Archival Report| Volume 88, ISSUE 9, P719-726, November 01, 2020

Download started.


The Mouse Claustrum Is Required for Optimal Behavioral Performance Under High Cognitive Demand



      To achieve goals, organisms are often faced with complex tasks that require enhanced control of cognitive faculties for optimal performance. However, the neural circuit mechanisms underlying this ability are unclear. The claustrum is proposed to mediate a variety of functions ranging from sensory binding to cognitive control of action, but direct functional assessments of this telencephalic nucleus are lacking.


      Here, we employed the Gnb4 (guanine nucleotide-binding subunit beta-4) cre driver line in mice to selectively monitor and manipulate claustrum projection neurons during 1-choice versus 5-choice serial reaction time task performance.


      Using fiber photometry, we found elevated claustrum activity prior to an expected cue during correct performance on the cognitively demanding 5-choice response assay relative to the less demanding 1-choice version of the task. Claustrum activity during reward acquisition was also enhanced when task demand was higher. Furthermore, optogenetically inhibiting the claustrum prior to the onset of the cue reduced choice accuracy on the 5-choice task but not on the 1-choice task.


      These results suggest that the claustrum supports a cognitive control function necessary for optimal behavioral performance under cognitively demanding conditions.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Heinrichs R.W.
        • Zakzanis K.K.
        Neurocognitive deficit in schizophrenia: A quantitative review of the evidence.
        Neuropsychology. 1998; 12: 426-445
        • Bressler S.L.
        • Menon V.
        Large-scale brain networks in cognition: Emerging methods and principles.
        Trends Cogn Sci. 2010; 14: 277-290
        • Niendam T.A.
        • Laird A.R.
        • Ray K.L.
        • Dean Y.M.
        • Glahn D.C.
        • Carter C.S.
        Meta-analytic evidence for a superordinate cognitive control network subserving diverse executive functions.
        Cogn Affect Behav Neurosci. 2012; 12: 241-268
        • Robbins T.W.
        • Arnsten A.F.T.
        The neuropsychopharmacology of fronto-executive function: Monoaminergic modulation.
        Annu Rev Neurosci. 2009; 32: 267-287
        • Vijayraghavan S.
        • Major A.J.
        • Everling S.
        Neuromodulation of prefrontal cortex in non-human primates by dopaminergic receptors during rule-guided flexible behavior and cognitive control.
        Front Neural Circuits. 2017; 11: 91
        • Mäki-Marttunen V.
        • Hagen T.
        • Espeseth T.
        Task context load induces reactive cognitive control: An fMRI study on cortical and brain stem activity.
        Cogn Affect Behav Neurosci. 2019; 19: 945-965
        • Crick F.C.
        • Koch C.
        What is the function of the claustrum?.
        Philos Trans R Soc B Biol Sci. 2005; 360: 1271-1279
        • Mathur B.N.
        The claustrum in review.
        Front Syst Neurosci. 2014; 8: 48
        • Jackson J.
        • Karnani M.M.
        • Zemelman B.V.
        • Burdakov D.
        • Lee A.K.
        Inhibitory control of prefrontal cortex by the claustrum.
        Neuron. 2018; 99: 1029-1039.e4
        • Smythies J.
        • Edelstein L.
        • Ramachandran V.
        Hypotheses relating to the function of the claustrum.
        Front Integr Neurosci. 2012; 6: 53
        • Remedios R.
        • Logothetis N.K.
        • Kayser C.
        Unimodal responses prevail within the multisensory claustrum.
        J Neurosci. 2010; 30: 12902-12907
        • Smith J.B.
        • Alloway K.D.
        Functional specificity of claustrum connections in the rat: Interhemispheric communication between specific parts of motor cortex.
        J Neurosci. 2010; 30: 16832-16844
        • Patru M.C.
        • Reser D.H.
        A new perspective on delusional states—Evidence for claustrum involvement.
        Front Psychiatry. 2015; 6: 158
        • Krimmel S.R.
        • White M.G.
        • Panicker M.H.
        • Barrett F.S.
        • Mathur B.N.
        • Seminowicz D.A.
        Resting state functional connectivity and cognitive task-related activation of the human claustrum.
        NeuroImage. 2019; 196: 59-67
        • Wang Q.
        • Ng L.
        • Harris J.A.
        • Feng D.
        • Li Y.
        • Royall J.J.
        • et al.
        Organization of the connections between claustrum and cortex in the mouse.
        J Comp Neurol. 2017; 525: 1317-1346
        • White M.G.
