Archival Report| Volume 89, ISSUE 2, P194-204, January 15, 2021

Neural Correlates of Emotion Regulation in Adolescents and Emerging Adults: A Meta-analytic Study

  • Author Footnotes
    1 EP and NV contributed equally to this work.
    Elena Pozzi
    1 EP and NV contributed equally to this work.
    Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Melbourne, Victoria, Australia
    Search for articles by this author
  • Author Footnotes
    1 EP and NV contributed equally to this work.
    Nandita Vijayakumar
    1 EP and NV contributed equally to this work.
    School of Psychology, Deakin University, Melbourne, Victoria, Australia
    Search for articles by this author
  • Divyangana Rakesh
    Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Melbourne, Victoria, Australia
    Search for articles by this author
  • Sarah Whittle
    Address correspondence to Sarah Whittle, Ph.D.
    Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Melbourne, Victoria, Australia

    Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Victoria, Australia
    Search for articles by this author
  • Author Footnotes
    1 EP and NV contributed equally to this work.



      The development of adaptive implicit and explicit emotion regulation skills is crucial for mental health. Adolescence and emerging adulthood are periods of heightened risk for psychopathology associated with emotion dysregulation, and neurodevelopmental mechanisms have been proposed to account for this increased risk. However, progress in understanding these mechanisms has been hampered by an incomplete knowledge of the neural underpinnings of emotion regulation during development.


      Using activation likelihood estimation, we conducted a quantitative analysis of functional magnetic resonance imaging studies in healthy developmental samples (i.e., adolescence [10–18 years of age] and emerging adulthood [19–30 years of age]) investigating emotion reactivity (N studies = 48), and implicit (N studies = 41) and explicit (N studies = 19) emotion regulation processes.


      Explicit emotion regulation was associated with activation in frontal, temporal, and parietal regions, whereas both implicit regulation and emotion reactivity were associated with activation in the amygdala and posterior temporal regions. During implicit regulation, adolescents exhibited more consistent activation of the amygdala, fusiform gyrus, and thalamus than emerging adults, who showed more consistent activation in the posterior superior temporal sulcus.


      Our results suggest that emotion reactivity and regulation in developmental samples engage a robust group of regions that are implicated in bottom-up and top-down emotional responding. Adolescents are also more likely to recruit regions involved in early stages of emotion processing during implicit regulation, while emerging adults recruit higher-order regions involved in the extraction of semantic meaning. Findings have implications for future research aiming to better understand the neurodevelopmental mechanisms underlying risk for psychopathology.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Mauss I.B.
        • Bunge S.A.
        • Gross J.J.
        Automatic emotion regulation.
        Soc Personal Psychol Compass. 2007; 1: 146-167
        • Phillips M.L.
        • Drevets W.C.
        • Rauch S.L.
        • Lane R.
        Neurobiology of emotion perception I: The neural basis of normal emotion perception.
        Biol Psychiatry. 2003; 54: 504-515
        • Gross J.J.
        Emotion regulation: Past, present, future.
        Cogn Emot. 1999; 13: 551-573
        • Thompson R.
        Emotion regulation: A theme in search of definition.
        Monogr Soc Res Child Dev. 1994; 59: 25-52
        • Gyurak A.
        • Gross J.J.
        • Etkin A.
        Explicit and implicit emotion regulation: A dual-process framework.
        Cogn Emot. 2011; 25: 400-412
        • Yap M.B.H.
        • Allen N.B.
        • Sheeber L.
        Using an emotion regulation framework to understand the role of temperament and family processes in risk for adolescent depressive disorders.
        Clin Child Fam Psychol Rev. 2007; 10: 180-196
        • Compas B.E.
        • Jaser S.S.
        • Bettis A.H.
        • Watson K.H.
        • Gruhn M.A.
        • Dunbar J.P.
        • et al.
        Coping, emotion regulation, and psychopathology in childhood and adolescence: A meta-analysis and narrative review.
        Psychol Bull. 2017; 143: 939-991
        • Arnett J.J.
        Conceptions of the transition to adulthood: Perspectives from adolescence through midlife.
        J Adult Dev. 2001; 8: 133-143
        • Aldao A.
        • Nolen-Hoeksema S.
        The influence of context on the implementation of adaptive emotion regulation strategies.
        Behav Res Ther. 2012; 50: 493-501
        • Gullone E.
        • Hughes E.K.
        • King N.J.
