Advertisement
Archival Report| Volume 88, ISSUE 9, P698-709, November 01, 2020

An Unbiased Drug Screen for Seizure Suppressors in Duplication 15q Syndrome Reveals 5-HT1A and Dopamine Pathway Activation as Potential Therapies

      Abstract

      Background

      Duplication 15q (Dup15q) syndrome is a rare neurogenetic disorder characterized by autism and pharmacoresistant epilepsy. Most individuals with isodicentric duplications have been on multiple medications to control seizures. We recently developed a model of Dup15q in Drosophila by elevating levels of fly Dube3a in glial cells using repo-GAL4, not neurons. In contrast to other Dup15q models, these flies develop seizures that worsen with age.

      Methods

      We screened repo>Dube3a flies for approved compounds that can suppress seizures. Flies 3 to 5 days old were exposed to compounds in the fly food during development. Flies were tested using a bang sensitivity assay for seizure recovery time. At least 40 animals were tested per experiment, with separate testing for male and female flies. Studies of K+ content in glial cells of the fly brain were also performed using a fluorescent K+ indicator.

      Results

      We identified 17 of 1280 compounds in the Prestwick Chemical Library that could suppress seizures. Eight compounds were validated in secondary screening. Four of these compounds regulated either serotonergic or dopaminergic signaling, and subsequent experiments confirmed that seizure suppression occurred primarily through stimulation of serotonin receptor 5-HT1A. Additional studies of K+ levels showed that Dube3a regulation of the Na+/K+ exchanger ATPα (adenosine triphosphatase α) in glia may be modulated by serotonin/dopamine signaling, causing seizure suppression.

      Conclusions

      Based on these pharmacological and genetic studies, we present an argument for the use of 5-HT1A agonists in the treatment of Dup15q epilepsy.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Finucane B.M.
        • Lusk L.
        • Arkilo D.
        • Chamberlain S.
        • Devinsky O.
        • Dindot S.
        • et al.
        15q duplication syndrome and related disorders.
        in: Pagon R.A. Adam M.P. Ardinger H.H. Wallace S.E. Amemiya A. Bean L.J.H. GeneReviews. University of Washington, Seattle1993
        • DiStefano C.
        • Wilson R.B.
        • Hyde C.
        • Cook E.H.
        • Thibert R.L.
        • Reiter L.T.
        • et al.
        Behavioral characterization of dup15q syndrome: Toward meaningful endpoints for clinical trials.
        Am J Med Genet A. 2020; 182: 71-84
        • Dindot S.V.
        • Antalffy B.A.
        • Bhattacharjee M.B.
        • Beaudet A.L.
        The Angelman syndrome ubiquitin ligase localizes to the synapse and nucleus, and maternal deficiency results in abnormal dendritic spine morphology.
        Hum Mol Genet. 2008; 17: 111-118
        • Judson M.C.
        • Sosa-Pagan J.O.
        • Del Cid W.A.
        • Han J.E.
        • Philpot B.D.
        Allelic specificity of Ube3a expression in the mouse brain during postnatal development.
        J Comp Neurol. 2014; 522: 1874-1896
        • Landers M.
        • Bancescu D.L.
        • Le Meur E.
        • Rougeulle C.
        • Glatt-Deeley H.
        • Brannan C.
        • et al.
        Regulation of the large (similar to 1000 kb) imprinted murine Ube3a antisense transcript by alternative exons upstream of Snurf/Snrpn.
        Nucleic Acids Res. 2004; 32: 3480-3492
        • Albrecht U.
        • Sutcliffe J.S.
        • Cattanach B.M.
        • Beechey C.V.
        • Armstrong D.
        • Eichele G.
        • et al.
        Imprinted expression of the murine Angelman syndrome gene, Ube3a, in hippocampal and Purkinje neurons.
        Nat Genet. 1997; 17: 75-78
        • Gustin R.M.
        • Bichell T.J.
        • Bubser M.
        • Daily J.
        • Filonova I.
        • Mrelashvili D.
        • et al.
