Advertisement

Sex Differences in Nociceptor Translatomes Contribute to Divergent Prostaglandin Signaling in Male and Female Mice

      Abstract

      Background

      There are clinically relevant sex differences in acute and chronic pain mechanisms, but we are only beginning to understand their mechanistic basis. Transcriptome analyses of rodent whole dorsal root ganglion (DRG) have revealed sex differences, mostly in immune cells. We examined the transcriptome and translatome of the mouse DRG with the goal of identifying sex differences.

      Methods

      We used translating ribosome affinity purification sequencing and behavioral pharmacology to test the hypothesis that in Nav1.8-positive neurons, most of which are nociceptors, translatomes would differ by sex.

      Results

      We found 80 genes with sex differential expression in the whole DRG transcriptome and 66 genes whose messenger RNAs were sex differentially actively translated (translatome). We also identified different motifs in the 3′ untranslated region of messenger RNAs that were sex differentially translated. In further validation studies, we focused on Ptgds, which was increased in the translatome of female mice. The messenger RNA encodes the prostaglandin PGD2 synthesizing enzyme. We observed increased PTGDS protein and PGD2 in female mouse DRG. The PTGDS inhibitor AT-56 caused intense pain behaviors in male mice but was only effective at high doses in female mice. Conversely, female mice responded more robustly to another major prostaglandin, PGE2, than did male mice. PTGDS protein expression was also higher in female cortical neurons, suggesting that DRG findings may be generalizable to other nervous system structures.

      Conclusions

      Our results demonstrate sex differences in nociceptor-enriched translatomes and reveal unexpected sex differences in one of the oldest known nociceptive signaling molecule families, the prostaglandins.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Beery A.K.
        • Zucker I.
        Sex bias in neuroscience and biomedical research.
        Neurosci Biobehav Rev. 2011; 35: 565-572
        • Mendrek A.
        • Mancini-Marïe A.
        Sex/gender differences in the brain and cognition in schizophrenia.
        Neurosci Biobehav Rev. 2016; 67: 57-78
        • Nawka A.
        • Kalisova L.
        • Raboch J.
        • Giacco D.
        • Cihal L.
        • Onchev G.
        • et al.
        Gender differences in coerced patients with schizophrenia.
        BMC Psychiatry. 2013; 13 (257-257)
        • Baldereschi M.
        • Di Carlo A.
        • Rocca W.A.
        • Vanni P.
        • Maggi S.
        • Perissinotto E.
        • et al.
        Parkinson's disease and parkinsonism in a longitudinal study: Two-fold higher incidence in men. ILSA Working Group. Italian Longitudinal Study on Aging.
        Neurology. 2000; 55: 1358-1363
        • Georgiev D.
        • Hamberg K.
        • Hariz M.
        • Forsgren L.
        • Hariz G.M.
        Gender differences in Parkinson's disease: A clinical perspective.
        Acta Neurol Scand. 2017; 136: 570-584
        • Accortt E.E.
        • Freeman M.P.
        • Allen J.J.
        Women and major depressive disorder: Clinical perspectives on causal pathways.
        J Womens Health (Larchmt). 2008; 17: 1583-1590
        • Bruce S.E.
        • Yonkers K.A.
        • Otto M.W.
        • Eisen J.L.
        • Weisberg R.B.
        • Pagano M.
        • et al.
        Influence of psychiatric comorbidity on recovery and recurrence in generalized anxiety disorder, social phobia, and panic disorder: A 12-year prospective study.
        Am J Psychiatry. 2005; 162: 1179-1187
        • Gao S.
        • Burney H.N.
        • Callahan C.M.
        • Purnell C.E.
        • Hendrie H.C.
        Incidence of dementia and Alzheimer disease over time: A meta-analysis.
        J Am Geriatr Soc. 2019; 67: 1361-1369
        • Mogil J.S.
        Sex differences in pain and pain inhibition: Multiple explanations of a controversial phenomenon.
        Nat Rev Neurosci. 2012; 13: 859-866
        • Fillingim R.B.
        • King C.D.
        • Ribeiro-Dasilva M.C.
        • Rahim-Williams B.
        • Riley 3rd, J.L.
        Sex, gender, and pain: A review of recent clinical and experimental findings.
