Advertisement

Stress Regulation of Sustained Attention and the Cholinergic Attention System

      Abstract

      Background

      Stress exacerbates symptoms of schizophrenia and attention-deficit/hyperactivity disorder, which are characterized by impairments in sustained attention. Yet how stress regulates attention remains largely unexplored. We investigated whether a 6-day variable stressor altered sustained attention and the cholinergic attention system in male and female rats.

      Methods

      Sustained attention was tested with the sustained attention task. Successful performance on the sustained attention task relies on the release of acetylcholine (ACh) into the cortex from cholinergic neurons in the nucleus basalis of Meynert (NBM). Thus, we evaluated whether variable stress (VS) altered the morphology of these neurons with a novel approach using a Cre-dependent virus in genetically modified ChAT::Cre rats, a species used for this manipulation only. Next, electrochemical recordings measured cortical ACh following VS. Finally, we used RNA sequencing to identify VS-induced transcriptional changes in the NBM.

      Results

      VS impaired attentional performance in the sustained attention task and increased the dendritic complexity of NBM cholinergic neurons in both sexes. NBM cholinergic neurons are mainly under inhibitory control, so this morphological change could increase inhibition on these neurons, reducing downstream ACh release to impair attention. Indeed, VS decreased ACh release in the prefrontal cortex of male rats. Quantification of global transcriptional changes revealed that although VS induced many sex-specific changes in gene expression, it increased several signaling molecules in both sexes.

