Advertisement

Converging Structural and Functional Evidence for a Rat Salience Network

      Abstract

      Background

      The salience network (SN) is dysregulated in many neuropsychiatric disorders, including substance use disorder. Though the SN was initially described in humans, identification of a rodent SN would provide the ability to mechanistically interrogate this network in preclinical models of neuropsychiatric disorders.

      Methods

      We used modularity analysis on resting-state functional magnetic resonance imaging data of rats (n = 32) to parcellate rat insula into functional subdivisions and to identify a potential rat SN based on functional connectivity patterns from the insular subdivisions. We then used mouse tract tracing data from the Allen Brain Atlas to confirm the network’s underlying structural connectivity. We next compared functional connectivity profiles of the SN across rats, marmosets (n = 10), and humans (n = 30). Finally, we assessed the rat SN’s response to conditioned cues in rats (n = 21) with a history of heroin self-administration.

      Results

      We identified a putative rat SN, which consists of primarily the ventral anterior insula and anterior cingulate cortex, based on functional connectivity patterns from the ventral anterior insular division. Functional connectivity architecture of the rat SN is supported by the mouse neuronal tracer data. Moreover, the anatomical profile of the identified rat SN is similar to that of nonhuman primates and humans. Finally, we demonstrated that the rat SN responds to conditioned cues and increases functional connectivity to the default mode network during conditioned heroin withdrawal.