        Tissue-specific variation of Ube3a protein expression in rodents and in a mouse model of Angelman syndrome.
        Neurobiol Dis. 2010; 39: 283-291
        • Rougeulle C.
        • Glatt H.
        • Lalande M.
        The Angelman syndrome candidate gene, UBE3A/E6-AP, is imprinted in brain.
        Nat Genet. 1997; 17: 14-15
        • Sato M.
        • Stryker M.P.
        Genomic imprinting of experience-dependent cortical plasticity by the ubiquitin ligase gene Ube3a.
        Proc Natl Acad Sci U S A. 2010; 107: 5611-5616
        • Wallace M.L.
        • Burette A.C.
        • Weinberg R.J.
        • Philpot B.D.
        Maternal loss of Ube3a produces an excitatory/inhibitory imbalance through neuron type-specific synaptic defects.
        Neuron. 2012; 74: 793-800
        • Jiang Y.H.
        • Armstrong D.
        • Albrecht U.
        • Atkins C.M.
        • Noebels J.L.
        • Eichele G.
        • et al.
        Mutation of the Angelman ubiquitin ligase in mice causes increased cytoplasmic p53 and deficits of contextual learning and long-term potentiation.
        Neuron. 1998; 21: 799-811
        • Jones K.A.
        • Han J.E.
        • DeBruyne J.P.
        • Philpot B.D.
        Persistent neuronal Ube3a expression in the suprachiasmatic nucleus of Angelman syndrome model mice.
        Sci Rep. 2016; 6: 28238
        • Grier M.D.
        • Carson R.P.
        • Lagrange A.H.
        Toward a broader view of Ube3a in a mouse model of Angelman syndrome: Expression in brain, spinal cord, sciatic nerve and glial cells.
        PLoS One. 2015; 10e0124649
        • Mardirossian S.
        • Rampon C.
        • Salvert D.
        • Fort P.
        • Sarda N.
        Impaired hippocampal plasticity and altered neurogenesis in adult Ube3a maternal deficient mouse model for Angelman syndrome.
        Exp Neurol. 2009; 220: 341-348
        • Yamasaki K.
        • Joh K.
        • Ohta T.
        • Masuzaki H.
        • Ishimaru T.
        • Mukai T.
        • et al.
        Neurons but not glial cells show reciprocal imprinting of sense and antisense transcripts of Ube3a.
        Hum Mol Genet. 2003; 12: 837-847
        • Fang P.
        • Lev-Lehman E.
        • Tsai T.F.
        • Matsuura T.
        • Benton C.S.
        • Sutcliffe J.S.
        • et al.
        The spectrum of mutations in UBE3A causing Angelman syndrome.
        Hum Mol Genet. 1999; 8: 129-135
        • Cook Jr., E.H.
        • Lindgren V.
        • Leventhal B.L.
        • Courchesne R.
        • Lincoln A.
        • Shulman C.
        • et al.
        Autism or atypical autism in maternally but not paternally derived proximal 15q duplication.
        Am J Hum Genet. 1997; 60: 928-934
        • Urraca N.
        • Cleary J.
        • Brewer V.
        • Pivnick E.K.
        • McVicar K.
        • Thibert R.L.
        • et al.
        The interstitial duplication 15q11.2-q13 syndrome includes autism, mild facial anomalies and a characteristic EEG signature.
        Autism Res. 2013; 6: 268-279
        • Tamada K.
        • Tomonaga S.
        • Hatanaka F.
        • Nakai N.
        • Takao K.
        • Miyakawa T.
        • et al.
        Decreased exploratory activity in a mouse model of 15q duplication syndrome; implications for disturbance of serotonin signaling.
        PLoS One. 2010; 5e15126
        • Copping N.A.
        • Christian S.G.B.
        • Ritter D.J.
        • Islam M.S.
        • Buscher N.
        • Zolkowska D.
        • et al.
        Neuronal overexpression of Ube3a isoform 2 causes behavioral impairments and neuroanatomical pathology relevant to 15q11.2-q13.3 duplication syndrome.
