Advertisement

Cocaine Triggers Astrocyte-Mediated Synaptogenesis

      Abstract

      Background

      Synaptogenesis is essential in forming new neurocircuits during development, and this is mediated in part by astrocyte-released thrombospondins (TSPs) and activation of their neuronal receptor, α2δ-1. Here, we show that this developmental synaptogenic mechanism is utilized during cocaine experience to induce spinogenesis and the generation of AMPA receptor–silent glutamatergic synapses in the adult nucleus accumbens shell (NAcSh).

      Methods

      Using multidisciplinary approaches including astrocyte Ca2+ imaging, genetic mouse lines, viral-mediated gene transfer, and operant behavioral procedures, we monitor the response of NAcSh astrocytes to cocaine administration and examine the role of astrocytic TSP–α2δ-1 signaling in cocaine-induced silent synapse generation as well as the behavioral impact of astrocyte-mediated synaptogenesis and silent synapse generation.

      Results

      Cocaine administration acutely increases Ca2+ events in NAcSh astrocytes, while decreasing astrocytic Ca2+ blocks cocaine-induced generation of silent synapses. Furthermore, knockout of TSP2, or pharmacological inhibition or viral-mediated knockdown of α2δ-1, prevents cocaine-induced generation of silent synapses. Moreover, disrupting TSP2–α2δ-1–mediated spinogenesis and synapse generation in NAcSh decreases cue-induced cocaine seeking after withdrawal from cocaine self-administration and cue-induced reinstatement of cocaine seeking after drug extinction.