      Conclusions

      The neurobiological identification of a rat SN, together with a demonstration of its functional relevance, provides a novel platform with which to interrogate its functional significance in normative and neuropsychiatric disease models.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Bullmore E.
        • Sporns O.
        Complex brain networks: Graph theoretical analysis of structural and functional systems.
        Nat Rev Neurosci. 2009; 10: 186-198
        • Sporns O.
        Network attributes for segregation and integration in the human brain.
        Curr Opin Neurobiol. 2013; 23: 162-171
        • Uddin L.Q.
        Salience processing and insular cortical function and dysfunction.
        Nat Rev Neurosci. 2015; 16: 55-61
        • Sha Z.
        • Wager T.D.
        • Mechelli A.
        • He Y.
        Common dysfunction of large-scale neurocognitive networks across psychiatric disorders.
        Biol Psychiatry. 2019; 85: 379-388
        • Goodkind M.
        • Eickhoff S.B.
        • Oathes D.J.
        • Jiang Y.
        • Chang A.
        • Jones-Hagata L.B.
        • et al.
        Identification of a common neurobiological substrate for mental illness.
        JAMA Psychiatry. 2015; 72: 305-315
        • McTeague L.M.
        • Huemer J.
        • Carreon D.M.
        • Jiang Y.
        • Eickhoff S.B.
        • Etkin A.
        Identification of common neural circuit disruptions in cognitive control across psychiatric disorders.
        Am J Psychiatry. 2017; 174: 676-685
        • Menon V.
        Large-scale brain networks and psychopathology: A unifying triple network model.
        Trends Cogn Sci. 2011; 15: 483-506
        • Seeley W.W.
        • Menon V.
        • Schatzberg A.F.
        • Keller J.
        • Glover G.H.
        • Kenna H.
        • et al.
        Dissociable intrinsic connectivity networks for salience processing and executive control.
        J Neurosci. 2007; 27: 2349-2356
        • Craig A.D.B.
        How do you feel--now? The anterior insula and human awareness.
        Nat Rev Neurosci. 2009; 10: 59-70
        • Sridharan D.
        • Levitin D.J.
        • Menon V.
        A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks.
        Proc Natl Acad Sci U S A. 2008; 105: 12569-12574
        • Touroutoglou A.
        • Bliss-Moreau E.
        • Zhang J.
        • Mantini D.
        • Vanduffel W.
        • Dickerson B.C.
        • Barrett L.F.
        A ventral salience network in the macaque brain.
        NeuroImage. 2016; 132: 190-197
        • Beissner F.
        • Meissner K.
        • Bär K.-J.
        • Napadow V.
        The autonomic brain: An activation likelihood estimation meta-analysis for central processing of autonomic function.
        J Neurosci. 2013; 33: 10503-10511
        • Singer T.
        • Critchley H.D.
        • Preuschoff K.
        A common role of insula in feelings, empathy and uncertainty.
        Trends Cogn Sci. 2009; 13: 334-340
        • Menon V.
        • Uddin L.Q.
        Saliency, switching, attention and control: A network model of insula function.
        Brain Struct Funct. 2010; 214: 655-667
        • Heuvel MP van den
        • Mandl R.C.W.
        • Kahn R.S.
        • Pol H.E.H.
        Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain.
        Hum Brain Mapp. 2009; 30: 3127-3141
        • Oh S.W.
        • Harris J.A.
        • Ng L.
        • Winslow B.
        • Cain N.
        • Mihalas S.
        • et al.
        A mesoscale connectome of the mouse brain.
        Nature. 2014; 508: 207-214
        • Carmack S.A.
        • Keeley R.J.
        • Vendruscolo J.C.M.
        • Lowery-Gionta E.G.
        • Lu H.
        • Koob G.F.
        • et al.
        Heroin addiction engages negative emotional learning brain circuits in rats.
        J Clin Invest. 2019; 129: 2480-2484
        • Vendruscolo L.F.
        • Schlosburg J.E.
        • Misra K.K.
        • Chen S.A.
        • Greenwell T.N.
        • Koob G.F.
        Escalation patterns of varying periods of heroin access.
        Pharmacol Biochem Behav. 2011; 98: 570-574
        • Frenois F.
        • Le Moine C.
        • Cador M.
        The motivational component of withdrawal in opiate addiction: Role of associative learning and aversive memory in opiate addiction from a behavioral, anatomical and functional perspective.
