Advertisement

Dopaminergic Regulation of Nucleus Accumbens Cholinergic Interneurons Demarcates Susceptibility to Cocaine Addiction

      Abstract

      Background

      Cholinergic interneurons (ChINs) in the nucleus accumbens (NAc) play critical roles in processing information related to reward. However, the contribution of ChINs to the emergence of addiction-like behaviors and its underlying molecular mechanisms remain elusive.

      Methods

      We employed cocaine self-administration to identify two mouse subpopulations: susceptible and resilient to cocaine seeking. We compared the subpopulations for physiological responses with single-unit recording of NAc ChINs, and for gene expression levels with RNA sequencing of ChINs sorted using fluorescence-activated cell sorting. To provide evidence for a causal relationship, we manipulated the expression level of dopamine D2 receptor (DRD2) in ChINs in a cell type–specific manner. Using optogenetic activation combined with a double whole-cell recording, the effect of ChIN-specific DRD2 manipulation on each synaptic input was assessed in NAc medium spiny neurons in a pathway-specific manner.

      Results

      Susceptible mice showed higher levels of nosepoke responses under a progressive ratio schedule, and impairment in extinction and punishment procedures. DRD2 was highly abundant in the NAc ChINs of susceptible mice. Elevated abundance of DRD2 in NAc ChINs was sufficient and necessary to express high cocaine motivation, putatively through reduction of ChIN activity during cocaine exposure. DRD2 overexpression in ChINs mimicked cocaine-induced effects on the dendritic spine density and the ratios of excitatory inputs between two distinct medium spiny neuron cell types, while DRD2 depletion precluded cocaine-induced synaptic plasticity.