        • Tonge B.
        The normative development of emotion regulation strategy use in children and adolescents: A 2-year follow-up study.
        J Child Psychol Psychiatry. 2010; 5: 567-574
        • Garnefski N.
        • Legerstee J.
        • Kraaij V.
        • Van Den Kommer T.
        • Teerds J.
        Cognitive coping strategies and symptoms of depression and anxiety: A comparison between adolescents and adults.
        J Adolesc. 2002; 25: 603-611
        • John O.P.
        • Gross J.J.
        Healthy and unhealthy emotion regulation: Personality processes, individual differences, and life span development.
        J Pers. 2004; 72: 1301-1334
        • Zimmermann P.
        • Iwanski A.
        Emotion regulation from early adolescence to emerging adulthood and middle adulthood: Age differences, gender differences, and emotion-specific developmental variations.
        Int J Behav Dev. 2014; 38: 182-194
        • Tottenham N.
        • Hare T.A.
        • Casey B.
        Behavioral assessment of emotion discrimination, emotion regulation, and cognitive control in childhood, adolescence, and adulthood.
        Front Psychol. 2011; 2: 39
        • Cohen-Gilbert J.E.
        • Thomas K.M.
        Inhibitory control during emotional distraction across adolescence and early adulthood.
        Child Dev. 2013; 84: 1954-1966
        • Kadosh K.C.
        • Heathcote L.C.
        • Lau J.Y.F.
        • Stumm S Von
        Age-related changes in attentional control across adolescence: How does this impact emotion regulation capacities?.
        Front Psychol. 2014; 5: 111
        • McLaughlin K.A.
        • Hatzenbuehler M.L.
        • Mennin D.S.
        • Nolen-Hoeksema S.
        Emotion dysregulation and adolescent psychopathology: A prospective study.
        Behav Res Ther. 2011; 49: 544-554
        • Dahl R.E.
        • Gunnar M.R.
        Heightened stress responsiveness and emotional reactivity during pubertal maturation: Implications for psychopathology.
        Dev Psychopathol. 2009; 21: 87-97
        • Silk J.S.
        • Steinberg L.
        • Morris A.S.
        Adolescents’ emotion regulation in daily life: Links to depressive symptoms and problem behavior.
        Child Dev. 2003; 74: 1869-1880
        • O’Rourke E.J.
        • Halpern L.F.
        • Vaysman R.
        Examining the relations among emerging adult coping, executive function, and anxiety.
        Emerg Adulthood. 2020; 8: 209-225
        • Kessler R.C.
        • Berglund P.
        • Demler O.
        • Jin R.
        • Merikangas K.R.
        • Walters E.E.
        Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication.
        Arch Gen Psychiatry. 2005; 62: 593-768
        • de Girolamo G.
        • Dagani J.
        • Purcell R.
        • Cocchi A.
        • McGorry P.
        Age of onset of mental disorders and use of mental health services: Needs, opportunities and obstacles.
        Epidemiol Psychiatr Sci. 2012; 21: 47-57
        • Steinberg L.
        A dual systems model of adolescent risk-taking.
        Dev Psychobiol. 2010; 52: 216-224
        • Wright L.B.
        Adolescent brain development: Implications for the juvenile criminal justice system.
        in: Heilbrun K. APA Handbook of Psychology and Juvenile Justice. APA Books, Washington, DC2016
        • Casey B.
        • Jones R.M.
        • Hare T.A.
        The adolescent brain.
        Ann N Y Acad Sci. 2008; 1124: 111-126
        • Nelson E.E.
        • Leibenluft E.
        • McClure E.B.
        • Pine D.S.
        The social re-orientation of adolescence: A neuroscience perspective on the process and its relation to psychopathology.
        Psychol Med. 2005; 35: 163-174
        • Monk C.S.
        • McClure E.B.
        • Nelson E.E.
        • Zarahn E.
        • Bilder R.M.
        • Leibenluft E.
        • et al.
        Adolescent immaturity in attention-related brain engagement to emotional facial expressions.
        Neuroimage. 2003; 20: 420-428
        • Guyer A.E.
        • Monk C.S.
        • McClure-Tone E.B.
        • Nelson E.E.
        • Adler A.D.
        • Fromm S.J.
        • et al.
        A developmental examination of amygdala response to facial expressions.
        J Cogn Neurosci. 2008; 20: 1565-1582
        • Hare T.A.
        • Tottenham N.
