Advertisement

Convergence and Divergence in the Genetics of Psychiatric Disorders From Pathways to Developmental Stages

      Abstract

      In the past decade, the identification of susceptibility genes for psychiatric disorders has become routine, but understanding the biology underlying these discoveries has proven extremely difficult. The large number of potential risk genes and the genetic overlap between disorders are major obstacles for studying the etiology of these conditions. Systems biology approaches relying on gene ontologies, gene coexpression, and protein-protein interactions are used to identify convergence of the genes in relation to biological processes, cell types, brain areas, and developmental stages. Across psychiatric disorders, there is a clear enrichment for genes expressed in the brain and especially in the cortex, but a higher resolution is vastly dependent on sample size and statistical power. There is indication that susceptibility genes tend to be expressed in the brain during periods preceding the typical onset of the disorders. Thus, the role of genes in prenatal brain development is more pronounced for childhood-onset disorders, such as autism spectrum disorder and attention-deficit/hyperactivity disorder, but is much less so for bipolar disorder and depression. One of the most consistent findings across multiple disorders and classes of genetic variants is the role of genes intolerant to mutations in psychiatric disorders, yet this association is more pronounced for disorders with a clear neurodevelopmental component. Notwithstanding, a detailed understanding of the neurobiology of psychiatric disorders is still lacking. It is possible that it will only be revealed by studying the risk genes at the level of the development and function of neuronal networks and circuits.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Rutter M.
        Understanding and testing risk mechanisms for mental disorders.
        J Child Psychol Psychiatry. 2009; 50: 44-52
        • Muglia P.
        From genes to therapeutic targets for psychiatric disorders – What to expect?.
        Curr Opin Pharmacol. 2011; 11: 563-571
        • Smoller J.W.W.
        Psychiatric genetics and the future of personalized treatment.
        Depress Anxiety. 2014; 31: 893-898
        • Ripke S.
        • Neale B.M.
        • Corvin A.
        • Walters J.T.R.T.
        • Farh K.-H.
        • Holmans P.A.
        • et al.
        Biological insights from 108 schizophrenia-associated genetic loci.
        Nature. 2014; 511: 421-427
        • Pardiñas A.F.F.
        • Holmans P.
        • Pocklington A.J.J.
        • Escott-Price V.
        • Ripke S.
        • Carrera N.
        • et al.
        Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection.
        Nat Genet. 2018; 50: 381-389
        • Stahl E.A.A.
        • Breen G.
        • Forstner A.J.J.
        • McQuillin A.
        • Ripke S.
        • Trubetskoy V.
        • et al.
        Genome-wide association study identifies 30 loci associated with bipolar disorder.
        Nat Genet. 2019; 51: 793-803
        • Grove J.
        • Ripke S.
        • Als T.D.D.
        • Mattheisen M.
        • Walters R.K.K.
        • Won H.
        • et al.
        Identification of common genetic risk variants for autism spectrum disorder.
        Nat Genet. 2019; 51: 431-444
        • Wray N.R.R.
        • Ripke S.
        • Mattheisen M.
        • Trzaskowski M.
        • Byrne E.M.M.
        • Abdellaoui A.
        • et al.
        Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression.
        Nat Genet. 2018; 50: 668-681
        • Howard D.M.M.
        • Adams M.J.J.
        • Clarke T.-K.
        • Hafferty J.D.D.
        • Gibson J.
        • Shirali M.
        • et al.
        Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions.
        Nat Neurosci. 2019; 22: 343-352
        • Demontis D.
        • Walters R.K.K.
        • Martin J.
        • Mattheisen M.
        • Als T.D.D.
        • Agerbo E.
        • et al.
        Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder.
        Nat Genet. 2019; 51: 63-75
        • Iossifov I.
        • O’Roak B.J.
        • Sanders S.J.J.
        • Ronemus M.
        • Krumm N.
        • Levy D.
        • et al.
        The contribution of de novo coding mutations to autism spectrum disorder.
        Nature. 2014; 13: 216-221
        • Neale B.M.
        • Kou Y.
        • Liu L.
        • Ma’ayan A.
        • Samocha K.E.
        • Sabo A.
        • et al.
        Patterns and rates of exonic de novo mutations in autism spectrum disorders.
        Nature. 2012; 485: 242-245
        • Genovese G.
        • Fromer M.
        • Stahl E.A.
        • Ruderfer D.M.
        • Chambert K.
        • Landén M.
        • et al.
        Increased burden of ultra-rare protein-altering variants among 4,877 individuals with schizophrenia.
        Nat Neurosci. 2016; 19: 1433-1441
        • Williams N.M.M.