        Hum Mol Genet. 2017; 26: 3995-4010
        • Krishnan V.
        • Stoppel D.C.
        • Nong Y.
        • Johnson M.A.
        • Nadler M.J.
        • Ozkaynak E.
        • et al.
        Autism gene Ube3a and seizures impair sociability by repressing VTA Cbln1.
        Nature. 2017; 543: 507-512
        • Smith S.E.
        • Zhou Y.D.
        • Zhang G.
        • Jin Z.
        • Stoppel D.C.
        • Anderson M.P.
        Increased gene dosage of Ube3a results in autism traits and decreased glutamate synaptic transmission in mice.
        Sci Transl Med. 2011; 3: 103ra197
        • Strasser L.
        • Downes M.
        • Kung J.
        • Cross J.H.
        • De Haan M.
        Prevalence and risk factors for autism spectrum disorder in epilepsy: A systematic review and meta-analysis.
        Dev Med Child Neurol. 2018; 60: 19-29
        • Buckley A.W.
        • Holmes G.L.
        Epilepsy and autism.
        Cold Spring Harb Perspect Med. 2016; 6: a022749
        • Bozzi Y.
        • Provenzano G.
        • Casarosa S.
        Neurobiological bases of autism-epilepsy comorbidity: A focus on excitation/inhibition imbalance.
        Eur J Neurosci. 2018; 47: 534-548
        • Conant K.D.
        • Finucane B.
        • Cleary N.
        • Martin A.
        • Muss C.
        • Delany M.
        • et al.
        A survey of seizures and current treatments in 15q duplication syndrome.
        Epilepsia. 2014; 55: 396-402
        • Hope K.A.
        • LeDoux M.S.
        • Reiter L.T.
        Glial overexpression of Dube3a causes seizures and synaptic impairments in Drosophila concomitant with down regulation of the Na+/K+ pump ATPalpha.
        Neurobiol Dis. 2017; 108: 238-248
        • Burette A.C.
        • Judson M.C.
        • Li A.N.
        • Chang E.F.
        • Seeley W.W.
        • Philpot B.D.
        • et al.
        Subcellular organization of UBE3A in human cerebral cortex.
        Mol Autism. 2018; 9: 54
        • Hillman P.R.
        • Christian S.G.B.
        • Doan R.
        • Cohen N.D.
        • Konganti K.
        • Douglas K.
        • et al.
        Genomic imprinting does not reduce the dosage of UBE3A in neurons.
        Epigenetics Chromatin. 2017; 10: 27
        • Benzer S.
        From the gene to behavior.
        JAMA. 1971; 218: 1015-1022
        • Ganetzky B.
        • Wu C.F.
        Drosophila mutants with opposing effects on nerve excitability: Genetic and spatial interactions in repetitive firing.
        J Neurophysiol. 1982; 47: 501-514
        • Stone B.
        • Burke B.
        • Pathakamuri J.
        • Coleman J.
        • Kuebler D.
        A low-cost method for analyzing seizure-like activity and movement in Drosophila.
        J Vis Exp. 2014; 84e51460
        • Hoyer D.
        • Clarke D.E.
        • Fozard J.R.
        • Hartig P.R.
        • Martin G.R.
        • Mylecharane E.J.
        • et al.
        International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (Serotonin).
        Pharmacol Rev. 1994; 46: 157-203
        • Hoyer D.
        • Hannon J.P.
        • Martin G.R.
        Molecular, pharmacological and functional diversity of 5-HT receptors.
        Pharmacol Biochem Behav. 2002; 71: 533-554
        • Pytliak M.
        • Vargova V.
        • Mechirova V.
        • Felsoci M.
        Serotonin receptors—from molecular biology to clinical applications.
        Physiol Res. 2011; 60: 15-25
        • Celada P.
        • Puig M.
        • Amargos-Bosch M.
        • Adell A.
        • Artigas F.
        The therapeutic role of 5-HT1A and 5-HT2A receptors in depression.
        J Psychiatry Neurosci. 2004; 29: 252-265
        • Biziere K.
        • Worms P.
        • Kan J.P.