        • Galvan A.
        • Voss H.U.
        • Glover G.H.
        • Casey B.J.
        Biological substrates of emotional reactivity and regulation in adolescence during an emotional go-nogo task.
        Biol Psychiatry. 2008; 63: 927-934
        • Perlman S.B.
        • Hein T.C.
        • Stepp S.D.
        Emotional reactivity and its impact on neural circuitry for attention — emotion interaction in childhood and adolescence.
        Dev Cogn Neurosci. 2014; 8: 100-109
        • Veroude K.
        • Jolles J.
        • Croiset G.
        • Krabbendam L.
        Changes in neural mechanisms of cognitive control during the transition from late adolescence to young adulthood.
        Dev Cogn Neurosci. 2013; 5: 63-70
        • Somerville L.H.
        • Hare T.A.
        • Casey B.
        Frontostriatal maturation predicts cognitive control failure to appetitive cues in adolescents.
        J Cogn Neurosci. 2011; 23: 2123-2134
        • McRae K.
        • Gross J.J.
        • Weber J.
        • Robertson E.R.
        • Sokol-Hessner P.
        • Ray R.D.
        • et al.
        The development of emotion regulation: An fMRI study of cognitive reappraisal in children, adolescents and young adults.
        Soc Cogn Affect Neurosci. 2012; 7: 11-22
        • Pfeifer J.H.
        • Masten C.L.
        • Moore W.E.
        • Oswald T.M.
        • Mazziotta J.C.
        • Iacoboni M.
        Entering adolescence: Resistance to peer influence, risky behavior, and neural changes in emotion reactivity.
        Neuron. 2011; 69: 1029-1036
        • Deeley Q.
        • Daly E.M.
        • Azuma R.
        • Surguladze S.
        • Giampietro V.
        • Brammer M.J.
        • et al.
        Changes in male brain responses to emotional faces from adolescence to middle age.
        Neuroimage. 2008; 40: 389-397
        • Pfeifer J.H.
        • Allen N.B.
        Arrested development? Reconsidering dual-systems models of brain function in adolescence and disorders.
        Trends Cogn Sci. 2012; 16: 322-329
        • Casey B.
        • Heller A.S.
        • Gee D.G.
        • Cohen A.O.
        Development of the emotional brain.
        Neurosci Lett. 2019; 693: 29-34
        • Ernst M.
        The triadic model perspective for the study of adolescent motivated behavior.
        Brain Cogn. 2015; 89: 104-111
        • Steinberg L.
        A social neuroscience perspective on adolescent risk-taking.
        Dev Rev. 2008; 28: 78-106
        • Nelson E.E.
        • Jarcho J.M.
        • Guyer A.E.
        Social re-orientation and brain development: An expanded and updated view.
        Dev Cogn Neurosci. 2016; 17: 118-127
        • Casey B.
        • Galván A.
        • Somerville L.H.
        Beyond simple models of adolescence to an integrated circuit-based account: A commentary.
        Dev Cogn Neurosci. 2016; 17: 128-130
        • Shulman E.P.
        • Smith A.R.
        • Silva K.
        • Icenogle G.
        • Duell N.
        • Chein J.
        • Steinberg L.
        The dual systems model: Review, reappraisal, and reaffirmation.
        Dev Cogn Neurosci. 2016; 17: 103-117
        • Ahmed S.P.
        • Bittencourt-Hewitt A.
        • Sebastian C.L.
        Neurocognitive bases of emotion regulation development in adolescence.
        Dev Cogn Neurosci. 2015; 15: 11-25
        • Young K.S.
        • Sandman C.F.
        • Craske M.G.
        Positive and negative emotion regulation in adolescence: Links to anxiety and depression.
        Brain Sci. 2019; 9: 76
        • Guyer A.E.
        • Silk J.S.
        • Nelson E.E.
        The neurobiology of the emotional adolescent: From the inside out.
        Neurosci Biobehav Rev. 2016; 70: 74-85
        • Del Piero L.B.
        • Saxbe D.E.
        • Margolin G.
        Basic emotion processing and the adolescent brain: Task demands, analytic approaches, and trajectories of changes.
        Dev Cogn Neurosci. 2016; 19: 174-189
        • Morawetz C.
        • Bode S.
        • Derntl B.
        • Heekeren H.R.
        The effect of strategies, goals and stimulus material on the neural mechanisms of emotion regulation: A meta-analysis of fMRI studies.
