Advertisement

Mammalian Target of Rapamycin-RhoA Signaling Impairments in Direct Striatal Projection Neurons Induce Altered Behaviors and Striatal Physiology in Mice

      Abstract

      Background

      As an integrator of molecular pathways, mTOR (mammalian target of rapamycin) has been associated with diseases including neurodevelopmental, psychiatric, and neurodegenerative disorders such as autism spectrum disorder, schizophrenia, and Huntington’s disease. An important brain area involved in all these diseases is the striatum. However, the mechanisms behind how mTOR is involved in striatal physiology and its relative role in distinct neuronal populations in these striatal-related diseases still remain to be clarified.

      Methods

      Using Drd1-Cre mTOR-conditional knockout male mice, we combined behavioral, biochemical, electrophysiological, and morphological analysis aiming to untangle the role of mTOR in direct pathway striatal projection neurons and how this would impact on striatal physiology.

      Results

      Our results indicate deep behavioral changes in absence of mTOR in Drd1-expressing neurons such as decreased spontaneous locomotion, impaired social interaction, and decreased marble-burying behavior. These alterations were accompanied by a Kv1.1-induced increase in the fast phase of afterhyperpolarization and coincident decreased distal spine density in striatal direct pathway striatal projection neurons. The physiological changes were mechanistically independent of protein synthesis but sensitive to pharmacological blockade of transforming protein RhoA activity.