        • Franke B.
        • Mick E.
        • Anney R.J.L.J.L.
        • Freitag C.M.M.
        • Gill M.
        • et al.
        Genome-wide analysis of copy number variants in attention deficit hyperactivity disorder: The role of rare variants and duplications at 15q13.3.
        Am J Psychiatry. 2012; 169: 195-204
        • Loh P.-R.
        • Bhatia G.
        • Gusev A.
        • Finucane H.K.K.
        • Bulik-Sullivan B.K.K.
        • Pollack S.J.J.
        • et al.
        Contrasting genetic architectures of schizophrenia and other complex diseases using fast variance-components analysis.
        Nat Genet. 2015; 47: 1385-1392
        • Boyle E.A.A.
        • Li Y.I.I.
        • Pritchard J.K.K.
        An expanded view of complex traits: From polygenic to omnigenic.
        Cell. 2017; 169: 1177-1186
        • Smoller J.S.W.
        • Kendler K.K.
        • Craddock N.
        • Lee P.H.
        • Neale B.M.N.
        • Nurnberger J.N.
        • et al.
        Identification of risk loci with shared effects on five major psychiatric disorders: A genome-wide analysis.
        Lancet. 2013; 381: 1371-1379
        • Anttila V.
        • Bulik-Sullivan B.
        • Finucane H.K.K.
        • Walters R.K.K.
        • Bras J.
        • Duncan L.
        • et al.
        Analysis of shared heritability in common disorders of the brain.
        Science. 2018; 360eaap8757
        • Gallagher M.D.D.
        • Chen-Plotkin A.S.S.
        The post-GWAS era: From association to function.
        Am J Hum Genet. 2018; 102: 717-730
        • Schaid D.J.
        • Chen W.
        • Larson N.B.
        From genome-wide associations to candidate causal variants by statistical fine-mapping.
        Nature Reviews Genetics. 2018; 19 (NIH Public Access, pp 491–504)
        • Pinto D.
        • Delaby E.
        • Merico D.
        • Barbosa M.
        • Merikangas A.
        • Klei L.
        • et al.
        Convergence of genes and cellular pathways dysregulated in autism spectrum disorders.
        Am J Hum Genet. 2014; 94: 677-694
        • Marshall C.R.R.
        • Howrigan D.P.P.
        • Merico D.
        • Thiruvahindrapuram B.
        • Wu W.
        • Greer D.S.S.
        • et al.
        Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects.
        Nat Genet. 2017; 49: 27-35
        • Rees E.
        • Kendall K.
        • Pardiñas A.F.F.
        • Legge S.E.E.
        • Pocklington A.
        • Escott-Price V.
        • et al.
        Analysis of intellectual disability copy number variants for association with schizophrenia.
        JAMA Psychiatry. 2016; 73: 963-969
        • Kendall K.M.M.
        • Rees E.
        • Bracher-Smith M.
        • Legge S.
        • Riglin L.
        • Zammit S.
        • et al.
        Association of rare copy number variants with risk of depression.
        JAMA Psychiatry. 2019; 76: 818-825
        • Green E.K.K.
        • Rees E.
        • Walters J.T.R.T.R.
        • Smith K.-G.
        • Forty L.
        • Grozeva D.
        • et al.
        Copy number variation in bipolar disorder.
        Mol Psychiatry. 2016; 21: 89-93
        • Charney A.W.
        • Stahl E.A.
        • Green E.K.
        • Chen C.-Y.
        • Moran J.L.
        • Chambert K.
        • et al.
        Contribution of rare copy number variants to bipolar disorder risk is limited to schizoaffective cases.
        Biol Psychiatry. 2019; 86: 110-119
        • Stefansson H.
        • Meyer-Lindenberg A.
        • Steinberg S.
        • Magnusdottir B.
        • Morgen K.
        • Arnarsdottir S.
        • et al.
        CNVs conferring risk of autism or schizophrenia affect cognition in controls.
        Nature. 2014; 505: 361-366
        • Sanders S.J.
        • Murtha M.T.
        • Gupta A.R.
        • Murdoch J.D.
        • Raubeson M.J.
        • Willsey A.J.
        • et al.
        De novo mutations revealed by whole-exome sequencing are strongly associated with autism.
        Nature. 2012; 485: 237-241
        • Zhu X.
        • Need A.C.
        • Petrovski S.
        • Goldstein D.B.
        One gene, many neuropsychiatric disorders: Lessons from Mendelian diseases.
        Nat Neurosci. 2014; 17: 773-781
        • Gonzalez-Mantilla A.J.J.
