Advertisement

Brain Mechanisms Supporting Flexible Cognition and Behavior in Adolescents With Autism Spectrum Disorder

  • Lucina Q. Uddin
    Correspondence
    Address correspondence to Lucina Q. Uddin, Ph.D.
    Affiliations
    Department of Psychology, University of Miami, Coral Gables, and the Neuroscience Program, University of Miami Miller School of Medicine, Miami, Florida
    Search for articles by this author

      Abstract

      Cognitive flexibility enables appropriate responses to a changing environment and is associated with positive life outcomes. Adolescence, with its increased focus on transitioning to independent living, presents particular challenges for youths with autism spectrum disorder (ASD) who often struggle to behave in a flexible way when faced with challenges. This review focuses on brain mechanisms underlying the development of flexible cognition during adolescence and how these neural systems are affected in ASD. Neuroimaging studies of task switching and set-shifting provide evidence for atypical lateral frontoparietal and midcingulo-insular network activation during cognitive flexibility task performance in individuals with ASD. Recent work also examines how intrinsic brain network dynamics support flexible cognition. These dynamic functional connectivity studies provide evidence for alterations in the number of transitions between brain states, as well as hypervariability of functional connections in adolescents with ASD. Future directions for the field include addressing issues related to measurement of cognitive flexibility using a combination of metrics with ecological and construct validity. Heterogeneity of executive function ability in ASD must also be parsed to determine which individuals will benefit most from targeted training to improve flexibility. The influence of pubertal hormones on brain network development and cognitive maturation in adolescents with ASD is another area requiring further exploration. Finally, the intriguing possibility that bilingualism might be associated with preserved cognitive flexibility in ASD should be further examined. Addressing these open questions will be critical for future translational neuroscience investigations of cognitive and behavioral flexibility in adolescents with ASD.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Cole M.W.
        • Laurent P.
        • Stocco A.
        Rapid instructed task learning: a new window into the human brain’s unique capacity for flexible cognitive control.
        Cogn Affect Behav Neurosci. 2013; 13: 1-22
        • Scott W.A.
        Cognitive complexity and cognitive flexibility.
        Sociometry. 1962; 25: 405-414
        • Banich M.T.
        Executive function: The search for an integrated account.
        Curr Dir Psychol Sci. 2009; 18: 89-94
        • Miyake A.
        • Friedman N.P.
        The nature and organization of individual differences in executive functions: Four general conclusions.
        Curr Dir Psychol Sci. 2012; 21: 8-14
        • Dang J.
        • King K.M.
        • Inzlicht M.
        Why are self-report and behavioral measures weakly correlated?.
        Trends Cogn Sci. 2020; 24: 267-269
        • Gioia G.A.
        • Isquith P.K.
        • Guy S.C.
        • Kenworthy L.
        Behavior rating inventory of executive function.
        Child Neuropsychol. 2000; 6: 235-238
        • Roth R.M.
        • Isquith P.K.
        • Gioia G.A.
        BRIEF-A: Behavior Rating Inventory of Executive Function—Adult Version: Professional Manual.
        Psychological Assessment Resources, Lutz, FL2005
        • Skogan A.H.
        • Egeland J.
        • Zeiner P.
        • Øvergaard K.R.
        • Oerbeck B.
        • Reichborn-Kjennerud T.
        • Aase H.
        Factor structure of the Behavior Rating Inventory of Executive Functions (BRIEF-P) at age three years.
        Child Neuropsychol. 2016; 22: 472-492
        • Isquith P.K.
        • Roth R.M.
        • Gioia G.A.
        • Par S.
        Behavior Rating Inventory of Executive Function—Adult Version (BRIEF-A) Interpretive Report.
        Psychological Assessment Resources, Lutz, FL2006
        • Luciana M.
        • Bjork J.M.
        • Nagel B.J.
        • Barch D.M.
        • Gonzalez R.
        • Nixon S.J.
        • Banich M.T.
        Adolescent neurocognitive development and impacts of substance use: Overview of the adolescent brain cognitive development (ABCD) baseline neurocognition battery.
        Dev Cogn Neurosci. 2018; 32: 67-79
        • Zelazo P.D.
        The Dimensional Change Card Sort (DCCS): A method of assessing executive function in children.
        Nat Protoc. 2006; 1: 297-301
        • Delis D.C.
        • Kaplan E.
        • Kramer J.H.
        Delis-Kaplan Executive Function System.
        (Available at:)
        • Latzman R.D.
        • Markon K.E.
        The factor structure and age-related factorial invariance of the Delis-Kaplan Executive Function System (D-KEFS).
        Assessment. 2010; 17: 172-184
        • Brooks B.L.
        • Sherman E.M.S.
        • Strauss E.
        NEPSY-II: A Developmental Neuropsychological Assessment, second edition.
        Child Neuropsychology. 2009; 16: 80-101
        • Toplak M.E.
        • West R.F.
        • Stanovich K.E.