        Rev Neurosci. 2005; 16: 255-276
        • Kenny P.J.
        • Chen S.A.
        • Kitamura O.
        • Markou A.
        • Koob G.F.
        Conditioned withdrawal drives heroin consumption and decreases reward sensitivity.
        J Neurosci. 2006; 26: 5894-5900
        • Schulteis G.
        • Markou A.
        • Gold L.H.
        • Stinus L.
        • Koob G.F.
        Relative sensitivity to naloxone of multiple indices of opiate withdrawal: A quantitative dose-response analysis.
        J Pharmacol Exp Ther. 1994; 271: 1391-1398
        • Lu H.
        • Zou Q.
        • Gu H.
        • Raichle M.E.
        • Stein E.A.
        • Yang Y.
        Rat brains also have a default mode network.
        Proc Natl Acad Sci U S A. 2012; 109: 3979-3984
        • Brynildsen J.K.
        • Hsu L.-M.
        • Ross T.J.
        • Stein E.A.
        • Yang Y.
        • Lu H.
        Physiological characterization of a robust survival rodent fMRI method.
        Magn Reson Imaging. 2017; 35: 54-60
        • Liu H.-S.
        • Chefer S.
        • Lu H.
        • Guillem K.
        • Rea W.
        • Kurup P.
        • et al.
        Dorsolateral caudate nucleus differentiates cocaine from natural reward-associated contextual cues.
        Proc Natl Acad Sci U S A. 2013; 110: 4093-4098
        • Paxinos G.
        • Watson C.
        The Rat Brain in Stereotaxic Coordinates.
        7th ed. Elsevier, New York2014
        • Cox R.W.
        • Chen G.
        • Glen D.R.
        • Reynolds R.C.
        • Taylor P.A.
        FMRI clustering in AFNI: False-positive rates redux.
        Brain Connect. 2017; 7: 152-171
        • Eklund A.
        • Nichols T.E.
        • Knutsson H.
        Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates.
        Proc Natl Acad Sci U S A. 2016; 113: 7900-7905
        • Newman M.E.J.
        Modularity and community structure in networks.
        Proc Natl Acad Sci U S A. 2006; 103: 8577-8582
        • Liang X.
        • Hsu L.-M.
        • Lu H.
        • Sumiyoshi A.
        • He Y.
        • Yang Y.
        The rich-club organization in rat functional brain network to balance between communication cost and efficiency.
        Cereb Cortex. 2018; 28: 924-935
        • Menon V.
        Salience network.
        in: Brain Mapping: An Encyclopedic Reference. vol. 2. Elsevier, New York2015: 597-611
        • Vogt B.A.
        • Hof P.R.
        • Zilles K.
        • Vogt L.J.
        • Herold C.
        • Palomero-Gallagher N.
        Cingulate area 32 homologies in mouse, rat, macaque and human: Cytoarchitecture and receptor architecture.
        J Comp Neurol. 2013; 521: 4189-4204
        • Wise S.P.
        Forward frontal fields: Phylogeny and fundamental function.
        Trends Neurosci. 2008; 31: 599-608
        • Bicks L.K.
        • Koike H.
        • Akbarian S.
        • Morishita H.
        Prefrontal cortex and social cognition in mouse and man.
        Front Psychol. 2015; 6: 1805
        • Deen B.
        • Pitskel N.B.
        • Pelphrey K.A.
        Three systems of insular functional connectivity identified with cluster analysis.
        Cereb Cortex. 2011; 21: 1498-1506
        • Sforazzini F.
        • Schwarz A.J.
        • Galbusera A.
        • Bifone A.
        • Gozzi A.
        Distributed BOLD and CBV-weighted resting-state networks in the mouse brain.
        NeuroImage. 2014; 87: 403-415
        • Rescorla R.A.
        Variation in the effectiveness of reinforcement and nonreinforcement following prior inhibitory conditioning.
        Learning Motiv. 1971; 2: 113-123
        • Siddle D.A.T.
        Orienting, habituation, and resource allocation: An associative analysis.
        Psychophysiology. 1991; 28: 245-259
        • Hall G.
        • Rodríguez G.
        Habituation and conditioning: Salience change in associative learning.
        J Exp Psychol Anim Learn Cogn. 2017; 43: 48-61
        • Çevik M.Ö.
        Habituation, sensitization, and Pavlovian conditioning.
        Front Integr Neurosci. 2014; 8: 13
        • Fransson P.
        • Marrelec G.
        The precuneus/posterior cingulate cortex plays a pivotal role in the default mode network: Evidence from a partial correlation network analysis.