        • Mandel P.
        • Garattini S.
        • Roncucci R.
        Minaprine, a new drug with antidepressant properties.
        Drugs Exp Clin Res. 1985; 11: 831-840
        • Sulzer D.
        • Sonders M.S.
        • Poulsen N.W.
        • Galli A.
        Mechanisms of neurotransmitter release by amphetamines: A review.
        Prog Neurobiol. 2005; 75: 406-433
        • Gronberg M.
        • Terland O.
        • Husebye E.S.
        • Flatmark T.
        The effect of prenylamine and organic nitrates on the bioenergetics of bovine catecholamine storage vesicles.
        Biochem Pharmacol. 1990; 40: 351-355
        • Zhang L.N.
        • Li J.X.
        • Hao L.
        • Sun Y.J.
        • Xie Y.H.
        • Wu S.M.
        • et al.
        Crosstalk between dopamine receptors and the Na(+)/K(+)-ATPase (review).
        Mol Med Rep. 2013; 8: 1291-1299
        • Therien A.G.
        • Blostein R.
        Mechanisms of sodium pump regulation.
        Am J Physiol Cell Physiol. 2000; 279: C541-C566
        • Pena-Rangel M.T.
        • Mercado R.
        • Hernandez-Rodriguez J.
        Regulation of glial Na+/K+-ATPase by serotonin: Identification of participating receptors.
        Neurochem Res. 1999; 24: 643-649
        • Berg A.T.
        • Plioplys S.
        • Tuchman R.
        Risk and correlates of autism spectrum disorder in children with epilepsy: A community-based study.
        J Child Neurol. 2011; 26: 540-547
        • Besag F.M.
        Epilepsy in patients with autism: Links, risks and treatment challenges.
        Neuropsychiatr Dis Treat. 2018; 14: 1-10
        • Canitano R.
        Epilepsy in autism spectrum disorders.
        Eur Child Adolesc Psychiatry. 2007; 16: 61-66
        • Lee B.H.
        • Smith T.
        • Paciorkowski A.R.
        Autism spectrum disorder and epilepsy: Disorders with a shared biology.
        Epilepsy Behav. 2015; 47: 191-201
        • Spence S.J.
        • Schneider M.T.
        The role of epilepsy and epileptiform EEGs in autism spectrum disorders.
        Pediatr Res. 2009; 65: 599-606
        • Tuchman R.
        What is the relationship between autism spectrum disorders and epilepsy?.
        Semin Pediatr Neurol. 2017; 24: 292-300
        • Battaglia A.
        The inv dup(15) or idic(15) syndrome: A clinically recognisable neurogenetic disorder.
        Brain Dev. 2005; 27: 365-369
        • Battaglia A.
        The inv dup (15) or idic (15) syndrome (Tetrasomy 15q).
        Orphanet J Rare Dis. 2008; 3: 30
        • Naumenko V.S.
        • Bazovkina D.V.
        • Kondaurova E.M.
        On the Functional Cross-Talk between Brain 5-HT1A and 5-HT2A Receptors [in Russian].
        Zh Vyssh Nerv Deiat Im I P Pavlova. 2015; 65: 240-247
        • Jensen L.
        • Farook M.F.
        • Reiter L.T.
        Proteomic profiling in Drosophila reveals potential Dube3a regulation of the actin cytoskeleton and neuronal homeostasis.
        PLoS One. 2013; 8e61952
        • Antonelli de Gomez de Lima M.
        • Rodriquez de Lores Arnaiz G.
        Tissue specificity of dopamine effects on brain ATPases.
        Neurochem Res. 1981; 6: 969-977
        • Shimada T.
        • Takemiya T.
        • Sugiura H.
        • Yamagata K.
        Role of inflammatory mediators in the pathogenesis of epilepsy.
        Mediators Inflamm. 2014; 2014: 901902
        • Aggarwal M.
        • Kondeti B.
        • McKenna R.
        Anticonvulsant/antiepileptic carbonic anhydrase inhibitors: A patent review.
        Expert Opin Ther Pat. 2013; 23: 717-724
        • Millichap J.G.