        • Moreno-De-Luca A.
        • Ledbetter D.H.H.
        • Martin C.L.L.
        A cross-disorder method to identify novel candidate genes for developmental brain disorders.
        JAMA Psychiatry. 2016; 73: 275-283
        • Shohat S.
        • Ben-David E.
        • Shifman S.
        Varying intolerance of gene pathways to mutational classes explain genetic convergence across neuropsychiatric disorders.
        Cell Rep. 2017; 18: 2217-2227
        • Owen M.J.J.
        • O’Donovan M.C.C.
        Schizophrenia and the neurodevelopmental continuum:evidence from genomics.
        World Psychiatry. 2017; 16: 227-235
        • Buja A.
        • Volfovsky N.
        • Krieger A.M.
        • Lord C.
        • Lash A.E.
        • Wigler M.
        • Iossifov I.
        Damaging de novo mutations diminish motor skills in children on the autism spectrum.
        Proc Natl Acad Sci U S A. 2018; 115: E1859-E1866
        • Singh T.
        • Walters J.T.R.
        • Johnstone M.
        • Curtis D.
        • Suvisaari J.
        • Torniainen M.
        • et al.
        The contribution of rare variants to risk of schizophrenia in individuals with and without intellectual disability.
        Nat Genet. 2017; 49: 1167-1173
        • Ben-David E.
        • Shifman S.
        Networks of neuronal genes affected by common and rare variants in autism spectrum disorders.
        PLoS Genet. 2012; 8e1002556
        • Parikshak N.N.N.
        • Gandal M.J.J.
        • Geschwind D.H.H.
        Systems biology and gene networks in neurodevelopmental and neurodegenerative disorders.
        Nat Rev Genet. 2015; 16: 441-458
        • de Leeuw C.A.A.
        • Mooij J.M.M.
        • Heskes T.
        • Posthuma D.
        MAGMA: Generalized gene-set analysis of GWAS data.
        PLoS Comput Biol. 2015; 11e1004219
        • Pers T.H.
        • Karjalainen J.M.
        • Chan Y.
        • Westra H.-J.
        • Wood A.R.
        • Yang J.
        • et al.
        Biological interpretation of genome-wide association studies using predicted gene functions.
        Nat Commun. 2015; 6: 5890
        • Shohat S.
        • Shifman S.
        Bias towards large genes in autism.
        Nature. 2014; 512: E1-E2
        • Gulsuner S.
        • Walsh T.
        • Watts A.C.
        • Lee M.K.
        • Thornton A.M.
        • Casadei S.
        • et al.
        Spatial and temporal mapping of de novo mutations in schizophrenia to a fetal prefrontal cortical network.
        Cell. 2013; 154: 518-529
        • Willsey A.J.
        • Sanders S.J.
        • Li M.
        • Dong S.
        • Tebbenkamp A.T.
        • Muhle R.A.
        • et al.
        Coexpression networks implicate human midfetal deep cortical projection neurons in the pathogenesis of autism.
        Cell. 2013; 155: 997-1007
        • Parikshak N.N.
        • Luo R.
        • Zhang A.
        • Won H.
        • Lowe J.K.
        • Chandran V.
        • et al.
        Integrative functional genomic analyses implicate specific molecular pathways and circuits in autism.
        Cell. 2013; 155: 1008-1021
        • Zhang B.
        • Horvath S.
        A general framework for weighted gene co-expression network analysis.
        Stat Appl Genet Mol Biol. 2005; 4 (Article17)
        • Dougherty J.D.
        • Schmidt E.F.
        • Nakajima M.
        • Heintz N.
        Analytical approaches to RNA profiling data for the identification of genes enriched in specific cells.
        Nucleic Acids Res. 2010; 38: 4218-4230
        • Xu X.
        • Wells A.B.
        • O’Brien D.R.
        • Nehorai A.
        • Dougherty J.D.
        Cell type-specific expression analysis to identify putative cellular mechanisms for neurogenetic disorders.
        J Neurosci. 2014; 34: 1420-1431
        • Finucane H.K.
        • Bulik-Sullivan B.
        • Gusev A.
        • Trynka G.
        • Reshef Y.
        • Loh P.R.
        • et al.
        Partitioning heritability by functional annotation using genome-wide association summary statistics.
        Nat Genet. 2015; 47: 1228-1235
        • O’Roak B.J.
        • Vives L.
        • Girirajan S.
        • Karakoc E.
        • Krumm N.
        • Coe B.P.
        • et al.
        Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations.
        Nature. 2012; 485: 246-250
        • Cristino A.S.S.