        J Pain. 2009; 10: 447-485
        • Arout C.A.
        • Sofuoglu M.
        • Bastian L.A.
        • Rosenheck R.A.
        Gender differences in the prevalence of fibromyalgia and in concomitant medical and psychiatric disorders: A National Veterans Health Administration Study.
        J Womens Health (Larchmt). 2018; 27: 1035-1044
        • Torrance N.
        • Smith B.H.
        • Bennett M.I.
        • Lee A.J.
        The epidemiology of chronic pain of predominantly neuropathic origin. Results from a general population survey.
        J Pain. 2006; 7: 281-289
        • Ruau D.
        • Liu L.Y.
        • Clark J.D.
        • Angst M.S.
        • Butte A.J.
        Sex differences in reported pain across 11,000 patients captured in electronic medical records.
        J Pain. 2012; 13: 228-234
        • Mogil J.S.
        Qualitative sex differences in pain processing: Emerging evidence of a biased literature.
        Nat Rev Neurosci. 2020; 21: 353-365
        • Smith-Anttila C.J.A.
        • Mason E.A.
        • Wells C.A.
        • Aronow B.J.
        • Osborne P.B.
        • Keast J.R.
        Identification of a sacral, visceral sensory transcriptome in embryonic and adult mice.
        eNeuro. 2020; 7 (ENEURO.0397-19.2019)
        • Liu Y.
        • Beyer A.
        • Aebersold R.
        On the dependency of cellular protein levels on mRNA abundance.
        Cell. 2016; 165: 535-550
        • Patil M.
        • Belugin S.
        • Mecklenburg J.
        • Wangzhou A.
        • Paige C.
        • Barba-Escobedo P.A.
        • et al.
        Prolactin regulates pain responses via a female-selective nociceptor-specific mechanism.
        iScience. 2019; 20: 449-465
        • Patil M.J.
        • Green D.P.
        • Henry M.A.
        • Akopian A.N.
        Sex-dependent roles of prolactin and prolactin receptor in postoperative pain and hyperalgesia in mice.
        Neuroscience. 2013; 253: 132-141
        • Patil M.J.
        • Ruparel S.B.
        • Henry M.A.
        • Akopian A.N.
        Prolactin regulates TRPV1, TRPA1, and TRPM8 in sensory neurons in a sex-dependent manner: Contribution of prolactin receptor to inflammatory pain.
        Am J Physiol Endocrinol Metab. 2013; 305: E1154-E1164
        • Heiman M.
        • Schaefer A.
        • Gong S.
        • Peterson J.D.
        • Day M.
        • Ramsey K.E.
        • et al.
        A translational profiling approach for the molecular characterization of CNS cell types.
        Cell. 2008; 135: 738-748
        • Megat S.
        • Ray P.R.
        • Moy J.K.
        • Lou T.F.
        • Barragan-Iglesias P.
        • Li Y.
        • et al.
        Nociceptor translational profiling reveals the Ragulator-Rag GTPase complex as a critical generator of neuropathic pain.
        J Neurosci. 2019; 39: 393-411
        • Megat S.
        • Ray P.R.
        • Tavares-Ferreira D.
        • Moy J.K.
        • Sankaranarayanan I.
        • Wanghzou A.
        • et al.
        Differences between dorsal root and trigeminal ganglion nociceptors in mice revealed by translational profiling.
        J Neurosci. 2019; 39: 6829-6847
        • Shields S.D.
        • Ahn H.-S.
        • Yang Y.
        • Han C.
        • Seal R.P.
        • Wood J.N.
        • et al.
        Nav1. 8 expression is not restricted to nociceptors in mouse peripheral nervous system.
        Pain. 2012; 153: 2017-2030
        • Wilcox C.M.
        • Cryer B.
        • Triadafilopoulos G.
        Patterns of use and public perception of over-the-counter pain relievers: Focus on nonsteroidal antiinflammatory drugs.
        J Rheumatol. 2005; 32: 2218-2224
        • Dobin A.
        • Davis C.A.
        • Schlesinger F.
        • Drenkow J.
        • Zaleski C.
        • Jha S.
        • et al.
        STAR: Ultrafast universal RNA-seq aligner.