      Conclusions

      These findings provide a molecular mechanism for dopaminergic control of NAc ChINs that can control the susceptibility to cocaine-seeking behavior.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Anthony J.C.
        • Warner L.A.
        • Kessler R.C.
        Comparative epidemiology of dependence on tobacco, alcohol, controlled substances, and inhalants: Basic findings from the National Comorbidity Survey.
        Exp Clin Psychopharmacol. 1994; 2: 244-268
        • Deroche-Gamonet V.
        • David B.
        • Piazza P.V.
        Evidence for addiction-like behavior in the rat.
        Science. 2004; 305: 1014-1017
        • Hyman S.E.
        • Malenka R.C.
        • Nestler E.J.
        Neural mechanisms of addiction: The role of reward-related learning and memory.
        Annu Rev Neurosci. 2006; 29: 565-598
        • Lobo M.K.
        • Covington 3rd, H.E.
        • Chaudhury D.
        • Friedman A.K.
        • Sun H.
        • Damez-Werno D.
        • et al.
        Cell type-specific loss of BDNF signaling mimics optogenetic control of cocaine reward.
        Science. 2010; 330: 385-390
        • Kravitz A.V.
        • Tye L.D.
        • Kreitzer A.C.
        Distinct roles for direct and indirect pathway striatal neurons in reinforcement.
        Nat Neurosci. 2012; 15: 816-818
        • Britt J.P.
        • Benaliouad F.
        • McDevitt R.A.
        • Stuber G.D.
        • Wise R.A.
        • Bonci A.
        Synaptic and behavioral profile of multiple glutamatergic inputs to the nucleus accumbens.
        Neuron. 2012; 76: 790-803
        • Pascoli V.
        • Terrier J.
        • Espallergues J.
        • Valjent E.
        • O'Connor E.C.
        • Lüscher C.
        Contrasting forms of cocaine-evoked plasticity control components of relapse.
        Nature. 2014; 509: 459-464
        • English D.F.
        • Ibanez-Sandoval O.
        • Stark E.
        • Tecuapetla F.
        • Buzsáki G.
        • Deisseroth K.
        • et al.
        GABAergic circuits mediate the reinforcement-related signals of striatal cholinergic interneurons.
        Nat Neurosci. 2011; 15: 123-130
        • Gittis A.H.
        • Kreitzer A.C.
        Striatal microcircuitry and movement disorders.
        Trends Neurosci. 2012; 35: 557-564
        • Atallah H.E.
        • McCool A.D.
        • Howe M.W.
        • Graybiel A.M.
        Neurons in the ventral striatum exhibit cell type–specific representations of outcome during learning.
        Neuron. 2014; 82: 1145-1156
        • Gonzales K.K.
        • Smith Y.
        Cholinergic interneurons in the dorsal and ventral striatum: Anatomical and functional considerations in normal and diseased conditions.
        Ann NY Acad Sci. 2015; 1349: 1-45
        • Kawaguchi Y.
        • Wilson C.J.
        • Augood S.J.
        • Emson P.C.
        Striatal interneurones: Chemical, physiological and morphological characterization.
        Trends Neurosci. 1995; 18: 527-535
        • Berlanga M.L.
        • Olsen C.M.
        • Chen V.
        • Ikegami A.
        • Herring B.E.
        • et al.
        Cholinergic interneurons of the nucleus accumbens and dorsal striatum are activated by the self-administration of cocaine.
        Neuroscience. 2003; 120: 1149-1156
        • Hikida T.
        • Kaneko S.
        • Isobe T.
        • Kitabatake Y.
        • Watanabe D.
        • Pastan I.
        • et al.
        Increased sensitivity to cocaine by cholinergic cell ablation in nucleus accumbens.
        Proc Natl Acad Sci U S A. 2001; 98: 13351-13354
        • Hikida T.
        • Kitabatake Y.
        • Pastan I.
        • Nakanishi S.
        Acetylcholine enhancement in the nucleus accumbens prevents addictive behaviors of cocaine and morphine.
        Proc Natl Acad Sci U S A. 2003; 100: 6169-6173
        • Chuhma N.
        • Mingote S.
        • Moore H.
        • Rayport S.
        Dopamine neurons control striatal cholinergic neurons via regionally heterogeneous dopamine and glutamate signaling.
        Neuron. 2014; 81: 901-912
        • Straub C.
        • Tritsch N.X.
        • Hagan N.A.
        • Gu C.
        • Sabatini B.L.
        Multiphasic modulation of cholinergic interneurons by nigrostriatal afferents.
        J Neurosci. 2014; 34: 8557-8569
        • Threlfell S.
        • Lalic T.
        • Platt N.J.
        • Jennings K.A.
        • Deisseroth K.
        • Cragg S.J.
        Striatal dopamine release is triggered by synchronized activity in cholinergic interneurons.
        Neuron. 2012; 75: 58-64
        • Vardy E.
        • Robinson J.E.
        • Li C.
        • Olsen R.H.J.
        • DiBerto J.F.
        • Giguere P.M.
        • et al.
        A new DREADD facilitates the multiplexed chemogenetic interrogation of behavior.
        Neuron. 2015; 86: 936-946
        • Morgan D.
        • Liu Y.
        • Roberts D.C.S.
        Rapid and persistent sensitization to the reinforcing effects of cocaine.
        Neuropsychopharmacology. 2006; 31: 121-128
        • Pascoli V.
        • Terrier J.
        • Hiver A.
        • Lüscher C.
        Sufficiency of mesolimbic dopamine neuron stimulation for the progression to addiction.
        Neuron. 2015; 88: 1054-1066
        • Witten I.B.
        • Lin S.C.
        • Brodsky M.
        • Prakash R.
        • Diester I.
        • Anikeeva P.
        • et al.
        Cholinergic interneurons control local circuit activity and cocaine conditioning.
        Science. 2010; 330: 1677-1681
        • Robison A.J.
        • Nestler E.J.
        Transcriptional and epigenetic mechanisms of addiction.
        Nat Rev Neurosci. 2011; 12: 623-637
        • Kronman H.
        • Richter F.
        • Labonté B.
        • Chandra R.
        • Zhao S.
        • Hoffman G.
        • et al.
        Biology and bias in cell type-specific RNAseq of nucleus accumbens medium spiny neurons.
        Sci Rep. 2019; 9: 8350
        • Ribeiro E.A.
        • Salery M.
        • Scarpa J.R.
        • Calipari E.S.
        • Hamilton P.J.
        • Ku S.M.
        • et al.
        Transcriptional and physiological adaptations in nucleus accumbens somatostatin interneurons that regulate behavioral responses to cocaine.
        Nat Commun. 2018; 9: 3149
        • Lüscher C.
        • Malenka R.C.
        Drug-evoked synaptic plasticity in addiction: From molecular changes to circuit remodeling.
        Neuron. 2011; 69: 650-663