        • Williams S.M.M.
        • Hawi Z.
        • An J.-Y.
        • Bellgrove M.A.A.
        • Schwartz C.E.E.
        • et al.
        Neurodevelopmental and neuropsychiatric disorders represent an interconnected molecular system.
        Mol Psychiatry. 2014; 19: 294-301
        • Hormozdiari F.
        • Penn O.
        • Borenstein E.
        • Eichler E.E.
        The discovery of integrated gene networks for autism and related disorders.
        Genome Res. 2015; 25: 142-154
        • Chow J.
        • Jensen M.
        • Amini H.
        • Hormozdiari F.
        • Penn O.
        • Shifman S.
        • et al.
        Dissecting the genetic basis of comorbid epilepsy phenotypes in neurodevelopmental disorders.
        Genome Med. 2019; 11: 65
        • Gilman S.R.
        • Chang J.
        • Xu B.
        • Bawa T.S.
        • Gogos J.A.
        • Karayiorgou M.
        • Vitkup D.
        Diverse types of genetic variation converge on functional gene networks involved in schizophrenia.
        Nat Neurosci. 2012; 15: 1723-1728
        • Finucane H.K.
        • Reshef Y.A.
        • Anttila V.
        • Slowikowski K.
        • Gusev A.
        • Byrnes A.
        • et al.
        Heritability enrichment of specifically expressed genes identifies disease-relevant tissues and cell types.
        Nat Genet. 2018; 50: 621-629
        • Skene N.G.
        • Bryois J.
        • Bakken T.E.
        • Breen G.
        • Crowley J.J.
        • Gaspar H.A.
        • et al.
        Genetic identification of brain cell types underlying schizophrenia.
        Nat Genet. 2018; 50: 825-833
        • Li M.
        • Santpere G.
        • Imamura Kawasawa Y.
        • Evgrafov O.V.
        • Gulden F.O.
        • Pochareddy S.
        • et al.
        Integrative functional genomic analysis of human brain development and neuropsychiatric risks.
        Science. 2018; 362eaat7615
        • De Rubeis S.
        • He X.
        • Goldberg A.P.P.
        • Poultney C.S.S.
        • Samocha K.
        • Ercument Cicek A.
        • et al.
        Synaptic, transcriptional and chromatin genes disrupted in autism.
        Nature. 2014; 515: 209-215
        • Howrigan D.P.
        • Rose S.A.
        • Samocha K.E.
        • Fromer M.
        • Cerrato F.
        • Chen W.J.
        • et al.
        Exome sequencing in schizophrenia-affected parent–offspring trios reveals risk conferred by protein-coding de novo mutations.
        Nat Neurosci. 2020; 23: 185-193
        • Kataoka M.
        • Matoba N.
        • Sawada T.
        • Kazuno A.A.
        • Ishiwata M.
        • Fujii K.
        • et al.
        Exome sequencing for bipolar disorder points to roles of de novo loss-of-function and protein-altering mutations.
        Mol Psychiatry. 2016; 21: 885-893
        • Kim D.S.
        • Burt A.A.
        • Ranchalis J.E.
        • Wilmot B.
        • Smith J.D.
        • Patterson K.E.
        • et al.
        Sequencing of sporadic attention-deficit hyperactivity disorder (ADHD) identifies novel and potentially pathogenic de novo variants and excludes overlap with genes associated with autism spectrum disorder.
        Am J Med Genet Part B Neuropsychiatr Genet. 2017; 174: 381-389
        • Lima L. de A.
        • Feio-dos-Santos A.C.
        • Belangero S.I.
        • Gadelha A.
        • Bressan R.A.
        • Salum G.A.
        • et al.
        An integrative approach to investigate the respective roles of single-nucleotide variants and copy-number variants in attention-deficit/hyperactivity disorder.
        Sci Rep. 2016; 6: 22851
        • Satterstrom F.K.K.
        • Walters R.K.K.
        • Singh T.
        • Wigdor E.M.M.
        • Lescai F.
        • Demontis D.
        • et al.
        Autism spectrum disorder and attention deficit hyperactivity disorder have a similar burden of rare protein-truncating variants.
        Nat Neurosci. 2019; 22: 1961-1965
        • Krumm N.
        • Turner T.N.
        • Baker C.
        • Vives L.
        • Mohajeri K.
        • Witherspoon K.
        • et al.
        Excess of rare, inherited truncating mutations in autism.
        Nat Genet. 2015; 47: 582-588
        • Ganna A.
        • Satterstrom F.K.
        • Zekavat S.M.
        • Das I.
        • Kurki M.I.