        Practitioner review: do performance-based measures and ratings of executive function assess the same construct?.
        J Child Psychol Psychiatry. 2013; 54: 131-143
        • MacDonald 3rd, A.W.
        • Carter C.S.
        Cognitive experimental approaches to investigating impaired cognition in schizophrenia: A paradigm shift.
        J Clin Exp Neuropsychol. 2002; 24: 873-882
        • Worringer B.
        • Langner R.
        • Koch I.
        • Eickhoff S.B.
        • Eickhoff C.R.
        • Binkofski F.C.
        Common and distinct neural correlates of dual-tasking and task-switching: a meta-analytic review and a neuro-cognitive processing model of human multitasking.
        Brain Struct Funct. 2019; 224: 1845-1869
        • Derrfuss J.
        • Brass M.
        • Neumann J.
        • von Cramon D.Y.
        Involvement of the inferior frontal junction in cognitive control: Meta-analyses of switching and Stroop studies.
        Hum Brain Mapp. 2005; 25: 22-34
        • Monsell S.
        Task switching.
        Trends Cogn Sci. 2003; 7: 134-140
        • Ravizza S.M.
        • Carter C.S.
        Shifting set about task switching: behavioral and neural evidence for distinct forms of cognitive flexibility.
        Neuropsychologia. 2008; 46: 2924-2935
        • Kim C.
        • Cilles S.E.
        • Johnson N.F.
        • Gold B.T.
        Domain general and domain preferential brain regions associated with different types of task switching: A meta-analysis.
        Hum Brain Mapp. 2012; 33: 130-142
        • Niendam T.A.
        • Laird A.R.
        • Ray K.L.
        • Dean Y.M.
        • Glahn D.C.
        • Carter C.S.
        Meta-analytic evidence for a superordinate cognitive control network subserving diverse executive functions.
        Cogn Affect Behav Neurosci. 2012; 12: 241-268
        • Seeley W.W.
        • Menon V.
        • Schatzberg A.F.
        • Keller J.
        • Glover G.H.
        • Kenna H.
        • et al.
        Dissociable intrinsic connectivity networks for salience processing and executive control.
        J Neurosci. 2007; 27: 2349-2356
        • Uddin L.Q.
        • Yeo B.T.T.
        • Spreng R.N.
        Towards a universal taxonomy of macro-scale functional human brain networks.
        Brain Topogr. 2019; 32: 926-942
        • Dajani D.R.
        • Uddin L.Q.
        Demystifying cognitive flexibility: Implications for clinical and developmental neuroscience.
        Trends Neurosci. 2015; 38: 571-578
        • Armbruster D.J.
        • Ueltzhoffer K.
        • Basten U.
        • Fiebach C.J.
        Prefrontal cortical mechanisms underlying individual differences in cognitive flexibility and stability.
        J Cogn Neurosci. 2012; 24: 2385-2399
        • Badre D.
        • Wagner A.D.
        Computational and neurobiological mechanisms underlying cognitive flexibility.
        Proc Natl Acad Sci U S A. 2006; 103: 7186-7191
        • Dippel G.
        • Beste C.
        A causal role of the right inferior frontal cortex in implementing strategies for multi-component behaviour.
        Nat Commun. 2015; 6: 6587
        • Uddin L.Q.
        Salience processing and insular cortical function and dysfunction.
        Nat Rev Neurosci. 2015; 16: 55-61
        • Nee D.E.
        • D’Esposito M.
        The representational basis of working memory. Behavioral Neuroscience of Learning and Memory. Curr Top Behav Neurosci 37:213-230.
        2018
        • Hoffstaedter F.
        • Grefkes C.
        • Caspers S.
        • Roski C.
        • Palomero-Gallagher N.
        • Laird A.R.
        • et al.
        The role of anterior midcingulate cortex in cognitive motor control: Evidence from functional connectivity analyses.
        Hum Brain Mapp. 2014; 35: 2741-2753
        • Margulies D.S.
        • Uddin L.Q.
        Network convergence zones in the anterior midcingulate cortex.
        Handb Clin Neurol. 2019; 166: 103-111
        • Wager T.D.
        • Jonides J.
        • Reading S.
        Neuroimaging studies of shifting attention: a meta-analysis.
        Neuroimage. 2004; 22: 1679-1693
        • Solomon M.
        • Smith A.C.
        • Frank M.J.
        • Ly S.
        • Carter C.S.
        Probabilistic reinforcement learning in adults with autism spectrum disorders.
        Autism Res. 2011; 4: 109-120
        • Solomon M.
        • Frank M.J.
        • Daniel Ragland J.
        • Smith A.C.
        • Niendam T.A.
        • Lesh T.A.
        • et al.
        Feedback-driven trial-by-trial learning in autism spectrum disorders.
        Am J Psychiatry. 2015; 172: 173-181
        • Diamond A.
        • Lee K.
        Interventions shown to aid executive function development in children 4 to 12 years old.