      Conclusions

      These studies suggest that VS impairs attention by inducing molecular and morphological changes in the NBM. Identifying mechanisms by which stress regulates attention may guide the development of novel treatments for psychiatric disorders with attention deficits.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic and Personal
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Magnin E.
        • Maurs C.
        Attention-deficit/hyperactivity disorder during adulthood.
        Rev Neurol. 2017; 173: 506-515
        • Hoonakker M.
        • Doignon-Camus N.
        • Bonnefond A.
        Sustaining attention to simple visual tasks: A central deficit in schizophrenia? A systematic review.
        Ann N Y Acad Sci. 2017; 1408: 32-45
        • Newman S.C.
        • Bland R.C.
        Life events and the 1-year prevalence of major depressive episode, generalized anxiety disorder, and panic disorder in a community sample.
        Compr Psychiatry. 1994; 35: 76-82
        • Hirvikoski T.
        • Lindholm T.
        • Nordenström A.
        • Nordström A.-L.
        • Lajic S.
        High self-perceived stress and many stressors, but normal diurnal cortisol rhythm, in adults with ADHD (attention-deficit/hyperactivity disorder).
        Horm Behav. 2009; 55: 418-424
        • Holtzman C.W.
        • Trotman H.D.
        • Goulding S.M.
        • Ryan A.T.
        • MacDonald A.N.
        • Shapiro D.I.
        • et al.
        Stress and neurodevelopmental processes in the emergence of psychosis.
        Neuroscience. 2013; 249: 172-191
        • Van’t Veer A.
        • Yano J.M.
        • Carroll F.I.
        • Cohen B.M.
        • Carlezon Jr., W.A.
        Corticotropin-releasing factor (CRF)-induced disruption of attention in rats is blocked by the kappa-opioid receptor antagonist JDTic.
        Neuropsychopharmacology. 2012; 37: 2809-2816
        • Cole R.D.
        • Kawasumi Y.
        • Parikh V.
        • Bangasser D.A.
        Corticotropin releasing factor impairs sustained attention in male and female rats.
        Behav Brain Res. 2016; 296: 30-34
        • Boutros N.
        • Der-Avakian A.
        • Markou A.
        • Semenova S.
        Effects of early life stress and adolescent ethanol exposure on adult cognitive performance in the 5-choice serial reaction time task in Wistar male rats.
        Psychopharmacology. 2017; 234: 1549-1556
        • McGaughy J.
        • Sarter M.
        Behavioral vigilance in rats: Task validation and effects of age, amphetamine, and benzodiazepine receptor ligands.
        Psychopharmacology (Berl). 1995; 117: 340-357
        • Sarter M.
        • Givens B.
        • Bruno J.P.
        The cognitive neuroscience of sustained attention: Where top-down meets bottom-up.
        Brain Res Brain Res Rev. 2001; 35: 146-160
        • McGaughy J.
        • Kaiser T.
        • Sarter M.
        Behavioral vigilance following infusions of 192 IgG-saporin into the basal forebrain: Selectivity of the behavioral impairment and relation to cortical AChE-positive fiber density.
        Behav Neurosci. 1996; 110: 247-265
        • Gritton H.J.
        • Howe W.M.
        • Mallory C.S.
        • Hetrick V.L.
        • Berke J.D.
        • Sarter M.
        Cortical cholinergic signaling controls the detection of cues.
        Proc Natl Acad Sci. 2016; 113: E1089-E1097
        • Parikh V.
        • Kozak R.
        • Martinez V.
        • Sarter M.
        Prefrontal acetylcholine release controls cue detection on multiple timescales.
        Neuron. 2007; 56: 141-154
        • Witten I.B.
        • Steinberg E.E.
        • Lee S.Y.
        • Davidson T.J.
        • Zalocusky K.A.
        • Brodsky M.
        • et al.
        Recombinase-driver rat lines: Tools, techniques, and optogenetic application to dopamine-mediated reinforcement.
        Neuron. 2011; 72: 721-733
        • Konkle A.T.M.
        • Baker S.L.
        • Kentner A.C.
        • Barbagallo L.S.M.
        • Merali Z.
        • Bielajew C.
        Evaluation of the effects of chronic mild stressors on hedonic and physiological responses: Sex and strain compared.
        Brain Res. 2003; 992: 227-238
        • Botly L.C.P.
        • De Rosa E.
        Impaired visual search in rats reveals cholinergic contributions to feature binding in visuospatial attention.
        Cerebral Cortex. 2011; 22: 2441-2453
        • Kucinski A.
        • Phillips K.B.
        • Koshy Cherian A.
        • Sarter M.
        Rescuing the attentional performance of rats with cholinergic losses by the M1 positive allosteric modulator TAK-071.
        Psychopharmacology. 2020; 237: 137-153
        • Bangasser D.A.
        • Wicks B.
        • Waxler D.E.
        • Eck S.R.
        Touchscreen sustained attention task (SAT) for rats.
        J Vis Exp. 2017; 127e56219
        • Wicks B.
        • Waxler D.E.
        • White K.M.
        • Duncan N.
        • Bergmann J.
        • Cole R.D.
        • et al.
        Method for testing sustained attention in touchscreen operant chambers in rats.
        J Neurosci Methods. 2017; 277: 30-37
        • Dobin A.
        • Davis C.A.
        • Schlesinger F.
        • Drenkow J.