        Neurosci Biobehav Rev. 2017; 72: 111-128
        • Buhle J.T.
        • Silvers J.A.
        • Wage T.D.
        • Lopez R.
        • Onyemekwu C.
        • Kober H.
        • et al.
        Cognitive reappraisal of emotion: A meta-analysis of human neuroimaging studies.
        Cereb Cortex. 2014; 24: 2981-2990
        • Diekhof E.K.
        • Geier K.
        • Falkai P.
        • Gruber O.
        Fear is only as deep as the mind allows A coordinate-based meta-analysis of neuroimaging studies on the regulation of negative affect.
        Neuroimage. 2011; 58: 275-285
        • Frank D.W.
        • Dewitt M.
        • Schaeffer D.J.
        • Ball B.H.
        • Schwartz N.
        • Hussein A.A.
        • et al.
        Emotion regulation: Quantitative meta-analysis of functional activation and deactivation.
        Neurosci Biobehav Rev. 2014; 45: 202-211
        • Kohn N.
        • Eickhoff S.
        • Scheller M.
        • Laird A.
        • Fox P.
        • Habel U.
        Neural network of cognitive emotion regulation—An ALE meta-analysis and MACM analysis.
        Neuroimage. 2014; 87: 345-355
        • Cromheeke S.
        • Mueller S.C.
        Probing emotional influences on cognitive control: An ALE meta-analysis of cognition emotion interactions.
        Brain Struct Funct. 2014; 219: 995-1008
        • Müller V.I.
        • Hohner Y.
        • Eickhoff S.B.
        Influence of task instructions and stimuli on the neural network of face processing: An ALE meta-analysis.
        Cortex. 2018; 103: 240-255
        • Feng C.
        • Becker B.
        • Huang W.
        • Wu X.
        • Eickhoff S.B.
        • Chen T.
        Neural substrates of the emotion-word and emotional counting Stroop tasks in healthy and clinical populations: A meta-analysis of functional brain imaging studies.
        Neuroimage. 2018; 173: 258-274
        • Brooks J.A.
        • Shablack H.
        • Gendron M.
        • Satpute A.B.
        • Parrish M.H.
        • Lindquist K.A.
        The role of language in the experience and perception of emotion: A neuroimaging meta-analysis.
        Soc Cogn Affect Neurosci. 2017; 12: 169-183
        • Diamond L.M.
        • Aspinwall L.G.
        Emotion regulation across the life span: An integrative perspective emphasizing self-regulation, positive affect, and dyadic processes.
        Motiv Emot. 2003; 27: 125-156
        • Dricu M.
        • Frühholz S.
        Perceiving emotional expressions in others: Activation likelihood estimation meta- analyses of explicit evaluation, passive perception and incidental perception of emotions.
        Neurosci Biobehav Rev. 2016; 71: 810-828
        • Turkeltaub P.E.
        • Eden G.F.
        • Jones K.M.
        • Zeffiro T.A.
        Meta-analysis of the functional neuroanatomy of single-word reading: Method and validation.
        Neuroimage. 2002; 16: 765-780
        • Müller V.I.
        • Cieslik E.C.
        • Laird A.R.
        • Fox P.T.
        • Radua J.
        • Mataix-Cols D.
        • et al.
        Ten simple rules for neuroimaging meta-analysis.
        Neurosci Biobehav Rev. 2018; 84: 151-161
        • Eickhoff S.B.
        • Laird A.R.
        • Fox P.M.
        • Lancaster J.L.
        • Fox P.T.
        Implementation errors in the GingerALE Software: Description and recommendations.
        Hum Brain Mapp. 2017; 38: 7-11
        • Adolphs R.
        Recognizing emotion from facial expressions: Psychological and neurological mechanisms.
        Behav Cogn Neurosci Rev. 2002; 1: 21-62
        • Yang D.Y.
        • Rosenblau G.
        • Keifer C.
        • Pelphrey K.A.
        An integrative neural model of social perception, action observation, and theory of mind.
        Neurosci Biobehav Rev. 2015; 176: 263-275
        • Brandl F.
        • Le Z.
        • Corbi H.
        • Mulej S.
        • Sorg C.
        Cognitive reward control recruits medial and lateral frontal cortices, which are also involved in cognitive emotion regulation: A coordinate-based meta-analysis of fMRI studies.
        Neuroimage. 2019; 200: 659-673
        • Passarotti A.M.