        Science. 2011; 333: 959-964
        • Bailey C.E.
        Cognitive accuracy and intelligent executive function in the brain and in business.
        Ann N Y Acad Sci. 2007; 1118: 122-141
        • Burt K.B.
        • Paysnick A.A.
        Resilience in the transition to adulthood.
        Dev Psychopathol. 2012; 24: 493-505
        • Kapp S.K.
        • Gantman A.
        • Laugeson E.A.
        Transition to adulthood for high-functioning individuals with autism spectrum disorders.
        in: A Comprehensive Book on Autism Spectrum Disorders. London, UK: IntechOpen. 2011: 451-478
        • Anderson P.
        Assessment and development of executive function (EF) during childhood.
        Child Neuropsychol. 2002; 8: 71-82
        • Dick A.S.
        The development of cognitive flexibility beyond the preschool period: an investigation using a modified Flexible Item Selection Task.
        J Exp Child Psychol. 2014; 125: 13-34
        • Hunter S.J.
        • Sparrow E.P.
        Executive Function and Dysfunction: Identification, Assessment and Treatment.
        Cambridge University Press, Cambridge, UK2012
        • Cepeda N.J.
        • Kramer A.F.
        • Gonzalez de Sather J.C.
        Changes in executive control across the life span: Examination of task-switching performance.
        Dev Psychol. 2001; 37: 715-730
        • Yerys B.E.
        • Antezana L.
        • Weinblatt R.
        • Jankowski K.F.
        • Strang J.
        • Vaidya C.J.
        • et al.
        Neural correlates of set-shifting in children with autism.
        Autism Res. 2015; 8: 386-397
        • Wendelken C.
        • Munakata Y.
        • Baym C.
        • Souza M.
        • Bunge S.A.
        Flexible rule use: Common neural substrates in children and adults.
        Dev Cogn Neurosci. 2012; 2: 329-339
        • Dajani D.R.
        • Odriozola P.
        • Winters M.
        • Voorhies W.
        • Marcano S.
        • Baez A.
        • Gates K.M.
        • Dick A.S.
        • Uddin L.Q.
        Measuring cognitive flexibility with the Flexible Item Selection Task: From fMRI adaptation to individual connectome mapping.
        J Cogn Neurosci. 2020; 32: 1026-1045
        • Dirks B.
        • Romero C.
        • Voorhies W.
        • Kupis L.
        • Nomi J.S.
        • Dajani D.R.
        • et al.
        Neural responses to a putative set-shifting task in children with autism spectrum disorder [published online ahead of print Aug 25].
        Autism Res. 2020;
        • Bunge S.A.
        • Dudukovic N.M.
        • Thomason M.E.
        • Vaidya C.J.
        • Gabrieli J.D.
        Immature frontal lobe contributions to cognitive control in children: evidence from fMRI.
        Neuron. 2002; 33: 301-311
        • Jacobs R.
        • Simon Harvey A.
        • Anderson V.
        Are executive skills primarily mediated by the prefrontal cortex in childhood? Examination of focal brain lesions in childhood.
        Cortex. 2011; 47: 808-824
        • Fair D.A.
        • Cohen A.L.
        • Power J.D.
        • Dosenbach N.U.
        • Church J.A.
        • Miezin F.M.
        • et al.
        Functional brain networks develop from a “local to distributed” organization.
        PLoS Comput Biol. 2009; 5e1000381
        • Satterthwaite T.D.
        • Ciric R.
        • Roalf D.R.
        • Davatzikos C.
        • Bassett D.S.
        • Wolf D.H.
        Motion artifact in studies of functional connectivity: Characteristics and mitigation strategies.
        Hum Brain Mapp. 2019; 40: 2033-2051
        • Baum G.L.
        • Ciric R.
        • Roalf D.R.
        • Betzel R.F.
        • Moore T.M.
        • Shinohara R.T.
        • et al.
        Modular segregation of structural brain networks supports the development of executive function in youth.
        Curr Biol. 2017; 27: 1561-1572.e8
        • Hauser T.U.
        • Iannaccone R.
        • Walitza S.
        • Brandeis D.
        • Brem S.
        Cognitive flexibility in adolescence: neural and behavioral mechanisms of reward prediction error processing in adaptive decision making during development.
        Neuroimage. 2015; 104: 347-354
        • Uddin L.Q.
        • Supekar K.S.
        • Ryali S.
        • Menon V.
        Dynamic reconfiguration of structural and functional connectivity across core neurocognitive brain networks with development.
        J Neurosci. 2011; 31: 18578-18589
        • Engelhardt L.E.
        • Paige Harden K.
        • Tucker-Drob E.M.
        • Church J.A.
        The neural architecture of executive functions is established by middle childhood.
        Neuroimage. 2019; 185: 479-489
        • Chai L.R.
        • Khambhati A.N.
        • Ciric R.
        • Moore T.M.
        • Gur R.C.
        • Gur R.E.