        • Woodbury D.M.
        • Goodman L.S.
        Mechanism of the anticonvulsant action of acetazoleamide, a carbonic anhydrase inhibitor.
        J Pharmacol Exp Ther. 1955; 115: 251-258
        • Reiss W.G.
        • Oles K.S.
        Acetazolamide in the treatment of seizures.
        Ann Pharmacother. 1996; 30: 514-519
        • Cobb S.
        • Cohen M.E.
        • Ney J.
        Brilliant Vital Red as an anticonvulsant.
        Arch Neurol Psychiatry. 1938; 37: 463-465
        • Lennox W.G.
        Study of epilepsy in America in 1938.
        Epilepsia 2nd series. 1940; 1: 279-291
        • Aird R.B.
        Mode of action of brilliant vital red in epilepsy.
        Arch Neurol Psychiatry. 1939; 42: 700-723
        • Cui Z.Q.
        • Li W.L.
        • Luo Y.
        • Yang J.P.
        • Qu Z.Z.
        • Zhao W.Q.
        Methylene blue exerts anticonvulsant and neuroprotective effects on self-sustaining status epilepticus (SSSE) induced by prolonged basolateral amygdala stimulation in Wistar rats.
        Med Sci Monit. 2018; 24: 161-169
        • Reiter L.T.
        • Potocki L.
        • Chien S.
        • Gribskov M.
        • Bier E.
        A systematic analysis of human disease-associated gene sequences in Drosophila melanogaster.
        Genome Res. 2001; 11: 1114-1125
        • Chow C.Y.
        • Reiter L.T.
        Etiology of human genetic disease on the fly.
        Trends Genet. 2017; 33: 391-398
        • Ugur B.
        • Chen K.
        • Bellen H.J.
        Drosophila tools and assays for the study of human diseases.
        Dis Model Mech. 2016; 9: 235-244
        • Wangler M.F.
        • Yamamoto S.
        • Bellen H.J.
        Fruit flies in biomedical research.
        Genetics. 2015; 199: 639-653
        • Ali S.N.
        • Dayarathna T.K.
        • Ali A.N.
        • Osumah T.
        • Ahmed M.
        • Cooper T.T.
        • et al.
        Drosophila melanogaster as a function-based high-throughput screening model for antinephrolithiasis agents in kidney stone patients.
        Dis Model Mech. 2018; 11dmm035873
        • Dar A.C.
        • Das T.K.
        • Shokat K.M.
        • Cagan R.L.
        Chemical genetic discovery of targets and anti-targets for cancer polypharmacology.
        Nature. 2012; 486: 80-84
        • Mukherjee S.
        • Tucker-Burden C.
        • Kaissi E.
        • Newsam A.
        • Duggireddy H.
        • Chau M.
        • et al.
        CDK5 inhibition resolves PKA/cAMP-independent activation of CREB1 signaling in glioma stem cells.
        Cell Rep. 2018; 23: 1651-1664
        • Wang L.
        • Hagemann T.L.
        • Messing A.
        • Feany M.B.
        An in vivo pharmacological screen identifies cholinergic signaling as a therapeutic target in glial-based nervous system disease.
        J Neurosci. 2016; 36: 1445-1455
        • Hu Y.
        • Flockhart I.
        • Vinayagam A.
        • Bergwitz C.
        • Berger B.
        • Perrimon N.
        • et al.
        An integrative approach to ortholog prediction for disease-focused and other functional studies.
        BMC Bioinformatics. 2011; 12: 357
        • Alekseyenko O.V.
        • Chan Y.B.
        • Okaty B.W.
        • Chang Y.
        • Dymecki S.M.
        • Kravitz E.A.
        Serotonergic modulation of aggression in drosophila involves GABAergic and cholinergic opposing pathways.
        Curr Biol. 2019; 29: 2145-2156.e2145
        • Monier M.
        • Nobel S.
        • Danchin E.
        • Isabel G.
        Dopamine and serotonin are both required for mate-copying in Drosophila melanogaster.