      Conclusions

      These results establish that silent synapses are generated by an astrocyte-mediated synaptogenic mechanism in response to cocaine experience and embed critical cue-associated memory traces that promote cocaine relapse.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kalivas P.W.
        The glutamate homeostasis hypothesis of addiction.
        Nat Rev Neurosci. 2009; 10: 561-572
        • Wolf M.E.
        The Bermuda Triangle of cocaine-induced neuroadaptations.
        Trends Neurosci. 2010; 33: 391-398
        • Dong Y.
        • Nestler E.J.
        The neural rejuvenation hypothesis of cocaine addiction.
        Trends Pharmacol Sci. 2014; 35: 374-383
        • Huang Y.H.
        • Lin Y.
        • Mu P.
        • Lee B.R.
        • Brown T.E.
        • Wayman G.
        • et al.
        In vivo cocaine experience generates silent synapses.
        Neuron. 2009; 63: 40-47
        • Brown T.E.
        • Lee B.R.
        • Mu P.
        • Ferguson D.
        • Dietz D.
        • Ohnishi Y.N.
        • et al.
        A silent synapse-based mechanism for cocaine-induced locomotor sensitization.
        J Neurosci. 2011; 31: 8163-8174
        • Lee B.R.
        • Ma Y.Y.
        • Huang Y.H.
        • Wang X.
        • Otaka M.
        • Ishikawa M.
        • et al.
        Maturation of silent synapses in amygdala-accumbens projection contributes to incubation of cocaine craving.
        Nat Neurosci. 2013; 16: 1644-1651
        • Ma Y.Y.
        • Lee B.R.
        • Wang X.
        • Guo C.
        • Liu L.
        • Cui R.
        • et al.
        Bidirectional modulation of incubation of cocaine craving by silent synapse–based remodeling of prefrontal cortex to accumbens projections.
        Neuron. 2014; 83: 1453-1467
        • Graziane N.M.
        • Sun S.
        • Wright W.J.
        • Jang D.
        • Liu Z.
        • Huang Y.H.
        • et al.
        Opposing mechanisms mediate morphine- and cocaine-induced generation of silent synapses.
        Nat Neurosci. 2016; 19: 915-925
        • Wright W.J.
        • Graziane N.M.
        • Neumann P.A.
        • Hamilton P.J.
        • Cates H.M.
        • Fuerst L.
        • et al.
        Silent synapses dictate cocaine memory destabilization and reconsolidation.
        Nate Neurosci. 2020; 23: 32-46
        • Wright W.J.
        • Dong Y.
        Psychostimulant-induced adaptations in nucleus accumbens glutamatergic transmission.
        Cold Spring Harb Perspect Med. 2020; 10: a039255
        • Clarke L.E.
        • Barres B.A.
        Emerging roles of astrocytes in neural circuit development.
        Nat Rev Neurosci. 2013; 14: 311-321
        • Eroglu C.
        • Allen N.J.
        • Susman M.W.
        • O’Rourke N.A.
        • Park C.Y.
        • Ozkan E.
        • et al.
        Gabapentin receptor α2δ-1 is a neuronal thrombospondin receptor responsible for excitatory CNS synaptogenesis.
        Cell. 2009; 139: 380-392
        • Christopherson K.S.
        • Ullian E.M.
        • Stokes C.C.
        • Mullowney C.E.
        • Hell J.W.
        • Agah A.
        • et al.
        Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis.
        Cell. 2005; 120: 421-433
        • Iruela-Arispe M.L.
        • Liska D.J.
        • Sage E.H.
        • Bornstein P.
        Differential expression of thrombospondin 1, 2, and 3 during murine development.
        Dev Dyn. 1993; 197: 40-56
        • Hoffman J.R.
        • Dixit V.M.
        • O’Shea K.S.
        Expression of thrombospondin in the adult nervous system.
        J Comp Neurol. 1994; 340: 126-139
        • Scofield M.D.
        • Li H.
        • Siemsen B.M.
        • Healey K.L.
        • Tran P.K.
        • Woronoff N.
        • et al.
        Cocaine self-administration and extinction leads to reduced glial fibrillary acidic protein expression and morphometric features of astrocytes in the nucleus accumbens core.
        Biol Psychiatry. 2016; 80: 207-215
        • Spencer S.
        • Brown R.M.
        • Quintero G.C.
        • Kupchik Y.M.
        • Thomas C.A.
        • Reissner K.J.
        • et al.
        α2δ-1 signaling in nucleus accumbens is necessary for cocaine-induced relapse.
        J Neurosci. 2014; 34: 8605-8611
        • Scofield M.D.