        Bioinformatics. 2013; 29: 15-21
        • Pertea M.
        • Pertea G.M.
        • Antonescu C.M.
        • Chang T.-C.
        • Mendell J.T.
        • Salzberg S.L.
        StringTie enables improved reconstruction of a transcriptome from RNA-seq reads.
        Nat Biotechnol. 2015; 33: 290-295
        • Bhattacharyya A.
        On a measure of divergence between two statistical populations defined by their probability distributions.
        Bull Calcutta Math Soc. 1943; 35: 99-109
        • Zhang X.D.
        Illustration of SSMD, z score, SSMD∗, z∗ score, and t statistic for hit selection in RNAi high-throughput screens.
        J Biomol Screen. 2011; 16: 775-785
        • Zhang X.D.
        • Lacson R.
        • Yang R.
        • Marine S.D.
        • McCampbell A.
        • Toolan D.M.
        • et al.
        The use of SSMD-based false discovery and false nondiscovery rates in genome-scale RNAi screens.
        J Biomol Screen. 2010; 15: 1123-1131
        • Zhou P.
        • Zhang Y.
        • Ma Q.
        • Gu F.
        • Day D.S.
        • He A.
        • et al.
        Interrogating translational efficiency and lineage-specific transcriptomes using ribosome affinity purification.
        Proc Natl Acad Sci U S A. 2013; 110: 15395-15400
        • Ray P.
        • Torck A.
        • Quigley L.
        • Wangzhou A.
        • Neiman M.
        • Rao C.
        • et al.
        Comparative transcriptome profiling of the human and mouse dorsal root ganglia: An RNA-seq-based resource for pain and sensory neuroscience research.
        Pain. 2018; 159: 1325
        • Obata K.
        • Yamanaka H.
        • Fukuoka T.
        • Yi D.
        • Tokunaga A.
        • Hashimoto N.
        • et al.
        Contribution of injured and uninjured dorsal root ganglion neurons to pain behavior and the changes in gene expression following chronic constriction injury of the sciatic nerve in rats.
        Pain. 2003; 101: 65-77
        • Nguyen M.Q.
        • Le Pichon C.E.
        • Ryba N.
        Stereotyped transcriptomic transformation of somatosensory neurons in response to injury.
        eLife. 2019; 8e49679
        • Mi H.
        • Muruganujan A.
        • Ebert D.
        • Huang X.
        • Thomas P.D.
        PANTHER version 14: More genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools.
        Nucleic Acids Res. 2019; 47: D419-D426
        • Lopes D.M.
        • Malek N.
        • Edye M.
        • Jager S.B.
        • McMurray S.
        • McMahon S.B.
        • et al.
        Sex differences in peripheral not central immune responses to pain-inducing injury.
        Sci Rep. 2017; 7: 16460
        • Liang Z.
        • Hore Z.
        • Harley P.
        • Uchenna Stanley F.
        • Michrowska A.
        • Dahiya M.
        • et al.
        A transcriptional toolbox for exploring peripheral neuro-immune interactions.
        Pain. 2020; 161: 2089-2106
        • North R.Y.
        • Li Y.
        • Ray P.
        • Rhines L.D.
        • Tatsui C.E.
        • Rao G.
        • et al.
        Electrophysiological and transcriptomic correlates of neuropathic pain in human dorsal root ganglion neurons.
        Brain. 2019; 142: 1215-1226
        • Thoreen C.C.
        • Chantranupong L.
        • Keys H.R.
        • Wang T.
        • Gray N.S.
        • Sabatini D.M.
        A unifying model for mTORC1-mediated regulation of mRNA translation.
        Nature. 2012; 485: 109-113
        • Jensen K.B.
        • Dredge B.K.
        • Toubia J.
        • Jin X.
        • Iadevaia V.
        • Goodall G.J.
        • Proud C.G.
        capCLIP: A new tool to probe translational control in human cells through capture and identification of the eIF4E-mRNA interactome.
        Nucleic Acids Res. 2021; 49: e105
        • Shaik J.S.
        • Miller T.M.
        • Graham S.H.
        • Manole M.D.
        • Poloyac S.M.
        Rapid and simultaneous quantitation of prostanoids by UPLC-MS/MS in rat brain.