        Front Behav Neurosci. 2018; 12: 334
        • Nebigil C.G.
        • Etienne N.
        • Schaerlinger B.
        • Hickel P.
        • Launay J.M.
        • Maroteaux L.
        Developmentally regulated serotonin 5-HT2B receptors.
        Int J Dev Neurosci. 2001; 19: 365-372
        • Wangler M.F.
        • Yamamoto S.
        • Chao H.T.
        • Posey J.E.
        • Westerfield M.
        • Postlethwait J.
        • et al.
        Model organisms facilitate rare disease diagnosis and therapeutic research.
        Genetics. 2017; 207: 9-27
        • Frochaux M.V.
        • Bou Sleiman M.
        • Gardeux V.
        • Dainese R.
        • Hollis B.
        • Litovchenko M.
        • et al.
        cis-Regulatory variation modulates susceptibility to enteric infection in the Drosophila genetic reference panel.
        Genome Biol. 2020; 21: 6
        • Palu R.A.S.
        • Ong E.
        • Stevens K.
        • Chung S.
        • Owings K.G.
        • Goodman A.G.
        • et al.
        Natural genetic variation screen in Drosophila identifies Wnt signaling, mitochondrial metabolism, and redox homeostasis genes as modifiers of apoptosis.
        G3 (Bethesda). 2019; 9: 3995-4005
        • Hope K.A.
        • Flatten D.
        • Cavitch P.
        • May B.
        • Sutcliffe J.S.
        • O’Donnell J.
        • et al.
        The Drosophila gene sulfateless modulates autism-like behaviors.
        Front Genet. 2019; 10: 574
        • Nakai N.
        • Nagano M.
        • Saitow F.
        • Watanabe Y.
        • Kawamura Y.
        • Kawamoto A.
        • et al.
        Serotonin rebalances cortical tuning and behavior linked to autism symptoms in 15q11-13 CNV mice.
        Sci Adv. 2017; 3e1603001
        • Griffin A.L.
        • Jaishankar P.
        • Grandjean J.M.
        • Olson S.H.
        • Renslo A.R.
        • Baraban S.C.
        Zebrafish studies identify serotonin receptors mediating antiepileptic activity in Dravet syndrome.
        Brain Commun. 2019; 1: fcz008
        • Griffin A.
        • Hamling K.R.
        • Knupp K.
        • Hong S.
        • Lee L.P.
        • Baraban S.C.
        Clemizole and modulators of serotonin signalling suppress seizures in Dravet syndrome.
        Brain. 2017; 140: 669-683
        • Baraban S.C.
        • Dinday M.T.
        • Hortopan G.A.
        Drug screening in Scn1a zebrafish mutant identifies clemizole as a potential Dravet syndrome treatment.
        Nat Commun. 2013; 4: 2410
        • Frohlich J.
        • Reiter L.T.
        • Saravanapandian V.
        • DiStefano C.
        • Huberty S.
        • Hyde C.
        • et al.
        Mechanisms underlying the EEG biomarker in Dup15q syndrome.
        Mol Autism. 2019; 10: 29
        • Schmidt D.
        Felbamate: Successful development of a new compound for the treatment of epilepsy.
        Epilepsia. 1993; 34: S30-S33
        • Jensen P.K.
        Felbamate in the treatment of refractory partial-onset seizures.
        Epilepsia. 1993; 34: S25-S29
        • Hamid H.
        • Kanner A.M.
        Should antidepressant drugs of the selective serotonin reuptake inhibitor family be tested as antiepileptic drugs?.
        Epilepsy Behav. 2013; 26: 261-265
        • Cardamone L.
        • Salzberg M.R.
        • O’Brien T.J.
        • Jones N.C.
        Antidepressant therapy in epilepsy: Can treating the comorbidities affect the underlying disorder?.
        Br J Pharmacol. 2013; 168: 1531-1554
        • Wada Y.
        • Shiraishi J.
        • Nakamura M.
        • Koshino Y.
        Role of serotonin receptor subtypes in the development of amygdaloid kindling in rats.
        Brain Res. 1997; 747: 338-342