        • Panicker M.
        • Mu C.
        • Carter A.M.
        • Roberts B.M.
        • Dharmasri P.A.
        • Mathur B.N.
        Anterior cingulate cortex input to the claustrum is required for top-down action control.
        Cell Rep. 2018; 22: 84-95
        • White M.G.
        • Mathur B.N.
        Frontal cortical control of posterior sensory and association cortices through the claustrum.
        Brain Struct Funct. 2018; 223: 2999-3006
        • Miller E.K.
        • Buschman T.J.
        Cortical circuits for the control of attention.
        Curr Opin Neurobiol. 2013; 23: 216-222
        • Koch C.
        • Massimini M.
        • Boly M.
        • Tononi G.
        Neural correlates of consciousness: Progress and problems.
        Nat Rev Neurosci. 2016; 17: 307-321
        • Tononi G.
        • Boly M.
        • Massimini M.
        • Koch C.
        Integrated information theory: From consciousness to its physical substrate.
        Nat Rev Neurosci. 2016; 17: 450-461
        • Sun J.
        • Lee S.J.
        • Wu L.
        • Sarntinoranont M.
        • Xie H.
        Refractive index measurement of acute rat brain tissue slices using optical coherence tomography.
        Opt Express. 2012; 20: 1084-1095
        • Cui G.
        • Jun S.B.
        • Jin X.
        • Pham M.D.
        • Vogel S.S.
        • Lovinger D.M.
        • Costa R.M.
        Concurrent activation of striatal direct and indirect pathways during action initiation.
        Nature. 2013; 494: 238-242
        • Al-Juboori S.I.
        • Dondzillo A.
        • Stubblefield E.A.
        • Felsen G.
        • Lei T.C.
        • Klug A.
        Light scattering properties vary across different regions of the adult mouse brain.
        PLoS One. 2013; 8e67626
        • Muir J.L.
        • Everitt B.J.
        • Robbins T.W.
        The cerebral cortex of the rat and visual attentional function: Dissociable effects of mediofrontal, cingulate, anterior dorsolateral, and parietal cortex lesions on a five-choice serial reaction time task.
        Cereb Cortex. 1996; 6: 470-481
        • Passetti F.
        • Chudasama Y.
        • Robbins T.W.
        The frontal cortex of the rat and visual attentional performance: Dissociable functions of distinct medial prefrontal subregions.
        Cereb Cortex. 2002; 12: 1254-1268
        • Dalley J.W.
        • Cardinal R.N.
        • Robbins T.W.
        Prefrontal executive and cognitive functions in rodents: Neural and neurochemical substrates.
        Neurosci Biobehav Rev. 2004; 28: 771-784
        • Robinson E.S.J.
        • Eagle D.M.
        • Mar A.C.
        • Bari A.
        • Banerjee G.
        • Jiang X.
        • et al.
        Similar effects of the selective noradrenaline reuptake inhibitor atomoxetine on three distinct forms of impulsivity in the rat.
        Neuropsychopharmacology. 2008; 33: 1028-1037
        • Kim C.K.
        • Yang S.J.
        • Pichamoorthy N.
        • Young N.P.
        • Kauvar I.
        • Jennings J.H.
        • et al.
        Simultaneous fast measurement of circuit dynamics at multiple sites across the mammalian brain.
        Nat Methods. 2016; 13: 325-328
        • Mathur B.N.
        • Caprioli R.M.
        • Deutch A.Y.
        Proteomic analysis illuminates a novel structural definition of the claustrum and insula.
        Cereb Cortex. 2009; 19: 2372-2379
        • Braak H.
        • Braak E.
        Neuronal types in the claustrum of man.
        Anat Embryol (Berl). 1982; 163: 447-460
        • Hur E.E.
        • Zaborszky L.
        Vglut2 afferents to the medial prefrontal and primary somatosensory cortices: A combined retrograde tracing in situ hybridization study [corrected].
        J Comp Neurol. 2005; 483: 351-373
        • Watakabe A.
        • Ohsawa S.
        • Ichinohe N.
        • Rockland K.S.
        • Yamamori T.
        Characterization of claustral neurons by comparative gene expression profiling and dye-injection analyses.
        Front Syst Neurosci. 2014; 8: 98
        • White M.G.
        • Mathur B.N.
        Claustrum circuit components for top-down input processing and cortical broadcast.
        Brain Struct Funct. 2018; 223: 3945-3958
        • White M.G.
        • Cody P.A.
        • Bubser M.
        • Wang H.-D.
        • Deutch A.Y.
        • Mathur B.N.
        Cortical hierarchy governs rat claustrocortical circuit organization.
        J Comp Neurol. 2017; 525: 1347-1362
        • Zingg B.
        • Dong H.W.
        • Tao H.W.
        • Zhang L.I.
        Input–output organization of the mouse claustrum.
        J Comp Neurol. 2018; 526: 2428-2443