        J Chromatogr B Analyt Technol Biomed Life Sci. 2014; 945-946: 207-216
        • Ogorochi T.
        • Narumiya S.
        • Mizuno N.
        • Yamashita K.
        • Miyazaki H.
        • Hayaishi O.
        Regional distribution of prostaglandins D2, E2, and F2α and related enzymes in postmortem human brain.
        J Neurochem. 1984; 43: 71-82
        • Eguchi N.
        • Minami T.
        • Shirafuji N.
        • Kanaoka Y.
        • Tanaka T.
        • Nagata A.
        • et al.
        Lack of tactile pain (allodynia) in lipocalin-type prostaglandin D synthase-deficient mice.
        Proc Natl Acad Sci U S A. 1999; 96: 726-730
        • Ito S.
        • Okuda-Ashitaka E.
        • Minami T.
        Central and peripheral roles of prostaglandins in pain and their interactions with novel neuropeptides nociceptin and nocistatin.
        Neurosci Res. 2001; 41: 299-332
        • Liang X.
        • Wu L.
        • Hand T.
        • Andreasson K.
        Prostaglandin D2 mediates neuronal protection via the DP1 receptor.
        J Neurochem. 2005; 92: 477-486
        • Minami T.
        • Okuda-Ashitaka E.
        • Mori H.
        • Ito S.
        • Hayaishi O.
        Prostaglandin D2 inhibits prostaglandin E2-induced allodynia in conscious mice.
        J Pharmacol Exp Ther. 1996; 278: 1146-1152
        • Minami T.
        • Okuda-Ashitaka E.
        • Nishizawa M.
        • Mori H.
        • Ito S.
        Inhibition of nociceptin-induced allodynia in conscious mice by prostaglandin D2.
        Br J Pharmacol. 1997; 122: 605-610
        • Ohkubo T.
        • Shibata M.
        • Takahashi H.
        • Inoki R.
        Effect of prostaglandin D2 on pain and inflammation.
        Jpn J Pharmacol. 1983; 33: 264-266
        • Sekeroglu A.
        • Jacobsen J.M.
        • Jansen-Olesen I.
        • Gupta S.
        • Sheykhzade M.
        • Olesen J.
        • et al.
        Effect of PGD(2) on middle meningeal artery and mRNA expression profile of L-PGD(2) synthase and DP receptors in trigeminovascular system and other pain processing structures in rat brain.
        Pharmacol Rep. 2017; 69: 50-56
        • Shimizu T.
        • Mizuno N.
        • Amano T.
        • Hayaishi O.
        Prostaglandin D2, a neuromodulator.
        Proc Natl Acad Sci U S A. 1979; 76: 6231-6234
        • Uda R.
        • Horiguchi S.
        • Ito S.
        • Hyodo M.
        • Hayaishi O.
        Nociceptive effects induced by intrathecal administration of prostaglandin D2, E2, or F2 alpha to conscious mice.
        Brain Res. 1990; 510: 26-32
        • Urade Y.
        • Hayaishi O.
        Prostaglandin D2 and sleep regulation.
        Biochim Biophys Acta Mol Cell Biol Lipids. 1999; 1436: 606-615
        • Wang T.A.
        • Teo C.F.
        • Åkerblom M.
        • Chen C.
        • Tynan-La Fontaine M.
        • Greiner V.J.
        • et al.
        Thermoregulation via temperature-dependent PGD2 production in mouse preoptic area.
        Neuron. 2019; 103: 309-322.e7
        • Ferrer M.D.
        • Busquets-Cortés C.
        • Capó X.
        • Tejada S.
        • Tur J.A.
        • Pons A.
        • et al.
        Cyclooxygenase-2 inhibitors as a therapeutic target in inflammatory diseases.
        Curr Med Chem. 2019; 26: 3225-3241
        • Sala A.
        • Proschak E.
        • Steinhilber D.
        • Rovati G.E.
        Two-pronged approach to anti-inflammatory therapy through the modulation of the arachidonic acid cascade.
        Biochem Pharmacol. 2018; 158: 161-173
        • Marjoribanks J.
        • Ayeleke R.O.
        • Farquhar C.
        • Proctor M.
        Nonsteroidal anti-inflammatory drugs for dysmenorrhoea.