        NeuroImage. 2008; 42: 1178-1184
        • Lerman C.
        • Gu H.
        • Loughead J.
        • Ruparel K.
        • Yang Y.
        • Stein E.A.
        Large-scale brain network coupling predicts acute nicotine abstinence effects on craving and cognitive function.
        JAMA Psychiatry. 2014; 71: 523-530
        • Sutherland M.T.
        • McHugh M.
        • Pariyadath V.
        • Stein E.A.
        Resting state functional connectivity in addiction: Lessons learned and a road ahead.
        NeuroImage. 2012; 62: 2281-2295
        • Evrard H.C.
        The organization of the primate insular cortex.
        Front Neuroanat. 2019; 13: 43
        • Klein T.A.
        • Ullsperger M.
        • Danielmeier C.
        Error awareness and the insula: Links to neurological and psychiatric diseases.
        Front Hum Neurosci. 2013; 7: 14
        • Carrillo M.
        • Han Y.
        • Migliorati F.
        • Liu M.
        • Gazzola V.
        • Keysers C.
        Emotional mirror neurons in the rat’s anterior cingulate cortex.
        Curr Biol. 2019; 29: 1301-1312.e6
        • Jasmin L.
        • Granato A.
        • Ohara P.T.
        Rostral agranular insular cortex and pain areas of the central nervous system: A tract-tracing study in the rat.
        J Comp Neurol. 2004; 468: 425-440
        • Dalley J.W.
        • Cardinal R.N.
        • Robbins T.W.
        Prefrontal executive and cognitive functions in rodents: Neural and neurochemical substrates.
        Neurosci Biobehav Rev. 2004; 28: 771-784
        • Bota M.
        • Sporns O.
        • Swanson L.W.
        Architecture of the cerebral cortical association connectome underlying cognition.
        Proc Natl Acad Sci U S A. 2015; 112: E2093-E2101
        • Gabbott P.L.A.
        • Warner T.A.
        • Jays P.R.L.
        • Bacon S.J.
        Areal and synaptic interconnectivity of prelimbic (area 32), infralimbic (area 25) and insular cortices in the rat.
        Brain Res. 2003; 993: 59-71
        • Shi C.-J.
        • Cassell M.D.
        Cortical, thalamic, and amygdaloid connections of the anterior and posterior insular cortices.
        J Comp Neurol. 1998; 399: 440-468
        • Pushparaj A.
        • Kim A.S.
        • Musiol M.
        • Zangen A.
        • Daskalakis Z.J.
        • Zack M.
        • et al.
        Differential involvement of the agranular vs granular insular cortex in the acquisition and performance of choice behavior in a rodent gambling task.
        Neuropsychopharmacology. 2015; 40: 2832-2842
        • Cechetto D.F.
        • Saper C.B.
        Evidence for a viscerotopic sensory representation in the cortex and thalamus in the rat.
        J Comp Neurol. 1987; 262: 27-45
        • Oppenheimer S.M.
        • Cechetto D.F.
        Cardiac chronotropic organization of the rat insular cortex.
        Brain Res. 1990; 533: 66-72
        • Schier L.A.
        • Hashimoto K.
        • Bales M.B.
        • Blonde G.D.
        • Spector A.C.
        High-resolution lesion-mapping strategy links a hot spot in rat insular cortex with impaired expression of taste aversion learning.
        Proc Natl Acad Sci U S A. 2014; 111: 1162-1167
        • Rodgers K.M.
        • Benison A.M.
        • Klein A.
        • Barth D.S.
        Auditory, somatosensory, and multisensory insular cortex in the rat.
        Cereb Cortex. 2008; 18: 2941-2951
        • Namkung H.
        • Kim S.-H.
        • Sawa A.
        The insula: An underestimated brain area in clinical neuroscience, psychiatry, and neurology.
        Trends Neurosci. 2017; 40: 200-207
        • Contreras M.
        • Billeke P.
        • Vicencio S.
        • Madrid C.
        • Perdomo G.
        • González M.
        • Torrealba F.
        A role for the insular cortex in long-term memory for context-evoked drug craving in rats.
        Neuropsychopharmacology. 2012; 37: 2101-2108
        • Contreras M.
        • Ceric F.
        • Torrealba F.
        Inactivation of the interoceptive insula disrupts drug craving and malaise induced by lithium.
        Science. 2007; 318: 655-658
        • Droutman V.
        • Read S.J.
        • Bechara A.
        Revisiting the role of the insula in addiction.
        Trends Cogn Sci. 2015; 19: 414-420
        • Naqvi N.H.
