
        J Mach Learn Res. 2012; 13: 1059-1062
        • Haslbeck J.M.B.
        • Waldorp L.J.
        How well do network models predict observations? On the importance of predictability in network models.
        Behav Res Methods. 2018; 50: 853-861
        • Haslbeck J.M.B.
        • Waldorp L.J.
        mgm: Structure estimation for time-varying mixed graphical models in high-dimensional data.
        (Available at:)
        • Efron B.
        Bayesian inference and the parametric bootstrap.
        Ann Appl Stat. 2012; 6: 1971-1997
        • Pavlou M.
        • Ambler G.
        • Seaman S.
        • De Iorio M.
        • Omar R.Z.
        Review and evaluation of penalised regression methods for risk prediction in low-dimensional data with few events.
        Stat Med. 2016; 35: 1159-1177
        • Becerril-Villanueva E.
        • Pérez-Sánchez G.
        • Alvarez-Herrera S.
        • Girón-Pérez M.I.
        • Arreola R.
        • Cruz-Fuentes C.
        • et al.
        Alterations in the levels of growth factors in adolescents with major depressive disorder: A longitudinal study during the treatment with fluoxetine.
        Mediators Inflamm. 2019; 2019: 9130868
        • Dahl J.
        • Ormstad H.
        • Aass H.C.D.
        • Malt U.F.
        • Bendz L.T.
        • Sandvik L.
        • et al.
        The plasma levels of various cytokines are increased during ongoing depression and are reduced to normal levels after recovery.
        Psychoneuroendocrinology. 2014; 45: 77-86
        • Hall J.R.
        • Wiechmann A.
        • Edwards M.
        • Johnson L.A.
        • O’Bryant S.E.
        IL-7 and depression: The importance of gender and blood fraction.
        Behav Brain Res. 2016; 315: 147-149
        • Lehto S.M.
        • Huotari A.
        • Niskanen L.
        • Herzig K.-H.
        • Tolmunen T.
        • Viinamäki H.
        • et al.
        Serum IL-7 and G-CSF in major depressive disorder.
        Prog Neuropsychopharmacol Biol Psychiatry. 2010; 34: 846-851
        • Barbosa S.
        • Khalfallah O.
        • Forhan A.
        • Galera C.
        • Heude B.
        • Glaichenhaus N.
        • et al.
        Serum cytokines associated with behavior: A cross-sectional study in 5-year-old children.
        Brain Behav Immun. 2020; 87: 377-387
        • Barata J.T.
        • Durum S.K.
        • Seddon B.
        Flip the coin: IL-7 and IL-7R in health and disease.
        Nat Immunol. 2019; 20: 1584-1593
        • Park J.-H.
        • Waickman A.T.
        • Reynolds J.
        • Castro M.
        • Molina-París C.
        IL7 receptor signaling in T cells: A mathematical modeling perspective.
        Wiley Interdiscip Rev Syst Biol Med. 2019; 11: e1447
        • Beurel E.
        • Lowell J.A.
        Th17 cells in depression.
        Brain Behav Immun. 2018; 69: 28-34
        • Fan K.-Q.
        • Li Y.-Y.
        • Wang H.-L.
        • Mao X.-T.
        • Guo J.-X.
        • Wang F.
        • et al.
        Stress-induced metabolic disorder in peripheral CD4+ T cells leads to anxiety-like behavior.
        Cell. 2019; 179: 864-879
        • Grosse L.
        • Hoogenboezem T.
        • Ambrée O.
        • Bellingrath S.
        • Jörgens S.
        • de Wit H.J.
        • et al.
        Deficiencies of the T and natural killer cell system in major depressive disorder: T regulatory cell defects are associated with inflammatory monocyte activation.
        Brain Behav Immun. 2016; 54: 38-44
        • Kowalczyk M.
        • Szemraj J.
        • Blińniewska K.
        • Maes M.
        • Berk M.
        • Su K.-P.
        • et al.
        An immune gate of depression: Early neuroimmune development in the formation of the underlying depressive disorder.
        Pharmacol Rep. 2019; 71: 1299-1307
        • Michaelson M.D.
        • Mehler M.F.
        • Xu H.
        • Gross R.E.
        • Kessler J.A.
        Interleukin-7 is trophic for embryonic neurons and is expressed in developing brain.
        Dev Biol. 1996; 179: 251-263
        • Marwood L.
        • Wise T.
        • Perkins A.M.
        • Cleare A.J.
        Meta-analyses of the neural mechanisms and predictors of response to psychotherapy in depression and anxiety.
        Neurosci Biobehav Rev. 2018; 95: 61-72
        • Moors M.
        • Vudattu N.K.
        • Abel J.
        • Krämer U.
        • Rane L.
        • Ulfig N.
        • et al.
        Interleukin-7 (IL-7) and IL-7 splice variants affect differentiation of human neural progenitor cells.
        Genes Immun. 2010; 11: 11-20
        • Smolders J.
        • Remmerswaal E.B.M.
        • Schuurman K.G.
        • Melief J.
        • van Eden C.G.
        • van Lier R.A.W.
        • et al.
        Characteristics of differentiated CD8(+) and CD4 (+) T cells present in the human brain.
        Acta Neuropathol. 2013; 126: 525-535

      Linked Article