        • Churchhouse C.
        • et al.
        Quantifying the impact of rare and ultra-rare coding variation across the phenotypic spectrum.
        Am J Hum Genet. 2018; 102: 1204-1211
        • Ben-David E.
        • Shifman S.
        Combined analysis of exome sequencing points toward a major role for transcription regulation during brain development in autism.
        Mol Psychiatry. 2013; 18: 1054-1056
        • de la Torre-Ubieta L.
        • Won H.
        • Stein J.L.
        • Geschwind D.H.
        Advancing the understanding of autism disease mechanisms through genetics.
        Nat Med. 2016; 22: 345-361
        • Fromer M.
        • Pocklington A.J.J.
        • Kavanagh D.H.H.
        • Williams H.J.J.
        • Dwyer S.
        • Gormley P.
        • et al.
        De novo mutations in schizophrenia implicate synaptic networks.
        Nature. 2014; 506: 179-184
        • Lee P.H.
        • Anttila V.
        • Won H.
        • Feng Y.-C.A.
        • Rosenthal J.
        • Zhu Z.
        • et al.
        Genomic relationships, novel loci, and pleiotropic mechanisms across eight psychiatric disorders.
        Cell. 2019; 179: 1469-1482.e11
        • Cai N.
        • Revez J.A.
        • Adams M.J.
        • Andlauer T.F.M.
        • Breen G.
        • Byrne E.M.
        • et al.
        Minimal phenotyping yields genome-wide association signals of low specificity for major depression.
        Nat Genet. 2020; 52: 437-447
        • Kosmicki J.A.
        • Samocha K.E.
        • Howrigan D.P.
        • Sanders S.J.
        • Slowikowski K.
        • Lek M.
        • et al.
        Refining the role of de novo protein-truncating variants in neurodevelopmental disorders by using population reference samples.
        Nat Genet. 2017; 49: 504-510
        • Samocha K.E.E.
        • Robinson E.B.B.
        • Sanders S.J.J.
        • Stevens C.
        • Sabo A.
        • McGrath L.M.M.
        • et al.
        A framework for the interpretation of de novo mutation in human disease.
        Nat Genet. 2014; 46: 944-950
        • Petrovski S.
        • Wang Q.
        • Heinzen E.L.
        • Allen A.S.
        • Goldstein D.B.
        Genic intolerance to functional variation and the interpretation of personal genomes.
        PLoS Genet. 2013; 9e1003709
        • Lek M.
        • Karczewski K.J.
        • Minikel E.V.
        • Samocha K.E.
        • Banks E.
        • Fennell T.
        • et al.
        Analysis of protein-coding genetic variation in 60,706 humans.
        Nature. 2016; 536: 285-291
        • Fuller Z.L.
        • Berg J.J.
        • Mostafavi H.
        • Sella G.
        • Przeworski M.
        Measuring intolerance to mutation in human genetics.
        Nature Genetics. 2019; 51: 772-776
        • Choi J.
        • Shooshtari P.
        • Samocha K.E.
        • Daly M.J.
        • Cotsapas C.
        Network analysis of genome-wide selective constraint reveals a gene network active in early fetal brain intolerant of mutation.
        PLoS Genet. 2016; 12e1006121
        • Suliman R.
        • Ben-David E.
        • Shifman S.
        Chromatin regulators, phenotypic robustness, and autism risk.
        Front Genet. 2014; 5: 81
        • Shohat S.
        • Shifman S.
        Genes essential for embryonic stem cells are associated with neurodevelopmental disorders.
        Genome Res. 2019; 29: 1910-1918
        • Deng P.-Y.
        • Rotman Z.
        • Blundon J.A.
        • Cho Y.
        • Cui J.
        • Cavalli V.
        • et al.
        FMRP regulates neurotransmitter release and synaptic information transmission by modulating action potential duration via BK channels.
        Neuron. 2013; 77: 696-711
        • Boyle L.
        • Kaufmann W.E.
        The behavioral phenotype of FMR1 mutations.
        Am J Med Genet Part C Semin Med Genet. 2010; 154: 469-476
        • Ouwenga R.L.
        • Dougherty J.
        Fmrp targets or not: Long, highly brain-expressed genes tend to be implicated in autism and brain disorders.
        Mol Autism. 2015; 6: 16
        • Frega M.
        • Selten M.
        • Mossink B.
        • Keller J.M.
        • Linda K.
        • Moerschen R.
        • et al.
        Distinct pathogenic genes causing intellectual disability and autism exhibit a common neuronal network hyperactivity phenotype.
        Cell Rep. 2020; 30: 173-186.e6