        • et al.
        Evolution of brain network dynamics in neurodevelopment.
        Netw Neurosci. 2017; 1: 14-30
        • Medaglia J.D.
        • Satterthwaite T.D.
        • Kelkar A.
        • Ciric R.
        • Moore T.M.
        • Ruparel K.
        • et al.
        Brain state expression and transitions are related to complex executive cognition in normative neurodevelopment.
        Neuroimage. 2018; 166: 293-306
        • Sripada C.
        • Rutherford S.
        • Angstadt M.
        • Thompson W.K.
        • Luciana M.
        • Weigard A.
        • et al.
        Prediction of neurocognition in youth from resting state fMRI [published online ahead of print Aug 19].
        Mol Psychiatry. 2019;
        • Demetriou E.A.
        • DeMayo M.M.
        • Guastella A.J.
        Executive function in autism spectrum disorder: History, theoretical models, empirical findings, and potential as an endophenotype.
        Front Psychiatry. 2019; 10: 753
        • Dajani D.R.
        • Llabre M.M.
        • Nebel M.B.
        • Mostofsky S.H.
        • Uddin L.Q.
        Heterogeneity of executive functions among comorbid neurodevelopmental disorders.
        Sci Rep. 2016; 6: 36566
        • Baez A.C.
        • Dajani D.R.
        • Voorhies W.
        • Parladé M.V.
        • Alessandri M.
        • Britton J.C.
        • et al.
        Parsing heterogeneity of executive function in typically and atypically developing children: A conceptual replication and exploration of social function.
        J Autism Dev Dis. 2020; 50: 707-718
        • Brunsdon V.E.A.
        • Happé F.
        Exploring the “fractionation” of autism at the cognitive level.
        Autism. 2014; 18: 17-30
        • Happe F.
        • Booth R.
        • Charlton R.
        • Hughes C.
        Executive function deficits in autism spectrum disorders and attention-deficit/hyperactivity disorder: Examining profiles across domains and ages.
        Brain Cogn. 2006; 61: 25-39
        • Lai C.L.E.
        • Lau Z.
        • Lui S.S.Y.
        • Lok E.
        • Tam V.
        • Chan Q.
        • et al.
        Meta-analysis of neuropsychological measures of executive functioning in children and adolescents with high-functioning autism spectrum disorder.
        Autism Res. 2017; 10: 911-939
        • Demetriou E.A.
        • Lampit A.
        • Quintana D.S.
        • Naismith S.L.
        • Song Y.J.C.
        • Pye J.E.
        • et al.
        Autism spectrum disorders: A meta-analysis of executive function.
        Mol Psychiatry. 2018; 23: 1198-1204
        • Lopez B.R.
        • Lincoln A.J.
        • Ozonoff S.
        • Lai Z.
        Examining the relationship between executive functions and restricted, repetitive symptoms of autistic disorder.
        J Autism Dev Disord. 2005; 35: 445-460
        • Van Eylen L.
        • Boets B.
        • Steyaert J.
        • Evers K.
        • Wagemans J.
        • Noens I.
        Cognitive flexibility in autism spectrum disorder: Explaining the inconsistencies?.
        Res Autism Spectr Disord. 2011; 5: 1390-1401
        • Yerys B.E.
        • Wallace G.L.
        • Harrison B.
        • Celano M.J.
        • Giedd J.N.
        • Kenworthy L.E.
        Set-shifting in children with autism spectrum disorders: Reversal shifting deficits on the Intradimensional/Extradimensional Shift Test correlate with repetitive behaviors.
        Autism. 2009; 13: 523-538
        • Anderson K.A.
        • Shattuck P.T.
        • Cooper B.P.
        • Roux A.M.
        • Wagner M.
        Prevalence and correlates of postsecondary residential status among young adults with an autism spectrum disorder.
        Autism. 2014; 18: 562-570
        • Yerys B.E.
        • Wolff B.C.
        • Moody E.
        • Pennington B.F.
        • Hepburn S.L.
        Brief report: Impaired Flexible Item Selection Task (FIST) in school-age children with autism spectrum disorders.
        J Autism Dev Disord. 2012; 42: 2013-2020
        • Yeung M.K.
        • Han Y.M.Y.
        • Sze S.L.
        • Chan A.S.
        Abnormal frontal theta oscillations underlie the cognitive flexibility deficits in children with high-functioning autism spectrum disorders.
        Neuropsychology. 2016; 30: 281-295
        • van den Bergh S.F.
        • Scheeren A.M.
        • Begeer S.
        • Koot H.M.
        • Geurts H.M.
        Age related differences of executive functioning problems in everyday life of children and adolescents in the autism spectrum.
        J Autism Dev Disord. 2014; 44: 1959-1971
        • Russo N.
        • Flanagan T.
        • Iarocci G.
        • Berringer D.
        • Zelazo P.D.
        • Burack J.A.
        Deconstructing executive deficits among persons with autism: implications for cognitive neuroscience.