        • Zaleski C.
        • Jha S.
        • et al.
        STAR: Ultrafast universal RNA-seq aligner.
        Bioinformatics. 2012; 29: 15-21
        • Anders S.
        • Huber W.
        Differential expression analysis for sequence count data.
        Genome Biol. 2010; 11: R106
        • Hancock P.A.
        • Warm J.S.
        A dynamic model of stress and sustained attention.
        Hum Factors. 1989; 31: 519-537
        • Linden D.V.D.
        • Keijsers G.P.J.
        • Eling P.
        • Schaijk R.V.
        Work stress and attentional difficulties: An initial study on burnout and cognitive failures.
        Work Stress. 2005; 19: 23-36
        • Szalma J.L.
        Individual differences in performance, workload, and stress in sustained attention: Optimism and pessimism.
        Pers Individ Dif. 2009; 47: 444-451
        • Collins L.M.
        • O’Keeffe G.W.
        • Long-Smith C.M.
        • Wyatt S.L.
        • Sullivan A.M.
        • Toulouse A.
        • et al.
        Mitogen-activated protein kinase phosphatase (MKP)-1 as a neuroprotective agent: Promotion of the morphological development of midbrain dopaminergic neurons.
        Neuromolecular Med. 2013; 15: 435-446
        • Smilek D.
        • Carriere J.S.A.
        • Cheyne J.A.
        Failures of sustained attention in life, lab, and brain: Ecological validity of the SART.
        Neuropsychologia. 2010; 48: 2564-2570
        • Newcomer J.W.
        • Selke G.
        • Melson A.K.
        • Hershey T.
        • Craft S.
        • Richards K.
        • Alderson A.L.
        DEcreased memory performance in healthy humans induced by stress-level cortisol treatment.
        Arch Gen Psychiatry. 1999; 56: 527-533
        • Lupien S.J.
        • Gillin C.J.
        • Hauger R.L.
        Working memory is more sensitive than declarative memory to the acute effects of corticosteroids: A dose-response study in humans.
        Behav Neurosci. 1999; 113: 420
        • Newcomer J.W.
        • Craft S.
        • Hershey T.
        • Askins K.
        • Bardgett M.E.
        Glucocorticoid-induced impairment in declarative memory performance in adult humans.
        J Neurosci. 1994; 14: 2047-2053
        • Hupalo S.
        • Berridge C.W.
        Working memory impairing actions of corticotropin-releasing factor (CRF) neurotransmission in the prefrontal cortex.
        Neuropsychopharmacology. 2016; 41: 2733
        • Bryce C.A.
        • Floresco S.B.
        Perturbations in effort-related decision-making driven by acute stress and corticotropin-releasing factor.
        Neuropsychopharmacology. 2016; 41: 2147
        • Eiland L.
        • Ramroop J.
        • Hill M.N.
        • Manley J.
        • McEwen B.S.
        Chronic juvenile stress produces corticolimbic dendritic architectural remodeling and modulates emotional behavior in male and female rats.
        Psychoneuroendocrinology. 2012; 37: 39-47
        • Grillo C.A.
        • Risher M.
        • Macht V.A.
        • Bumgardner A.L.
        • Hang A.
        • Gabriel C.
        • et al.
        Repeated restraint stress-induced atrophy of glutamatergic pyramidal neurons and decreases in glutamatergic efflux in the rat amygdala are prevented by the antidepressant agomelatine.
        Neuroscience. 2015; 284: 430-443
        • Vyas A.
        • Mitra R.
        • Shankaranarayana Rao B.S.
        • Chattarji S.
        Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons.
        J Neurosci. 2002; 22: 6810-6818
        • Mitra R.
        • Jadhav S.
        • McEwen B.S.
        • Vyas A.
        • Chattarji S.
        Stress duration modulates the spatiotemporal patterns of spine formation in the basolateral amygdala.
        Proc Natl Acad Sci U S A. 2005; 102: 9371-9376
        • Shansky R.M.
        • Hamo C.
        • Hof P.R.
        • Lou W.
        • McEwen B.S.
        • Morrison J.H.
        Estrogen promotes stress sensitivity in a prefrontal cortex-amygdala pathway.
        Cereb Cortex. 2010; 20: 2560-2567
        • Garrett J.E.
        • Wellman C.L.
        Chronic stress effects on dendritic morphology in medial prefrontal cortex: Sex differences and estrogen dependence.
        Neuroscience. 2009; 162: 195-207
        • Galea L.A.
        • McEwen B.S.
        • Tanapat P.
        • Deak T.
        • Spencer R.L.
        • Dhabhar F.S.
        Sex differences in dendritic atrophy of CA3 pyramidal neurons in response to chronic restraint stress.
        Neuroscience. 1997; 81: 689-697
        • Dinopoulos A.
        • Parnavelas J.G.
        • Eckenstein F.
        Morphological characterization of cholinergic neurons in the horizontal limb of the diagonal band of Broca in the basal forebrain of the rat.
        J Neurocytol. 1986; 15: 619-628
        • Duque A.
        • Tepper J.M.
        • Detari L.
        • Ascoli G.A.
        • Zaborszky L.
        Morphological characterization of electrophysiologically and immunohistochemically identified basal forebrain cholinergic and neuropeptide Y-containing neurons.
        Brain Struct Funct. 2007; 212: 55-73
        • Mantanona C.P.
        • Alsiö J.
        • Elson J.L.
        • Fisher B.M.
        • Dalley J.W.
        • Bussey T.