        • Kalivas P.W.
        Astrocytic dysfunction and addiction: Consequences of impaired glutamate homeostasis.
        Neuroscientist. 2014; 20: 610-622
        • Huang Y.H.
        • Schluter O.M.
        • Dong Y.
        Silent synapses speak up: Updates of the neural rejuvenation hypothesis of drug addiction.
        Neuroscientist. 2015; 21: 451-459
        • Allen N.J.
        • Eroglu C.
        Cell biology of astrocyte-synapse interactions.
        Neuron. 2017; 96: 697-708
        • Chung W.S.
        • Allen N.J.
        • Eroglu C.
        Astrocytes control synapse formation, function, and elimination.
        Cold Spring Harb Perspect Biol. 2015; 7a020370
        • Volterra A.
        • Meldolesi J.
        Astrocytes, from brain glue to communication elements: The revolution continues.
        Nat Rev Neurosci. 2005; 6: 626-640
        • Srinivasan R.
        • Lu T.Y.
        • Chai H.
        • Xu J.
        • Huang B.S.
        • Golshani P.
        • et al.
        New transgenic mouse lines for selectively targeting astrocytes and studying calcium signals in astrocyte processes in situ and in vivo.
        Neuron. 2016; 92: 1181-1195
        • Madisen L.
        • Garner A.R.
        • Shimaoka D.
        • Chuong A.S.
        • Klapoetke N.C.
        • Li L.
        • et al.
        Transgenic mice for intersectional targeting of neural sensors and effectors with high specificity and performance.
        Neuron. 2015; 85: 942-958
        • Zhang Z.
        • Ma Z.
        • Zou W.
        • Guo H.
        • Liu M.
        • Ma Y.
        • et al.
        The appropriate marker for astrocytes: Comparing the distribution and expression of three astrocytic markers in different mouse cerebral regions.
        Biomed Res Int. 2019; 2019: 9605265
        • Walz W.
        • Lang M.K.
        Immunocytochemical evidence for a distinct GFAP-negative subpopulation of astrocytes in the adult rat hippocampus.
        Neurosci Lett. 1998; 257: 127-130
        • Pettit H.O.
        • Pan H.T.
        • Parsons L.H.
        • Justice Jr.., J.B.
        Extracellular concentrations of cocaine and dopamine are enhanced during chronic cocaine administration.
        J Neurochem. 1990; 55: 798-804
        • Pan H.T.
        • Menacherry S.
        • Justice Jr.., J.B.
        Differences in the pharmacokinetics of cocaine in naive and cocaine-experienced rats.
        J Neurochem. 1991; 56: 1299-1306
        • Zimmer B.A.
        • Dobrin C.V.
        • Roberts D.C.
        Brain-cocaine concentrations determine the dose self-administered by rats on a novel behaviorally dependent dosing schedule.
        Neuropsychopharmacology. 2011; 36: 2741-2749
        • Yu X.
        • Taylor A.M.W.
        • Nagai J.
        • Golshani P.
        • Evans C.J.
        • Coppola G.
        • et al.
        Reducing astrocyte calcium signaling in vivo alters striatal microcircuits and causes repetitive behavior.
        Neuron. 2018; 99: 1170-1187 e1179
        • Shigetomi E.
        • Bushong E.A.
        • Haustein M.D.
        • Tong X.
        • Jackson-Weaver O.
        • Kracun S.
        • et al.
        Imaging calcium microdomains within entire astrocyte territories and endfeet with GCaMPs expressed using adeno-associated viruses.
        J Gen Physiol. 2013; 141: 633-647
        • Lawler J.
        • Sunday M.
        • Thibert V.
        • Duquette M.
        • George E.L.
        • Rayburn H.
        • et al.
        Thrombospondin-1 is required for normal murine pulmonary homeostasis and its absence causes pneumonia.
        J Clin Invest. 1998; 101: 982-992
        • Kyriakides T.R.
        • Zhu Y.H.
        • Smith L.T.
        • Bain S.D.
        • Yang Z.
        • Lin M.T.
        • et al.
        Mice that lack thrombospondin 2 display connective tissue abnormalities that are associated with disordered collagen fibrillogenesis, an increased vascular density, and a bleeding diathesis.
        J Cell Biol. 1998; 140: 419-430
        • Adams J.C.
        Thrombospondins: Multifunctional regulators of cell interactions.
        Annu Rev Cell Dev Biol. 2001; 17: 25-51
        • Lin T.N.
        • Kim G.M.
        • Chen J.J.
        • Cheung W.M.
        • He Y.Y.
        • Hsu C.Y.