        • Vilardaga J.P.
        • Jean-Alphonse F.G.
        • Gardella T.J.
        Endosomal generation of cAMP in GPCR signaling.
        Nat Chem Biol. 2014; 10: 700-706
        • Lin R.
        • Karpa K.
        • Kabbani N.
        • Goldman-Rakic P.
        • Levenson R.
        Dopamine D2 and D3 receptors are linked to the actin cytoskeleton via interaction with filamin A.
        Proc Natl Acad Sci U S A. 2001; 98: 5258-5263
        • Odagaki Y.
        • Fuxe K.
        Functional coupling of dopamine D2 and muscarinic cholinergic receptors to their respective G proteins assessed by agonist-induced activation of high-affinity GTPase activity in rat striatal membranes.
        Biochem Pharmacol. 1995; 50: 325-335
        • Maurice N.
        • Mercer J.
        • Chan C.S.
        • Hernandez-Lopez S.
        • Held J.
        • Tkatch T.
        • et al.
        D2 dopamine receptor-mediated modulation of voltage-dependent Na+ channels reduces autonomous activity in striatal cholinergic interneurons.
        J Neurosci. 2004; 24: 10289-10301
        • Wang Z.
        • Kai L.
        • Day M.
        • Ronesi J.
        • Yin H.H.
        • Ding J.
        • et al.
        Dopaminergic control of corticostriatal long-term synaptic depression in medium spiny neurons is mediated by cholinergic interneurons.
        Neuron. 2006; 50: 443-452
        • Kwon O.B.
        • Lee J.H.
        • Kim H.J.
        • Lee S.
        • Lee S.
        • Jeong M.J.
        • et al.
        Dopamine regulation of amygdala inhibitory circuits for expression of learned fear.
        Neuron. 2015; 88: 378-389
        • Gomez J.L.
        • Bonaventura J.
        • Lesniak W.
        • Mathews W.B.
        • Sysa-Shah P.
        • Rodriguez L.A.
        • et al.
        Chemogenetics revealed: DREADD occupancy and activation via converted clozapine.
        Science. 2017; 357: 503-507
        • Kim J.
        • Park B.H.
        • Lee J.H.
        • Park S.K.
        • Kim J.H.
        Cell type-specific alterations in the nucleus accumbens by repeated exposures to cocaine.
        Biol Psychiatry. 2011; 69: 1026-1034
        • MacAskill A.F.
        • Cassel J.M.
        • Carter A.G.
        Cocaine exposure reorganizes cell type- and input-specific connectivity in the nucleus accumbens.
        Nat Neurosci. 2014; 17: 1198-1207
        • Lee B.R.
        • Ma Y.Y.
        • Huang Y.H.
        • Wang X.
        • Otaka M.
        • Ishikawa M.
        • et al.
        Maturation of silent synapses in amygdala-accumbens projection contributes to incubation of cocaine craving.
        Nat Neurosci. 2013; 16: 1644-1651
        • Mateo Y.
        • Lack C.M.
        • Morgan D.
        • Roberts D.C.
        • Jones S.R.
        Reduced dopamine terminal function and insensitivity to cocaine following cocaine binge self-administration and deprivation.
        Neuropsychopharmacology. 2005; 30: 1455-1463
        • Ebner S.R.
        • Larson E.B.
        • Hearing M.C.
        • Ingebretson A.E.
        • Thomas M.J.
        Extinction and reinstatement of cocaine-seeking in self-administering mice is associated with bidirectional AMPAR-mediated plasticity in the nucleus accumbens shell.
        Neuroscience. 2018; 384: 340-349
        • Bonci A.
        • Hopf F.W.
        The dopamine D2 receptor: New surprises from an old friend.
        Neuron. 2005; 47: 335-338
        • Levine A.A.
        • Guan Z.
        • Barco A.
        • Xu S.
        • Kandel E.R.
        • Schwartz J.H.
        CREB-binding protein controls response to cocaine by acetylating histones at the fosB promoter in the mouse striatum.
        Proc Natl Acad Sci U S A. 2005; 102: 19186-19191
        • Mohebi A.
        • Pettibone J.R.
        • Hamid A.A.
        • Wong J.T.
        • Vinson L.T.
        • Patriarchi T.
        • et al.
        Dissociable dopamine dynamics for learning and motivation.
        Nature. 2019; 570: 65-70
        • Calipari E.S.
        • Ferris M.J.
        • Jones S.R.
        Extended access of cocaine self-administration results in tolerance to the dopamine-elevating and locomotor-stimulating effects of cocaine.
        J Neurochem. 2014; 128: 224-232
        • Willuhn I.
        • Burgeno L.M.
        • Groblewski P.A.
        • Phillips P.E.
        Excessive cocaine use results from decreased phasic dopamine signaling in the striatum.
        Nat Neurosci. 2014; 17: 704-709
        • Nair A.G.
        • Gutierrez-Arenas O.
        • Eriksson O.
        • Vincent P.
        • Hellgren Kotaleski J.
        Sensing positive versus negative reward signals through adenylyl cyclase-coupled GPCRs in direct and indirect pathway striatal medium spiny neurons.
        J Neurosci. 2015; 35: 14017-14030
        • Shen W.
        • Plotkin J.L.
        • Francardo V.
        • Ko W.K.
        • Xie Z.
        • Li Q.
        • et al.
        M4 muscarinic receptor signaling ameliorates striatal plasticity deficits in models of L-DOPA-induced dyskinesia.
        Neuron. 2015; 88: 762-773
        • Tejeda H.A.
        • Wu J.
        • Kornspun A.R.
        • Pignatelli M.
        • Kashtelyan V.
        • Krashes M.J.
        • et al.
        Pathway- and cell-specific kappa-opioid receptor modulation of excitation-inhibition balance differentially gates D1 and D2 accumbens neuron activity.
        Neuron. 2017; 93: 147-163
        • Collingridge G.L.
        • Isaac J.T.
        • Wang Y.T.
        Receptor trafficking and synaptic plasticity.
        Nat Rev Neurosci. 2004; 5: 952-962

      Linked Article

      • A Mechanism of Cocaine Addiction Susceptibility Through D2 Receptor–Mediated Regulation of Nucleus Accumbens Cholinergic Interneurons
        Biological PsychiatryVol. 88Issue 10
        • Preview
          People with addiction differ from casual drug users by their uncontrollable drug intake despite the adverse consequences associated with drug use. The compulsive drug-seeking and drug-taking behaviors that define addiction are also observed in rodent models that were first established almost 2 decades ago. Studies have shown that there is a percentage of individuals in human and rodent populations that are susceptible to drug use while others are resilient (1,2). Susceptibility to developing any substance use disorder is influenced by genetic and epigenetic variation along with psychosocial factors.
        • Full-Text
        • PDF