      Conclusions

      These results identify mTOR signaling as an important regulator of striatal functions through an intricate mechanism involving RhoA and culminating in Kv1.1 overfunction, which could be targeted to treat striatal-related monogenic disorders associated with the mTOR signaling pathway.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Tavazoie S.F.
        • Alvarez V.A.
        • Ridenour D.A.
        • Kwiatkowski D.J.
        • Sabatini B.L.
        Regulation of neuronal morphology and function by the tumor suppressors Tsc1 and Tsc2.
        Nat Neurosci. 2005; 8: 1727-1734
        • Takei N.
        • Nawa H.
        mTOR signaling and its roles in normal and abnormal brain development.
        Front Mol Neurosci. 2014; 7: 28
        • Costa-Mattioli M.
        • Monteggia L.M.
        mTOR complexes in neurodevelopmental and neuropsychiatric disorders.
        Nat Neurosci. 2013; 16: 1537-1543
        • Santini E.
        • Heiman M.
        • Greengard P.
        • Valjent E.
        • Fisone G.
        Inhibition of mTOR signaling in Parkinson’s disease prevents L-DOPA-induced dyskinesia.
        Sci Signal. 2009; 2: ra36
        • Ryskalin L.
        • Limanaqi F.
        • Frati A.
        • Busceti C.L.
        • Fornai F.
        mTOR-related brain dysfunctions in neuropsychiatric disorders.
        Int J Mol Sci. 2018; 19: 2226
        • Switon K.
        • Kotulska K.
        • Janusz-Kaminska A.
        • Zmorzynska J.
        • Jaworski J.
        Molecular neurobiology of mTOR.
        Neuroscience. 2017; 341: 112-153
        • Niere F.
        • Raab-Graham K.F.
        mTORC1 is a local, postsynaptic voltage sensor regulated by positive and negative feedback pathways.
        Front Cell Neurosci. 2017; 11: 152
        • Richter M.
        • Murtaza N.
        • Scharrenberg R.
        • White S.H.
        • Johanns O.
        • Walker S.
        • et al.
        Altered TAOK2 activity causes autism-related neurodevelopmental and cognitive abnormalities through RhoA signaling.
        Mol Psychiatry. 2019; 24: 1329-1350
        • Gordon B.S.
        • Kazi A.A.
        • Coleman C.S.
        • Dennis M.D.
        • Chau V.
        • Jefferson L.S.
        • et al.
        RhoA modulates signaling through the mechanistic target of rapamycin complex 1 (mTORC1) in mammalian cells.
        Cell Signal. 2014; 26: 461-467
        • Jhanwar-Uniyal M.
        • Amin A.G.
        • Cooper J.B.
        • Das K.
        • Schmidt M.H.
        • Murali R.
        Discrete signaling mechanisms of mTORC1 and mTORC2: Connected yet apart in cellular and molecular aspects.
        Adv Biol Regul. 2017; 64: 39-48
        • Jacinto E.
        • Loewith R.
        • Schmidt A.
        • Lin S.
        • Ruegg M.A.
        • Hall A.
        • et al.
        Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive.
        Nat Cell Biol. 2004; 6: 1122-1128
        • Sarbassov D.D.
        • Ali S.M.
        • Sengupta S.
        • Sheen J.H.
        • Hsu P.P.
        • Bagley A.F.
        • et al.
        Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB.
        Mol Cell. 2006; 22: 159-168
        • Thomanetz V.
        • Angliker N.
        • Cloetta D.
        • Lustenberger R.M.
        • Schweighauser M.
        • Oliveri F.
        • et al.
        Ablation of the mTORC2 component rictor in brain or Purkinje cells affects size and neuron morphology.
        J Cell Biol. 2013; 201: 293-308
        • O’Roak B.J.
        • Vives L.
        • Fu W.
        • Egertson J.D.
        • Stanaway I.B.
        • Phelps I.G.
        • et al.
        Multiplex targeted sequencing identifies recurrently mutated genes in autism spectrum disorders.
        Science. 2012; 338: 1619-1622
        • Zhou J.
        • Parada L.F.
        PTEN signaling in autism spectrum disorders.
        Curr Opin Neurobiol. 2012; 22: 873-879
        • Allen A.S.
        • Berkovic S.F.
        • Cossette P.
        • Delanty N.
        • et al.
        • Epi4K Consortium, Epilepsy Phenome/Genome Project
        De novo mutations in epileptic encephalopathies.
        Nature. 2013; 501: 217-221
        • Kim J.Y.
        • Duan X.
        • Liu C.Y.
        • Jang M.H.
        • Guo J.U.
        • Pow-anpongkul N.
        • et al.
        DISC1 regulates new neuron development in the adult brain via modulation of AKT-mTOR signaling through KIAA1212.
        Neuron. 2009; 63: 761-773
        • Autry A.E.
        • Adachi M.
        • Nosyreva E.
        • Na E.S.
        • Los M.F.
        • Cheng P.F.
        • et al.
        NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses.