        • et al.
        Altered motor, anxiety-related and attentional task performance at baseline associate with multiple gene copies of the vesicular acetylcholine transporter and related protein overexpression in ChAT::Cre+ rats.
        Brain Struct Funct. 2019; 224: 3095-3116
        • Bangasser D.A.
        • Reyes B.A.
        • Piel D.
        • Garachh V.
        • Zhang X.Y.
        • Plona Z.M.
        • et al.
        Increased vulnerability of the brain norepinephrine system of females to corticotropin-releasing factor overexpression.
        Mol Psychiatry. 2013; 18: 166-173
        • Bangasser D.A.
        • Zhang X.
        • Garachh V.
        • Hanhauser E.
        • Valentino R.J.
        Sexual dimorphism in locus coeruleus dendritic morphology: A structural basis for sex differences in emotional arousal.
        Physiol Behav. 2011; 103: 342-351
        • Xu M.
        • Chung S.
        • Zhang S.
        • Zhong P.
        • Ma C.
        • Chang W.C.
        • et al.
        Basal forebrain circuit for sleep-wake control.
        Nat Neurosci. 2015; 18: 1641
        • Zaborszky L.
        • van den Pol A.
        • Gyengesi E.
        The basal forebrain cholinergic projection system in mice.
        in: Watson C. Paxinos G. Puelles L. The Mouse Nervous System. Academic Press, San Diego2012: 684-714
        • Zaborszky L.
        • Gaykema R.P.
        • Swanson D.J.
        • Cullinan W.E.
        Cortical input to the basal forebrain.
        Neuroscience. 1997; 79: 1051-1078
        • Duque A.
        • Balatoni B.
        • Detari L.
        • Zaborszky L.
        EEG correlation of the discharge properties of identified neurons in the basal forebrain.
        J Neurophysiol. 2000; 84: 1627-1635
        • Burk J.A.
        • Sarter M.
        Dissociation between the attentional functions mediated via basal forebrain cholinergic and GABAergic neurons.
        Neuroscience. 2001; 105: 899-909
        • Luchicchi A.
        • Mnie-Filali O.
        • Terra H.
        • Bruinsma B.
        • de Kloet S.F.
        • Obermayer J.
        • et al.
        Sustained attentional states require distinct temporal involvement of the dorsal and ventral medial prefrontal cortex.
        Front Neural Circuits. 2016; 10: 70
        • McGaughy J.
        • Sarter M.
        Effects of ovariectomy, 192 IgG-saporin-induced cortical cholinergic deafferentation, and administration of estradiol on sustained attention performance in rats.
        Behav Neurosci. 1999; 113: 1216-1232
        • Witt E.D.
        • Mantione C.R.
        • Hanin I.
        Sex differences in muscarinic receptor binding after chronic ethanol administration in the rat.
        Psychopharmacology (Berl). 1986; 90: 537-542
        • Yoshida T.
        • Kuwabara Y.
        • Sasaki M.
        • Fukumura T.
        • Ichimiya A.
        • Takita M.
        • et al.
        Sex-related differences in the muscarinic acetylcholinergic receptor in the healthy human brain—a positron emission tomography study.
        Ann Nucl Med. 2000; 14: 97-101
        • Cosgrove K.P.
        • Esterlis I.
        • McKee S.A.
        • Bois F.
        • Seibyl J.P.
        • Mazure C.M.
        • et al.
        Sex differences in availability of β2∗-nicotinic acetylcholine receptors in recently abstinent tobacco smokers.
        Arch Gen Psychiatry. 2012; 69: 418-427
        • Jain A.
        • Huang G.Z.
        • Woolley C.S.
        Latent sex differences in molecular signaling that underlies excitatory synaptic potentiation in the hippocampus.
        J Neurosci. 2019; 39: 1552-1565
        • Oberlander J.G.
        • Woolley C.S.
        17β-Estradiol acutely potentiates glutamatergic synaptic transmission in the hippocampus through distinct mechanisms in males and females.
        J Neurosci. 2016; 36: 2677-2690
        • Toulouse A.
        • Nolan Y.
        A role for mitogen-activated protein kinase phosphatase 1 (MKP1) in neural cell development and survival.
        Neural Regen Res. 2015; 10: 1748-1749
        • Pérez-Sen R.
        • Queipo M.J.
        • Gil-Redondo J.C.
        • Ortega F.
        • Gómez-Villafuertes R.
        • Miras-Portugal M.T.
        • et al.
        Dual-specificity phosphatase regulation in neurons and glial cells.
        Int J Mol Sci. 2019; 20: 1999
        • Wu J.J.
        • Bennett A.M.
        Essential role for mitogen-activated protein (MAP) kinase phosphatase-1 in stress-responsive MAP kinase and cell survival signaling.
        J Biol Chem. 2005; 280: 16461-16466
        • Zhao Y.
        • Wang S.
        • Chu Z.
        • Dang Y.
        • Zhu J.
        • Su X.
        MicroRNA-101 in the ventrolateral orbital cortex (VLO) modulates depressive-like behaviors in rats and targets dual-specificity phosphatase 1 (DUSP1).
        Brain Res. 2017; 1669: 55-62
        • Wang C.H.
        • Zhang X.L.
        • Li Y.
        • Wang G.D.
        • Wang X.K.
        • Dong J.
        • et al.
        Role of hippocampus mitogen-activated protein kinase phosphatase-1 mRNA expression and DNA methylation in the depression of the rats with chronic unpredicted stress.
        Cell Mol Neurobiol. 2015; 35: 473-482