        • Rudrauf D.
        • Damasio H.
        • Bechara A.
        Damage to the insula disrupts addiction to cigarette smoking.
        Science. 2007; 315: 531-534
        • Janes A.C.
        • Gilman J.M.
        • Radoman M.
        • Pachas G.
        • Fava M.
        • Evins A.E.
        Revisiting the role of the insula and smoking cue-reactivity in relapse: A replication and extension of neuroimaging findings.
        Drug Alcohol Depend. 2017; 179: 8-12
        • Naqvi N.H.
        • Bechara A.
        The hidden island of addiction: The insula.
        Trends Neurosci. 2009; 32: 56-67
        • Fedota J.R.
        • Ding X.
        • Matous A.L.
        • Salmeron B.J.
        • McKenna M.R.
        • Gu H.
        • et al.
        Nicotine abstinence influences the calculation of salience in discrete insular circuits.
        Biol Psychiatry Cogn Neurosci Neuroimaging. 2018; 3: 150-159
        • Hsu L.-M.
        • Keeley R.J.
        • Liang X.
        • Brynildsen J.K.
        • Lu H.
        • Yang Y.
        • Stein E.A.
        Intrinsic insular-frontal networks predict future nicotine dependence severity.
        J Neurosci. 2019; 39: 5028-5037
        • Chen T.
        • Cai W.
        • Ryali S.
        • Supekar K.
        • Menon V.
        Distinct global brain dynamics and spatiotemporal organization of the salience network.
        PLoS Biol. 2016; 14e1002469
        • Putcha D.
        • Ross R.S.
        • Cronin-Golomb A.
        • Janes A.C.
        • Stern C.E.
        Salience and default mode network coupling predicts cognition in aging and Parkinson’s disease.
        J Int Neuropsychol Soc. 2016; 22: 205-215
        • He X.
        • Qin W.
        • Liu Y.
        • Zhang X.
        • Duan Y.
        • Song J.
        • et al.
        Abnormal salience network in normal aging and in amnestic mild cognitive impairment and Alzheimer’s disease.
        Hum Brain Mapp. 2014; 35: 3446-3464
        • Li C.
        • Li Y.
        • Zheng L.
        • Zhu X.
        • Shao B.
        • Fan G.
        • et al.
        Abnormal brain network connectivity in a triple-network model of Alzheimer’s disease.
        J Alzheimers Dis. 2019; 69: 237-252
        • Liu Y.
        • Li L.
        • Li B.
        • Feng N.
        • Li L.
        • Zhang X.
        • et al.
        Decreased triple network connectivity in patients with recent onset post-traumatic stress disorder after a single prolonged trauma exposure.
        Sci Rep. 2017; 7: 12625
        • Sutherland M.T.
        • Carroll A.J.
        • Salmeron B.J.
        • Ross T.J.
        • Hong L.E.
        • Stein E.A.
        Down-regulation of amygdala and insula functional circuits by varenicline and nicotine in abstinent cigarette smokers.
        Biol Psychiatry. 2013; 74: 538-546
        • Hahn B.
        • Ross T.J.
        • Yang Y.
        • Kim I.
        • Huestis M.A.
        • Stein E.A.
        Nicotine enhances visuospatial attention by deactivating areas of the resting brain default network.
        J Neurosci. 2007; 27: 3477-3489
        • Sutherland M.T.
        • Carroll A.J.
        • Salmeron B.J.
        • Ross T.J.
        • Stein E.A.
        Insula’s functional connectivity with ventromedial prefrontal cortex mediates the impact of trait alexithymia on state tobacco craving.
        Psychopharmacology (Berl). 2013; 228: 143-155
        • Zorrilla E.P.
        • Koob G.F.
        Impulsivity derived from the dark side: Neurocircuits that contribute to negative urgency.
        Front Behav Neurosci. 2019; 13: 136
        • Gracy K.N.
        • Dankiewicz L.A.
        • Koob G.F.
        Opiate withdrawal-induced Fos immunoreactivity in the rat extended amygdala parallels the development of conditioned place aversion [no. 2].
        Neuropsychopharmacology. 2001; 24: 152-160
        • Uddin L.Q.
        • Supekar K.S.
        • Ryali S.
        • Menon V.
        Dynamic reconfiguration of structural and functional connectivity across core neurocognitive brain networks with development.
        J Neurosci. 2011; 31: 18578-18589
        • Ding X.
        • Lee S.-W.
        Changes of functional and effective connectivity in smoking replenishment on deprived heavy smokers: A resting-state FMRI study.
        PLoS One. 2013; 8e59331