        • Sweeney J.A.
        • Pavuluri M.N.
        Neural correlates of incidental and directed facial emotion processing in adolescents and adults.
        Soc Cogn Affect Neurosci. 2009; 4: 387-398
        • Cohen A.O.
        • Breiner K.
        • Steinberg L.
        • Bonnie R.J.
        • Scott E.S.
        • Taylor-Thompson K.A.
        • et al.
        When is an adolescent an adult? Assessing cognitive control in emotional and nonemotional contexts.
        Psychol Sci. 2016; 27: 549-562
        • Ochsner K.N.
        • Ray R.D.
        • Cooper J.C.
        • Robertson E.R.
        • Chopra S.
        • Gabrieli J.D.E.
        • Gross J.J.
        For better or for worse: Neural systems supporting the cognitive down- and up-regulation of negative emotion.
        Neuroimage. 2004; 23: 483-499
        • Phillips M.L.
        • Ladoucer C.
        • Drevets W.C.
        A neural model of voluntary and automatic emotion regulation: Implications for understanding the pathophysiology and neurodevelopment of bipolar disorder.
        Mol Psychiatry. 2008; 13: 829-857
        • Pitskel N.B.
        • Bolling D.Z.
        • Kaiser M.D.
        • Crowley M.J.
        • Pelphrey K.A.
        How grossed out are you? The neural bases of emotion regulation from childhood to adolescence.
        Dev Cogn Neurosci. 2011; 1: 324-337
        • Puce A.
        • Perrett D.
        Electrophysiology and brain imaging of biological motion.
        Philos Trans R Soc Lond B Biol Sci. 2003; 358: 435-445
        • Kreifelts B.
        • Ethofer T.
        • Shiozawa T.
        • Grodd W.
        • Wildgruber D.
        Cerebral representation of non-verbal emotional perception: FMRI reveals audiovisual integration area between voice- and face-sensitive regions in the superior temporal sulcus.
        Neuropsychologia. 2009; 47: 3059-3066
        • Narumoto J.
        • Okada T.
        • Sadato N.
        • Fukui K.
        • Yonekura Y.
        Attention to emotion modulates fMRI activity in human right superior temporal sulcus.
        Brain Res Cogn Brain Res. 2001; 12: 225-231
        • Patel G.H.
        • Sestieri C.
        • Corbetta M.
        The evolution of the temporoparietal junction and posterior superior temporal sulcus.
        Cortex. 2019; 118: 38-50
        • Burnett S.
        • Sebastian C.
        • Cohen Kadosh K.
        • Blakemore S.J.
        The social brain in adolescence: Evidence from functional magnetic resonance imaging and behavioural studies.
        Neurosci Biobehav Rev. 2011; 35: 1654-1664
        • Gee D.G.
        • Humphreys K.L.
        • Flannery J.
        • Goff B.
        • Telzer E.H.
        • Shapiro M.
        • et al.
        A developmental shift from positive to negative connectivity in human amygdala-prefrontal circuitry.
        J Neurosci. 2013; 33: 4584-4593
        • Wu M.
        • Kujawa A.
        • Lu L.H.
        • Fitzgerald D.A.
        • Klumpp H.
        • Fitzgerald K.D.
        • et al.
        Age-related changes in amygdala – Frontal connectivity during emotional face processing from childhood into young adulthood.
        Hum Brain Mapp. 2016; 37: 1684-1695
        • Silvers J.A.
        • Shu J.
        • Hubbard A.D.
        • Weber J.
        • Ochsner K.N.
        Concurrent and lasting effects of emotion regulation on amygdala response in adolescence and young adulthood.
        Dev Sci. 2015; 18: 771-784
        • Palmer S.M.
        • Crewther S.G.
        • Carey L.M.
        • START Project Team
        A meta-analysis of changes in brain activity in clinical depression.
        Front Hum Neurosci. 2015; 8: 1045
        • Zhong X.
        • Pu W.
        • Yao S.
        Functional alterations of fronto-limbic circuit and default mode network systems in first-episode, drug-naïve patients with major depressive disorder: A meta-analysis of resting-state fMRI data.
        J Affect Disord. 2016; 206: 280-286
        • Patel R.
        • Spreng R.N.
        • Shin L.M.
        • Girard T.A.
        Neurocircuitry models of posttraumatic stress disorder and beyond: A meta-analysis of functional neuroimaging studies.