        Cochrane Database Syst Rev. 2015; 2015: CD001751
        • Hu G.
        • Huang K.
        • Hu Y.
        • Du G.
        • Xue Z.
        • Zhu X.
        • et al.
        Single-cell RNA-seq reveals distinct injury responses in different types of DRG sensory neurons.
        Sci Rep. 2016; 6: 31851
        • Langford D.J.
        • Bailey A.L.
        • Chanda M.L.
        • Clarke S.E.
        • Drummond T.E.
        • Echols S.
        • et al.
        Coding of facial expressions of pain in the laboratory mouse.
        Nat Methods. 2010; 7: 447-449
        • Irikura D.
        • Aritake K.
        • Nagata N.
        • Maruyama T.
        • Shimamoto S.
        • Urade Y.
        Biochemical, functional, and pharmacological characterization of AT-56, an orally active and selective inhibitor of lipocalin-type prostaglandin D synthase.
        J Biol Chem. 2009; 284: 7623-7630
        • Walker J.S.
        • Carmody J.J.
        Experimental pain in healthy human subjects: Gender differences in nociception and in response to ibuprofen.
        Anesth Analg. 1998; 86: 1257-1262
        • Lopes D.M.
        • Denk F.
        • McMahon S.B.
        The molecular fingerprint of dorsal root and trigeminal ganglion neurons.
        Front Mol Neurosci. 2017; 10: 304
        • Khoutorsky A.
        • Price T.J.
        Translational control mechanisms in persistent pain.
        Trends Neurosci. 2018; 41: 100-114
        • Fillingim R.B.
        Sex, gender, and pain.
        in: Legato M.J. Principles of Gender-Specific Medicine: Gender in the Genomic Era. 3rd ed. Elsevier, New York2017: 481-496
        • Yu X.
        • Liu H.
        • Hamel K.A.
        • Morvan M.G.
        • Yu S.
        • Leff J.
        • et al.
        Dorsal root ganglion macrophages contribute to both the initiation and persistence of neuropathic pain.
        Nat Commun. 2020; 11: 264
        • Rosen S.F.
        • Ham B.
        • Haichin M.
        • Walters I.C.
        • Tohyama S.
        • Sotocinal S.G.
        • et al.
        Increased pain sensitivity and decreased opioid analgesia in T-cell-deficient mice and implications for sex differences.
        Pain. 2019; 160: 358-366
        • Sorge R.E.
        • Mapplebeck J.C.
        • Rosen S.
        • Beggs S.
        • Taves S.
        • Alexander J.K.
        • et al.
        Different immune cells mediate mechanical pain hypersensitivity in male and female mice.
        Nat Neurosci. 2015; 18: 1081-1083
        • Sorge R.E.
        • LaCroix-Fralish M.L.
        • Tuttle A.H.
        • Sotocinal S.G.
        • Austin J.S.
        • Ritchie J.
        • et al.
        Spinal cord Toll-like receptor 4 mediates inflammatory and neuropathic hypersensitivity in male but not female mice.
        J Neurosci. 2011; 31: 15450-15454
        • Zeisel A.
        • Hochgerner H.
        • Lonnerberg P.
        • Johnsson A.
        • Memic F.
        • van der Zwan J.
        • et al.
        Molecular architecture of the mouse nervous system.
        Cell. 2018; 174: 999-1014.e22
        • Patil M.
        • Hovhannisyan A.H.
        • Wangzhou A.
        • Mecklenburg J.
        • Koek W.
        • Goffin V.
        • et al.
        Prolactin receptor expression in mouse dorsal root ganglia neuronal subtypes is sex-dependent.
        J Neuroendocrinol. 2019; 31e12759
        • Kim J.H.
        Genetics of Alzheimer's disease.
        Dement Neurocogn Disord. 2018; 17: 131-136
        • Yoshino Y.
        • Yamazaki K.
        • Ozaki Y.
        • Sao T.
        • Yoshida T.
        • Mori T.
        • et al.
        INPP5D mRNA expression and cognitive decline in Japanese Alzheimer's disease subjects.
        J Alzheimers Dis. 2017; 58: 687-694
        • Masoumi J.
        • Abbasloui M.
        • Parvan R.
        • Mohammadnejad D.
        • Pavon-Djavid G.