        Differential regulation of thrombospondin-1 and thrombospondin-2 after focal cerebral ischemia/reperfusion.
        Stroke. 2003; 34: 177-186
        • Moller J.C.
        • Klein M.A.
        • Haas S.
        • Jones L.L.
        • Kreutzberg G.W.
        • Raivich G.
        Regulation of thrombospondin in the regenerating mouse facial motor nucleus.
        Glia. 1996; 17: 121-132
        • Risher W.C.
        • Kim N.
        • Koh S.
        • Choi J.E.
        • Mitev P.
        • Spence E.F.
        • et al.
        Thrombospondin receptor α2δ-1 promotes synaptogenesis and spinogenesis via postsynaptic Rac1.
        J Cell Biol. 2018; 217: 3747-3765
        • Neumann P.A.
        • Wang Y.
        • Yan Y.
        • Wang Y.
        • Ishikawa M.
        • Cui R.
        • et al.
        Cocaine-induced synaptic alterations in thalamus to nucleus accumbens projection.
        Neuropsychopharmacology. 2016; 41: 2399-2410
        • Wang Y.L.
        • Cai Z.
        • Guo L.
        • Dong R.
        • Huang Y.
        • YH
        A critical role of basolateral amydala to nucleus accumbens projection in sleep regulation of reward seeking.
        Biol Psychiatry. 2020; 87: 954-966
        • Gardner E.L.
        What we have learned about addiction from animal models of drug self-administration.
        Am J Addict. 2000; 9: 285-313
        • Richardson N.R.
        • Roberts D.C.
        Progressive ratio schedules in drug self-administration studies in rats: A method to evaluate reinforcing efficacy.
        J Neurosci Methods. 1996; 66: 1-11
        • Yuste R.
        • Denk W.
        Dendritic spines as basic functional units of neuronal integration.
        Nature. 1995; 375: 682-684
        • Robinson T.E.
        • Kolb B.
        Alterations in the morphology of dendrites and dendritic spines in the nucleus accumbens and prefrontal cortex following repeated treatment with amphetamine or cocaine.
        Eur J Neurosci. 1999; 11: 1598-1604
        • Christian D.T.
        • Wang X.
        • Chen E.L.
        • Sehgal L.K.
        • Ghassemlou M.N.
        • Miao J.J.
        • et al.
        Dynamic alterations of rat nucleus accumbens dendritic spines over 2 months of abstinence from extended-access cocaine self-administration.
        Neuropsychopharmacology. 2017; 42: 748-756
        • Golden S.A.
        • Heshmati M.
        • Flanigan M.
        • Christoffel D.J.
        • Guise K.
        • Pfau M.L.
        • et al.
        Basal forebrain projections to the lateral habenula modulate aggression reward.
        Nature. 2016; 534: 688-692
        • Attardo A.
        • Fitzgerald J.E.
        • Schnitzer M.J.
        Impermanence of dendritic spines in live adult CA1 hippocampus.
        Nature. 2015; 523: 592-596
        • Dos Santos M.
        • Salery M.
        • Forget B.
        • Garcia Perez M.A.
        • Betuing S.
        • Boudier T.
        • et al.
        Rapid synaptogenesis in the nucleus accumbens is induced by a single cocaine administration and stabilized by mitogen-activated protein kinase interacting kinase-1 activity.
        Biol Psychiatry. 2017; 82: 806-818
        • Kerchner G.A.
        • Nicoll R.A.
        Silent synapses and the emergence of a postsynaptic mechanism for LTP.
        Nat Rev Neurosci. 2008; 9: 813-825
        • Hanse E.
        • Seth H.
        • Riebe I.
        AMPA-silent synapses in brain development and pathology.
        Nat Rev Neurosci. 2013; 14: 839-850
        • Huang X.
        • Stodieck S.K.
        • Goetze B.
        • Cui L.
        • Wong M.H.
        • Wenzel C.
        • et al.
        Progressive maturation of silent synapses governs the duration of a critical period.
        Proc Natl Acad Sci U S A. 2015; 112: E3131-3140
        • Marie H.
        • Morishita W.
        • Yu X.
        • Calakos N.
        • Malenka R.C.
        Generation of silent synapses by acute in vivo expression of CaMKIV and CREB.
        Neuron. 2005; 45: 741-752
        • Russo S.J.
        • Dietz D.M.
        • Dumitriu D.
        • Morrison J.H.
        • Malenka R.C.
        • Nestler E.J.
        The addicted synapse: Mechanisms of synaptic and structural plasticity in nucleus accumbens.
        Trends Neurosci. 2010; 33: 267-276
        • Bornstein P.