        Brain Cogn. 2007; 65: 77-86
        • Geurts H.M.
        • Corbett B.
        • Solomon M.
        The paradox of cognitive flexibility in autism.
        Trends Cogn Sci. 2009; 13: 74-82
        • Ballaban-Gil K.
        • Rapin I.
        • Tuchman R.
        • Shinnar S.
        Longitudinal examination of the behavioral, language, and social changes in a population of adolescents and young adults with autistic disorder.
        Pediatr Neurol. 1996; 15: 217-223
        • Gillberg C.
        • Schaumann H.
        Infantile autism and puberty.
        J Autism Dev Disord. 1982; 11: 365-371
        • Bennett A.E.
        • Miller J.S.
        • Stollon N.
        • Prasad R.
        • Blum N.J.
        Autism spectrum disorder and transition-aged youth.
        Curr Psychiatry Rep. 2018; 20: 103
        • Picci G.
        • Scherf K.S.
        A two-hit model of autism: Adolescence as the second hit.
        Clin Psychol Sci. 2015; 3: 349-371
        • Bertollo J.R.
        • Strang J.F.
        • Anthony L.G.
        • Kenworthy L.
        • Wallace G.L.
        • Yerys B.E.
        Adaptive behavior in youth with autism spectrum disorder: The role of flexibility.
        J Autism Dev Disord. 2020; 50: 42-50
        • Pugliese C.E.
        • Anthony L.G.
        • Strang J.F.
        • Dudley K.
        • Wallace G.L.
        • Naiman D.Q.
        • Kenworthy L.
        Longitudinal examination of adaptive behavior in autism spectrum disorders: Influence of executive function.
        J Autism Dev Disord. 2016; 46: 467-477
        • Kenny L.
        • Cribb S.J.
        • Pellicano E.
        Childhood executive function predicts later autistic features and adaptive behavior in young autistic people: A 12-year prospective study.
        J Abnorm Child Psychol. 2019; 47: 1089-1099
        • Schmitz N.
        • Rubia K.
        • Daly E.
        • Smith A.
        • Williams S.
        • Murphy D.G.M.
        Neural correlates of executive function in autistic spectrum disorders.
        Biol Psychiatry. 2006; 59: 7-16
        • Shafritz K.M.
        • Dichter G.S.
        • Baranek G.T.
        • Belger A.
        The neural circuitry mediating shifts in behavioral response and cognitive set in autism.
        Biol Psychiatry. 2008; 63: 974-980
        • D’Cruz A.-M.
        • Mosconi M.W.
        • Ragozzino M.E.
        • Cook E.H.
        • Sweeney J.A.
        Alterations in the functional neural circuitry supporting flexible choice behavior in autism spectrum disorders.
        Transl Psychiatry. 2016; 6: e916
        • Taylor M.J.
        • Donner E.J.
        • Pang E.W.
        fMRI and MEG in the study of typical and atypical cognitive development.
        Neurophysiol Clin. 2012; 42: 19-25
        • Uddin L.Q.
        • Menon V.
        The anterior insula in autism: under-connected and under-examined.
        Neurosci Biobehav Rev. 2009; 33: 1198-1203
        • Uddin L.Q.
        • Supekar K.
        • Lynch C.J.
        • Cheng K.M.
        • Odriozola P.
        • Barth M.E.
        • et al.
        Brain state differentiation and behavioral inflexibility in autism.
        Cereb Cortex. 2015; 25: 4740-4747
        • Uddin L.Q.
        • Supekar K.
        • Lynch C.J.
        • Khouzam A.
        • Phillips J.
        • Feinstein C.
        • et al.
        Salience network–based classification and prediction of symptom severity in children with autism.
        JAMA Psychiatry. 2013; 70: 869-879
        • Zhang Z.
        • Peng P.
        • Zhang D.
        Executive function in high-functioning autism spectrum disorder: A meta-analysis of fMRI studies.
        J Autism Dev Disord. 2020; 50: 4022-4038
        • Casey B.J.
        Beyond simple models of self-control to circuit-based accounts of adolescent behavior.
        Annu Rev Psychol. 2015; 66: 295-319
        • Larsen B.
        • Luna B.
        Adolescence as a neurobiological critical period for the development of higher-order cognition.
        Neurosci Biobehav Rev. 2018; 94: 179-195
        • Solomon M.
        • Ozonoff S.J.
        • Ursu S.
        • Ravizza S.
        • Cummings N.
        • Ly S.
        • Carter C.S.
        The neural substrates of cognitive control deficits in autism spectrum disorders.
        Neuropsychologia. 2009; 47: 2515-2526
        • Solomon M.
        • Ragland J.D.
        • Niendam T.A.
        • Lesh T.A.
        • Beck J.S.
        • Matter J.C.
        • et al.
        Atypical learning in autism spectrum disorders: A functional magnetic resonance imaging study of transitive inference.