        Nature. 2011; 475: 91-95
        • Caccamo A.
        • Maldonado M.A.
        • Majumder S.
        • Medina D.X.
        • Holbein W.
        • Magri A.
        • et al.
        Naturally secreted amyloid-beta increases mammalian target of rapamycin (mTOR) activity via a PRAS40-mediated mechanism.
        J Biol Chem. 2011; 286: 8924-8932
        • Bove J.
        • Martinez-Vicente M.
        • Vila M.
        Fighting neurodegeneration with rapamycin: mechanistic insights.
        Nat Rev. 2011; 12: 437-452
        • Ravikumar B.
        • Vacher C.
        • Berger Z.
        • Davies J.E.
        • Luo S.
        • Oroz L.G.
        • et al.
        Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease.
        Nat Genet. 2004; 36: 585-595
        • Fuccillo M.V.
        Striatal circuits as a common node for autism pathophysiology.
        Front Neurosci. 2016; 10: 27
        • McCutcheon R.A.
        • Abi-Dargham A.
        • Howes O.D.
        Schizophrenia, dopamine and the striatum: From biology to symptoms.
        Trends Neurosci. 2019; 42: 205-220
        • Shepherd G.M.
        Corticostriatal connectivity and its role in disease.
        Nat Rev Neurosci. 2013; 14: 278-291
        • Kaasinen V.
        • Vahlberg T.
        Striatal dopamine in Parkinson disease: A meta-analysis of imaging studies.
        Ann Neurol. 2017; 82: 873-882
        • Reiner A.
        • Deng Y.P.
        Disrupted striatal neuron inputs and outputs in Huntington’s disease.
        CNS Neurosci Ther. 2018; 24: 250-280
        • Cornu M.
        • Oppliger W.
        • Albert V.
        • Robitaille A.M.
        • Trapani F.
        • Quagliata L.
        • et al.
        Hepatic mTORC1 controls locomotor activity, body temperature, and lipid metabolism through FGF21.
        Proc Natl Acad Sci U S A. 2014; 111: 11592-11599
        • Yttri E.A.
        • Dudman J.T.
        Opponent and bidirectional control of movement velocity in the basal ganglia.
        Nature. 2016; 533: 402-406
        • Tyan L.
        • Sopjani M.
        • Dermaku-Sopjani M.
        • Schmid E.
        • Yang W.
        • Xuan N.T.
        • et al.
        Inhibition of voltage-gated K+ channels in dendritic cells by rapamycin.
        Am J Physiol Cell Physiol. 2010; 299: C1379-C1385
        • Glazebrook P.A.
        • Ramirez A.N.
        • Schild J.H.
        • Shieh C.C.
        • Doan T.
        • Wible B.A.
        • et al.
        Potassium channels Kv1.1, Kv1.2 and Kv1.6 influence excitability of rat visceral sensory neurons.
        J Physiol. 2002; 541: 467-482
        • Shen W.
        • Hernandez-Lopez S.
        • Tkatch T.
        • Held J.E.
        • Surmeier D.J.
        Kv1.2-containing K+ channels regulate subthreshold excitability of striatal medium spiny neurons.
        J Neurophysiol. 2004; 91: 1337-1349
        • Raab-Graham K.F.
        • Haddick P.C.
        • Jan Y.N.
        • Jan L.Y.
        Activity- and mTOR-dependent suppression of Kv1.1 channel mRNA translation in dendrites.
        Science. 2006; 314: 144-148
        • Sutton L.P.
        • Caron M.G.
        Essential role of D1R in the regulation of mTOR complex1 signaling induced by cocaine.
        Neuropharmacology. 2015; 99: 610-619
        • Liu L.
        • Luo Y.
        • Chen L.
        • Shen T.
        • Xu B.
        • Chen W.
        • et al.
        Rapamycin inhibits cytoskeleton reorganization and cell motility by suppressing RhoA expression and activity.
        J Biol Chem. 2010; 285: 38362-38373
        • Briz V.
        • Baudry M.
        Estrogen regulates protein synthesis and actin polymerization in hippocampal neurons through different molecular mechanisms.
        Front Endocrinol (Lausanne). 2014; 5: 22
        • Jaffe D.B.
        • Brenner R.
        A computational model for how the fast afterhyperpolarization paradoxically increases gain in regularly firing neurons.
        J Neurophysiol. 2018; 119: 1506-1520
        • Kunz J.
        • Henriquez R.
        • Schneider U.
        • Deuter-Reinhard M.
        • Movva N.R.
        • Hall M.N.
        Target of rapamycin in yeast, TOR2, is an essential phosphatidylinositol kinase homolog required for G1 progression.
        Cell. 1993; 73: 585-596
        • Wiederrecht G.J.
        • Sabers C.J.
        • Brunn G.J.
        • Martin M.M.
        • Dumont F.J.
        • Abraham R.T.
        Mechanism of action of rapamycin: New insights into the regulation of G1-phase progression in eukaryotic cells.
        Prog Cell Cycle Res. 1995; 1: 53-71
        • Winden K.D.
        • Ebrahimi-Fakhari D.
        • Sahin M.
        Abnormal mTOR activation in autism.