        • Agah A.
        • Kyriakides T.R.
        The role of thrombospondins 1 and 2 in the regulation of cell-matrix interactions, collagen fibril formation, and the response to injury.
        Int J Biochem Cell Biol. 2004; 36: 1115-1125
        • Kim S.K.
        • Nabekura J.
        • Koizumi S.
        Astrocyte-mediated synapse remodeling in the pathological brain.
        Glia. 2017; 65: 1719-1727
        • Ding S.
        • Fellin T.
        • Zhu Y.
        • Lee S.Y.
        • Auberson Y.P.
        • Meaney D.F.
        • et al.
        Enhanced astrocytic Ca2+ signals contribute to neuronal excitotoxicity after status epilepticus.
        J Neurosci. 2007; 27: 10674-10684
        • Kuchibhotla K.V.
        • Lattarulo C.R.
        • Hyman B.T.
        • Bacskai B.J.
        Synchronous hyperactivity and intercellular calcium waves in astrocytes in Alzheimer mice.
        Science. 2009; 323: 1211-1215
        • Nagai J.
        • Rajbhandari A.K.
        • Gangwani M.R.
        • Hachisuka A.
        • Coppola G.
        • Masmanidis S.C.
        • et al.
        Hyperactivity with disrupted attention by activation of an astrocyte synaptogenic cue.
        Cell. 2019; 177: 1280-1292.e1220
        • Liauw J.
        • Hoang S.
        • Choi M.
        • Eroglu C.
        • Choi M.
        • Sun G.H.
        • et al.
        Thrombospondins 1 and 2 are necessary for synaptic plasticity and functional recovery after stroke.
        J Cereb Blood Flow Metab. 2008; 28: 1722-1732
        • Shukla A.
        • Beroun A.
        • Panopoulou M.
        • Neumann P.A.
        • Grant S.G.
        • Olive M.F.
        • et al.
        Calcium-permeable AMPA receptors and silent synapses in cocaine-conditioned place preference.
        EMBO J. 2017; 36: 458-474
        • Lawler J.
        • Duquette M.
        • Whittaker C.A.
        • Adams J.C.
        • McHenry K.
        • DeSimone D.W.
        Identification and characterization of thrombospondin-4, a new member of the thrombospondin gene family.
        J Cell Biol. 1993; 120: 1059-1067
        • Risher W.C.
        • Eroglu C.
        Thrombospondins as key regulators of synaptogenesis in the central nervous system.
        Matrix Biol. 2012; 31: 170-177
        • Xu J.
        • Xiao N.
        • Xia J.
        Thrombospondin 1 accelerates synaptogenesis in hippocampal neurons through neuroligin 1.
        Nat Neurosci. 2010; 13: 22-24
        • Bayraktar O.A.
        • Fuentealba L.C.
        • Alvarez-Buylla A.
        • Rowitch D.H.
        Astrocyte development and heterogeneity.
        Cold Spring Harb Perspect Biol. 2014; 7: a020362
        • Zhang Y.
        • Barres B.A.
        Astrocyte heterogeneity: An underappreciated topic in neurobiology.
        Curr Opin Neurobiol. 2010; 20: 588-594
        • Hoppa M.B.
        • Lana B.
        • Margas W.
        • Dolphin A.C.
        • Ryan T.A.
        α2δ expression sets presynaptic calcium channel abundance and release probability.
        Nature. 2012; 486: 122-125
        • Catterall W.A.
        • Few A.P.
        Calcium channel regulation and presynaptic plasticity.
        Neuron. 2008; 59: 882-901
        • Ito R.
        • Robbins T.W.
        • Everitt B.J.
        Differential control over cocaine-seeking behavior by nucleus accumbens core and shell.
        Nat Neurosci. 2004; 7: 389-397
        • Balleine B.
        • Killcross S.
        Effects of ibotenic acid lesions of the nucleus accumbens on instrumental action.
        Behav Brain Res. 1994; 65: 181-193
        • Everitt B.J.
        Neural and psychological mechanisms underlying compulsive drug seeking habits and drug memories—indications for novel treatments of addiction.
        Eur J Neurosci. 2014; 40: 2163-2182
        • Mogenson G.J.
        • Jones D.L.
        • Yim C.Y.
        From motivation to action: Functional interface between the limbic system and the motor system.
        Prog Neurobiol. 1980; 14: 69-97
        • Cardinal R.N.
        • Parkinson J.A.
        • Marbini H.D.
        • Toner A.J.
        • Bussey T.J.
        • Robbins T.W.
        • et al.
        Role of the anterior cingulate cortex in the control over behavior by Pavlovian conditioned stimuli in rats.
        Behav Neurosci. 2003; 117: 566-587