        Neurosci Biobehav Rev. 2012; 36: 2130-2142
        • Hattingh C.J.
        • Ipser J.
        • Tromp S.A.
        • Syal S.
        • Lochner C.
        • Brooks S.J.
        • Stein D.J.
        Functional magnetic resonance imaging during emotion recognition in social anxiety disorder: An activation likelihood meta-analysis.
        Front Hum Neurosci. 2013; 6: 347
        • Gross J.
        • Jazaieri H.
        Emotion, emotion regulation, and psychopathology: An affective science perspective.
        Clin Psychol Sci. 2014; 1: 387-401
        • Miller C.H.
        • Hamilton J.P.
        • Sacchet M.D.
        • Gotlib I.H.
        Meta-analysis of functional neuroimaging of major depressive disorder in youth.
        . 2015; 2130: 1045-1053
        • Paul Hamilton J.
        • Gotlib I.H.
        Neural substrates of increased memory sensitivity for negative stimuli in major depression.
        Biol Psychiatry. 2008; 63: 1155-1162
        • Rakesh D.
        • Allen N.B.
        • Whittle S.
        Balancing act: Neural correlates of affect dysregulation in youth depression and substance use – A systematic review of functional neuroimaging studies.
        Dev Cogn Neurosci. 2020; 42: 100775
        • Clark D.A.
        • Beck A.T.
        Cognitive theory and therapy of anxiety and depression: Convergence with neurobiological findings.
        Trends Cogn Sci. 2010; 14: 418-424
        • Jacobs R.H.
        • Watkins E.R.
        • Peters A.T.
        • Feldhaus C.G.
        • Barba A.
        • Carbray J.
        • Langenecker S.A.
        Targeting ruminative thinking in adolescents at risk for depressive relapse: Rumination-focused cognitive behavior therapy in a pilot randomized controlled trial with resting state fMRI.
        PLoS One. 2016; 11e0163952
        • Straub J.
        • Plener P.L.
        • Sproeber N.
        • Sprenger L.
        • Koelch M.G.
        • Groen G.
        • Abler B.
        Neural correlates of successful psychotherapy of depression in adolescents.
        J Affect Disord. 2015; 183: 239-246
        • Cisler J.
        • Sigel B.
        • Steele J.
        • Smitherman S.
        • Vanderzee K.
        • Pemberton J.
        • Kramer T.
        Changes in functional connectivity of the amygdala during cognitive reappraisal predict symptom reduction during trauma-focused cognitive-behavioral therapy among adolescent girls with post-traumatic stress disorder.
        Psychol Med. 2016; 46: 3013-3023
        • Huyser C.
        • Veltman D.J.
        • Wolters L.H.
        • Haan E De
        • Boer F.
        Developmental aspects of error and high-conflict-related brain activity in pediatric obsessive-compulsive disorder: A fMRI study with a Flanker task before and after CBT.
        J Child Psychol Psychiatry. 2011; 12: 1251-1260
        • Kadosh K.C.
        • Luo Q.
        • De Burca C.
        • Sokunbi M.O.
        • Feng J.
        • Linden D.E.
        • Lau J.Y.
        Using real-time fMRI to influence effective connectivity in the developing emotion regulation network.
        Neuroimage. 2016; 125: 616-626
        • Braunstein L.M.
        • Gross J.J.
        • Ochsner K.N.
        Explicit and implicit emotion regulation: A multi-level framework.
        Soc Cogn Affect Neurosci. 2017; 12: 1545-1557
      1. World Health Organization. Programming for adolescent health and development (1992): WHO Tech Rep Ser No. 1996:2.

        • Arnett J.J.
        • Kloep M.
        • Hendry L.B.
        • Tanner J.L.
        Debating Emerging Adulthood: Stage or Process?.
        Oxford University Press, 2011
        • Silverman M.H.
        • Jedd K.
        • Luciana M.
        Neural networks involved in adolescent reward processing: An activation likelihood estimation meta-analysis of functional neuroimaging studies.
        Neuroimage. 2015; 122: 427-439
        • Vijayakumar N.
        • Cheng T.W.
        • Pfeifer J.H.
        Neural correlates of social exclusion across ages: A coordinate-based meta-analysis of functional MRI studies.
        Neuroimage. 2017; 153: 359-368
        • Eklund A.
        • Nichols T.E.
        • Knutsson H.
        Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates.
        Proc Natl Acad Sci U S A. 2016; 113: 7900-7905