        Annu Rev Neurosci. 2018; 41: 1-23
        • Subramaniam S.
        • Napolitano F.
        • Mealer R.G.
        • Kim S.
        • Errico F.
        • Barrow R.
        • et al.
        Rhes, a striatal-enriched small G protein, mediates mTOR signaling and L-DOPA-induced dyskinesia.
        Nat Neurosci. 2011; 15: 191-193
        • Bailey J.
        • Ma D.
        • Szumlinski K.K.
        Rapamycin attenuates the expression of cocaine-induced place preference and behavioral sensitization.
        Addict Biol. 2012; 17: 248-258
        • O’Reilly K.E.
        • Rojo F.
        • She Q.B.
        • Solit D.
        • Mills G.B.
        • Smith D.
        • et al.
        mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt.
        Cancer Res. 2006; 66: 1500-1508
        • Carracedo A.
        • Ma L.
        • Teruya-Feldstein J.
        • Rojo F.
        • Salmena L.
        • Alimonti A.
        • et al.
        Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer.
        J Clin Invest. 2008; 118: 3065-3074
        • Kelleher 3rd, R.J.
        • Govindarajan A.
        • Jung H.Y.
        • Kang H.
        • Tonegawa S.
        Translational control by MAPK signaling in long-term synaptic plasticity and memory.
        Cell. 2004; 116: 467-479
        • Garcia-Gutierrez M.S.
        • Ortega-Alvaro A.
        • Busquets-Garcia A.
        • Perez-Ortiz J.M.
        • Caltana L.
        • Ricatti M.J.
        • et al.
        Synaptic plasticity alterations associated with memory impairment induced by deletion of CB2 cannabinoid receptors.
        Neuropharmacology. 2013; 73: 388-396
        • Garcia-Junco-Clemente P.
        • Chow D.K.
        • Tring E.
        • Lazaro M.T.
        • Trachtenberg J.T.
        • Golshani P.
        Overexpression of calcium-activated potassium channels underlies cortical dysfunction in a model of PTEN-associated autism.
        Proc Natl Acad Sci U S A. 2013; 110: 18297-18302
        • Lee J.H.
        • Tecedor L.
        • Chen Y.H.
        • Monteys A.M.
        • Sowada M.J.
        • Thompson L.M.
        • et al.
        Reinstating aberrant mTORC1 activity in Huntington’s disease mice improves disease phenotypes.
        Neuron. 2015; 85: 303-315
        • Tang G.
        • Gudsnuk K.
        • Kuo S.H.
        • Cotrina M.L.
        • Rosoklija G.
        • Sosunov A.
        • et al.
        Loss of mTOR-dependent macroautophagy causes autistic-like synaptic pruning deficits.
        Neuron. 2014; 83: 1131-1143
        • Sun J.
        • Liu Y.
        • Tran J.
        • O’Neal P.
        • Baudry M.
        • Bi X.
        mTORC1-S6K1 inhibition or mTORC2 activation improves hippocampal synaptic plasticity and learning in Angelman syndrome mice.
        Cell Mol Life Sci. 2016; 73: 4303-4314
        • Chao H.T.
        • Chen H.
        • Samaco R.C.
        • Xue M.
        • Chahrour M.
        • Yoo J.
        • et al.
        Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes.
        Nature. 2010; 468: 263-269
        • Yizhar O.
        • Fenno L.E.
        • Prigge M.
        • Schneider F.
        • Davidson T.J.
        • O’Shea D.J.
        • et al.
        Neocortical excitation/inhibition balance in information processing and social dysfunction.
        Nature. 2011; 477: 171-178
        • Fu C.
        • Cawthon B.
        • Clinkscales W.
        • Bruce A.
        • Winzenburger P.
        • Ess K.C.
        GABAergic interneuron development and function is modulated by the Tsc1 gene.
        Cereb Cortex. 2012; 22: 2111-2119
        • Benthall K.N.
        • Ong S.L.
        • Bateup H.S.
        Corticostriatal transmission is selectively enhanced in striatonigral neurons with postnatal loss of Tsc1.
        Cell Rep. 2018; 23: 3197-3208
        • Jin L.M.
        Rock ‘n’ Rho: regulation of ion channels.
        Am J Physiol Heart Circ Physiol. 2009; 296: H908-909
        • Boyer S.B.
        • Slesinger P.A.
        • Jones S.V.
        Regulation of Kir2.1 channels by the Rho-GTPase, Rac1.
        J Cell Physiol. 2009; 218: 385-393
        • Stirling L.
        • Williams M.R.
        • Morielli A.D.
        Dual roles for RHOA/RHO-kinase in the regulated trafficking of a voltage-sensitive potassium channel.
        Mol Biol Cell. 2009; 20: 2991-3002
        • Luykenaar K.D.
        • El-Rahman R.A.
        • Walsh M.P.
        • Welsh D.G.
        Rho-kinase-mediated suppression of KDR current in cerebral arteries requires an intact actin cytoskeleton.
        Am J Physiol Heart Circ Physiol. 2009; 296: H917-926
        • Lipton J.O.
        • Sahin M.
        The neurology of mTOR.
        Neuron. 2014; 84: 275-291