        J Am Acad Child Adolesc Psychiatry. 2015; 54: 947-955
        • Solomon M.
        • Yoon J.H.
        • Ragland J.D.
        • Niendam T.A.
        • Lesh T.A.
        • Fairbrother W.
        • Carter C.S.
        The development of the neural substrates of cognitive control in adolescents with autism spectrum disorders.
        Biol Psychiatry. 2014; 76: 412-421
        • Kenworthy L.
        • Wallace G.L.
        • Birn R.
        • Milleville S.C.
        • Case L.K.
        • Bandettini P.A.
        • Martin A.
        Aberrant neural mediation of verbal fluency in autism spectrum disorders.
        Brain Cogn. 2013; 83: 218-226
        • Uddin L.Q.
        • Supekar K.
        • Menon V.
        Typical and atypical development of functional human brain networks: Insights from resting-state FMRI.
        Front Syst Neurosci. 2010; 4: 21
        • Di Martino A.
        • Fair D.A.
        • Kelly C.
        • Satterthwaite T.D.
        • Castellanos F.X.
        • Thomason M.E.
        • et al.
        Unraveling the miswired connectome: a developmental perspective.
        Neuron. 2014; 83: 1335-1353
        • Reid A.T.
        • Headley D.B.
        • Mill R.D.
        • Sanchez-Romero R.
        • Uddin L.Q.
        • Marinazzo D.
        • et al.
        Advancing functional connectivity research from association to causation.
        Nat Neurosci. 2019; 22: 1751-1760
        • Chang C.
        • Glover G.H.
        Time–frequency dynamics of resting-state brain connectivity measured with fMRI.
        Neuroimage. 2010; 50: 81-98
        • Hutchison R.M.
        • Womelsdorf T.
        • Allen E.A.
        • Bandettini P.A.
        • Calhoun V.D.
        • Corbetta M.
        • et al.
        Dynamic functional connectivity: promise, issues, and interpretations.
        Neuroimage. 2013; 80: 360-378
        • Calhoun V.D.
        • Miller R.
        • Pearlson G.
        • Adalı T.
        The chronnectome: Time-varying connectivity networks as the next frontier in fMRI data discovery.
        Neuron. 2014; 84: 262-274
        • Uddin L.Q.
        • Karlsgodt K.H.
        Future directions for examination of brain networks in neurodevelopmental disorders.
        J Clin Child Adolesc Psychol. 2018; 47: 483-497
        • Allen E.A.
        • Damaraju E.
        • Plis S.M.
        • Erhardt E.B.
        • Eichele T.
        • Calhoun V.D.
        Tracking whole-brain connectivity dynamics in the resting state.
        Cereb Cortex. 2014; 24: 663-676
        • Liu X.
        • Duyn J.H.
        Time-varying functional network information extracted from brief instances of spontaneous brain activity.
        Proc Natl Acad Sci U S A. 2013; 110: 4392-4397
        • Chen J.E.
        • Chang C.
        • Greicius M.D.
        • Glover G.H.
        Introducing co-activation pattern metrics to quantify spontaneous brain network dynamics.
        Neuroimage. 2015; 111: 476-488
        • Preti M.G.
        • Bolton T.A.
        • Van De Ville D.
        The dynamic functional connectome: State-of-the-art and perspectives.
        Neuroimage. 2017; 160: 41-54
        • Nomi J.S.
        • Vij S.G.
        • Dajani D.R.
        • Steimke R.
        • Damaraju E.
        • Rachakonda S.
        • et al.
        Chronnectomic patterns and neural flexibility underlie executive function.
        Neuroimage. 2017; 147: 861-871
        • Cabral J.
        • Vidaurre D.
        • Marques P.
        • Magalhães R.
        • Silva Moreira P.
        • Miguel Soares J.
        • et al.
        Cognitive performance in healthy older adults relates to spontaneous switching between states of functional connectivity during rest.
        Sci Rep. 2017; 7: 5135
        • Chen T.
        • Cai W.
        • Ryali S.
        • Supekar K.
        • Menon V.
        Distinct global brain dynamics and spatiotemporal organization of the salience network.
        PLoS Biol. 2016; 14e1002469
        • Douw L.
        • Wakeman D.G.
        • Tanaka N.
        • Liu H.
        • Stufflebeam S.M.
        State-dependent variability of dynamic functional connectivity between frontoparietal and default networks relates to cognitive flexibility.
        Neuroscience. 2016; 339: 12-21
        • Cohen J.R.
        The behavioral and cognitive relevance of time-varying, dynamic changes in functional connectivity.
        Neuroimage. 2018; 180: 515-525
        • Lurie D.J.
        • Kessler D.
        • Bassett D.S.
        • Betzel R.F.
        • Breakspear M.
        • Keilholz S.
        • et al.
        Questions and controversies in the study of time-varying functional connectivity in resting fMRI.
        Network Neuroscience. 2020; 4: 30-69
        • Falahpour M.
        • Thompson W.K.