        • Barzegari A.
        • et al.
        Apelin, a promising target for Alzheimer disease prevention and treatment.
        Neuropeptides. 2018; 70: 76-86
        • Ji R.R.
        Peripheral and central mechanisms of inflammatory pain, with emphasis on MAP kinases.
        Curr Drug Targets Inflamm Allergy. 2004; 3: 299-303
        • Yukhananov R.
        • Kissin I.
        Persistent changes in spinal cord gene expression after recovery from inflammatory hyperalgesia: A preliminary study on pain memory.
        BMC Neurosci. 2008; 9 (32-32)
        • Ji R.R.
        • Gereau 4th, R.W.
        • Malcangio M.
        • Strichartz G.R.
        MAP kinase and pain.
        Brain Res Rev. 2009; 60: 135-148
        • Taves S.
        • Berta T.
        • Liu D.L.
        • Gan S.
        • Chen G.
        • Kim Y.H.
        • et al.
        Spinal inhibition of p38 MAP kinase reduces inflammatory and neuropathic pain in male but not female mice: Sex-dependent microglial signaling in the spinal cord.
        Brain Behav Immun. 2016; 55: 70-81
        • Mapplebeck J.C.S.
        • Dalgarno R.
        • Tu Y.
        • Moriarty O.
        • Beggs S.
        • Kwok C.H.T.
        • et al.
        Microglial P2X4R-evoked pain hypersensitivity is sexually dimorphic in rats.
        Pain. 2018; 159: 1752-1763
        • Paige C.
        • Maruthy G.B.
        • Mejia G.
        • Dussor G.
        • Price T.
        Spinal inhibition of P2XR or p38 signaling disrupts hyperalgesic priming in male, but not female, mice.
        Neuroscience. 2018; 385: 133-142
        • Biever A.
        • Donlin-Asp P.G.
        • Schuman E.M.
        Local translation in neuronal processes.
        Curr Opin Neurobiol. 2019; 57: 141-148
        • Paige C.
        • Barba-Escobedo P.A.
        • Mecklenburg J.
        • Patil M.
        • Goffin V.
        • Grattan D.R.
        • et al.
        Neuroendocrine mechanisms governing sex differences in hyperalgesic priming involve prolactin receptor sensory neuron signaling.
        J Neurosci. 2020; 40: 7080-7090
        • Sakakibara M.
        • Uenoyama Y.
        • Minabe S.
        • Watanabe Y.
        • Deura C.
        • Nakamura S.
        • et al.
        Microarray analysis of perinatal-estrogen-induced changes in gene expression related to brain sexual differentiation in mice.
        PLoS One. 2013; 8e79437
        • Hertting G.
        • Seregi A.
        Formation and function of eicosanoids in the central nervous system.
        Ann N Y Acad Sci. 1989; 559: 84-99
        • Bellei E.
        • Monari E.
        • Bergamini S.
        • Cuoghi A.
        • Tomasi A.
        • Guerzoni S.
        • et al.
        Validation of potential candidate biomarkers of drug-induced nephrotoxicity and allodynia in medication-overuse headache.
        J Headache Pain. 2015; 16 (559-559)
        • Tanaka T.
        • Urade Y.
        • Kimura H.
        • Eguchi N.
        • Nishikawa A.
        • Hayaishi O.
        Lipocalin-type prostaglandin D synthase (beta-trace) is a newly recognized type of retinoid transporter.
        J Biol Chem. 1997; 272: 15789-15795
        • Avona A.
        • Burgos-Vega C.
        • Burton M.D.
        • Akopian A.N.
        • Price T.J.
        • Dussor G.
        Dural calcitonin gene-related peptide produces female-specific responses in rodent migraine models.
        J Neurosci. 2019; 39: 4323-4331
        • Chillingworth N.L.
        • Morham S.G.
        • Donaldson L.F.
        Sex differences in inflammation and inflammatory pain in cyclooxygenase-deficient mice.
        Am J Physiol Regul Integr Comp Physiol. 2006; 291: R327-R334
        • v. Euler US
        Über die Spezifische Blutdrucksenkende Substanz des Menschlichen Prostata- und Samenblasensekretes.
        Klin Wochenschr. 1935; 14: 1182-1183