        • Abbott A.E.
        • Jahedi A.
        • Mulvey M.E.
        • Datko M.
        • et al.
        Underconnected, but not broken? Dynamic functional connectivity MRI shows underconnectivity in autism is linked to increased intra-individual variability across time.
        Brain Connect. 2016; 6: 403-414
        • Di Martino A.
        • Yan C.-G.
        • Li Q.
        • Denio E.
        • Castellanos F.X.
        • Alaerts K.
        • et al.
        The autism brain imaging data exchange: Towards a large-scale evaluation of the intrinsic brain architecture in autism.
        Mol Psychiatry. 2014; 19: 659-667
        • Yao Z.
        • Hu B.
        • Xie Y.
        • Zheng F.
        • Liu G.
        • Chen X.
        • Zheng W.
        Resting-state time-varying analysis reveals aberrant variations of functional connectivity in autism.
        Front Hum Neurosci. 2016; 10: 463
        • Lacy N de
        • de Lacy N.
        • Doherty D.
        • King B.H.
        • Rachakonda S.
        • Calhoun V.D.
        Disruption to control network function correlates with altered dynamic connectivity in the wider autism spectrum.
        Neuroimage Clin. 2017; 15: 513-524
        • Watanabe T.
        • Rees G.
        Brain network dynamics in high-functioning individuals with autism.
        Nat Commun. 2017; 8: 16048
        • Chen H.
        • Nomi J.S.
        • Uddin L.Q.
        • Duan X.
        • Chen H.
        Intrinsic functional connectivity variance and state-specific under-connectivity in autism.
        Hum Brain Mapp. 2017; 38: 5740-5755
        • Mash L.E.
        • Linke A.C.
        • Olson L.A.
        • Fishman I.
        • Liu T.T.
        • Müller R.-A.
        Transient states of network connectivity are atypical in autism: A dynamic functional connectivity study.
        Hum Brain Mapp. 2019; 40: 2377-2389
        • Li Y.
        • Zhu Y.
        • Nguchu B.A.
        • Wang Y.
        • Wang H.
        • Qiu B.
        • Wang X.
        Dynamic functional connectivity reveals abnormal variability and hyper-connected pattern in autism spectrum disorder.
        Autism Res. 2020; 13: 230-243
        • Harlalka V.
        • Bapi R.S.
        • Vinod P.K.
        • Roy D.
        Atypical flexibility in dynamic functional connectivity quantifies the severity in autism spectrum disorder.
        Front Hum Neurosci. 2019; 13: 6
        • Jaddoe V.W.V.
        • van Duijn C.M.
        • Franco O.H.
        • van der Heijden A.J.
        • van Iizendoorn M.H.
        • de Jongste J.C.
        • et al.
        The Generation R Study: Design and cohort update 2012.
        Eur J Epidemiol. 2012; 27: 739-756
        • Rashid B.
        • Blanken L.M.E.
        • Muetzel R.L.
        • Miller R.
        • Damaraju E.
        • Arbabshirani M.R.
        • et al.
        Connectivity dynamics in typical development and its relationship to autistic traits and autism spectrum disorder.
        Hum Brain Mapp. 2018; 39: 3127-3142
        • White T.
        • Calhoun V.D.
        Dissecting static and dynamic functional connectivity: Example from the autism spectrum.
        J Exp Neurosci. 2019; 13 (117906951985180)
        • Guo X.
        • Duan X.
        • Suckling J.
        • Chen H.
        • Liao W.
        • Cui Q.
        • Chen H.
        Partially impaired functional connectivity states between right anterior insula and default mode network in autism spectrum disorder.
        Hum Brain Mapp. 2019; 40: 1264-1275
        • Guo X.
        • Duan X.
        • Chen H.
        • He C.
        • Xiao J.
        • Han S.
        • et al.
        Altered inter- and intrahemispheric functional connectivity dynamics in autistic children.
        Human Brain Mapping. 2020; 41: 419-428
        • Fu Z.
        • Tu Y.
        • Di X.
        • Du Y.
        • Sui J.
        • Biswal B.B.
        • et al.
        Transient increased thalamic-sensory connectivity and decreased whole-brain dynamism in autism.
        Neuroimage. 2019; 190: 191-204
        • Liu C.
        • Xue J.
        • Cheng X.
        • Zhan W.
        • Xiong X.
        • Wang B.
        Tracking the brain state transition process of dynamic function connectivity based on resting state fMRI.
        Comput Intell Neurosci. 2019; 2019: 1-12
        • He Y.
        • Byrge L.
        • Kennedy D.P.
        Nonreplication of functional connectivity differences in autism spectrum disorder across multiple sites and denoising strategies.
        Hum Brain Mapp. 2020; 41: 1334-1350
        • Saggar M.
        • Uddin L.Q.
        Pushing the boundaries of psychiatric neuroimaging to ground diagnosis in biology.
        eNeuro. 2019; 6 (ENEURO.0384-19.2019)
        • Uddin L.Q.
        • Dajani D.R.
        • Voorhies W.
        • Bednarz H.
        • Kana R.K.
        Progress and roadblocks in the search for brain-based biomarkers of autism and attention-deficit/hyperactivity disorder.
        Transl Psychiatry. 2017; 7: e1218
        • Hill E.L.
        Executive dysfunction in autism.
        Trends Cogn Sci. 2004; 8: 26-32
        • Strang J.F.
        • Anthony L.G.
        • Yerys B.E.
        • Hardy K.K.
        • Wallace G.L.
        • Armour A.C.
        • et al.
        The flexibility scale: Development and preliminary validation of a cognitive flexibility measure in children with autism spectrum disorders.
        J Autism Dev Disord. 2017; 47: 2502-2518
        • Rosenthal M.
        • Wallace G.L.
        • Lawson R.
        • Wills M.C.
        • Dixon E.
        • Yerys B.E.
        • Kenworthy L.
        Impairments in real-world executive function increase from childhood to adolescence in autism spectrum disorders.
        Neuropsychology. 2013; 27: 13-18
        • Kenworthy L.
        • Anthony L.G.
        • Naiman D.Q.
        • Cannon L.
        • Wills M.C.
        • Luong-Tran C.
        • et al.
        Randomized controlled effectiveness trial of executive function intervention for children on the autism spectrum.
        J Child Psychol Psychiatry. 2014; 55: 374-383
        • Vaidya C.J.
        • You X.
        • Mostofsky S.
        Data-driven identification of subtypes of executive function across typical development, attention deficit hyperactivity disorder, and autism spectrum disorders.
        J Child Psychol Psychiatry. 2020; 61: 51-61
        • Dajani D.R.
        • Burrows C.A.
        • Nebel M.B.
        • Mostofsky S.H.
        • Gates K.M.
        • Uddin L.Q.
        Parsing heterogeneity in autism spectrum disorder and attention-deficit/hyperactivity disorder with individual connectome mapping.
        Brain Connect. 2019; 9: 673-691
        • Dajani D.R.
        • Burrows C.A.
        • Odriozola P.
        • Baez A.
        • Nebel M.B.
        • Mostofsky S.H.
        • Uddin L.Q.
        Investigating functional brain network integrity using a traditional and novel categorical scheme for neurodevelopmental disorders.
        Neuroimage Clin. 2019; 21: 101678
        • Button K.S.
        • Ioannidis J.P.A.
        • Mokrysz C.
        • Nosek B.A.
        • Flint J.
        • Robinson E.S.J.
        • Munafò M.R.
        Power failure: Why small sample size undermines the reliability of neuroscience.
        Nat Rev Neurosci. 2013; 14: 365-376
        • Galvan A.
        • Van Leijenhorst L.
        • McGlennen K.M.
        Considerations for imaging the adolescent brain.
        Dev Cogn Neurosci. 2012; 2: 293-302
        • Blakemore S.J.
        • Burnett S.
        • Dahl R.E.
        The role of puberty in the developing adolescent brain.
        Hum Brain Mapp. 2010; 31: 926-933
        • Bialystok E.
        • Craik F.I.M.
        • Luk G.
        Bilingualism: Consequences for mind and brain.
        Trends Cogn Sci. 2012; 16: 240-250
        • Dick A.S.
        • Garcia N.L.
        • Pruden S.M.
        • Thompson W.K.
        • Hawes S.W.
        • Sutherland M.T.
        • et al.
        No evidence for a bilingual executive function advantage in the ABCD study.
        Nat Hum Behav. 2019; 3: 692-701
        • Drysdale H.
        • van der Meer L.
        • Kagohara D.
        Children with autism spectrum disorder from bilingual families: A systematic review.
        Rev J Autism Dev Disord. 2015; 2: 26-38
        • Moore S.
        • Pérez-Méndez C.
        Working with linguistically diverse families in early intervention: Misconceptions and missed opportunities.
        Semin Speech Lang. 2006; 27: 187-198
        • Uljarević M.
        • Katsos N.
        • Hudry K.
        • Gibson J.L.
        Practitioner review: Multilingualism and neurodevelopmental disorders—an overview of recent research and discussion of clinical implications.
        J Child Psychol Psychiatry. 2016; 57: 1205-1217
        • Soto G.
        • Yu B.
        Considerations for the provision of services to bilingual children who use augmentative and alternative communication.
        Augment Altern Commun. 2014; 30: 83-92
        • Iarocci G.
        • Hutchison S.M.
        • O’Toole G.
        Second language exposure, functional communication, and executive function in children with and without autism spectrum disorder (ASD).
        J Autism Dev Disord. 2017; 47: 1818-1829
        • Gonzalez-Barrero A.M.
        • Nadig A.S.
        Can bilingualism mitigate set-shifting difficulties in children with autism spectrum disorders?.
        Child Dev. 2019; 90: 1043-1060