Advertisement
Archival Report| Volume 88, ISSUE 9, P687-697, November 01, 2020

Glutamatergic Contribution to Probabilistic Reasoning and Jumping to Conclusions in Schizophrenia: A Double-Blind, Randomized Experimental Trial

      Abstract

      Background

      Impaired probabilistic reasoning and the jumping-to-conclusions reasoning bias are hallmark features of schizophrenia (SCZ), yet the neuropharmacological basis of these deficits remains unclear. Here we tested the hypothesis that glutamatergic neurotransmission specifically contributes to jumping to conclusions and impaired probabilistic reasoning in SCZ.

      Methods

      A total of 192 healthy participants received either NMDA receptor agonists/antagonists (D-cycloserine/dextromethorphan), dopamine type 2 receptor agonists/antagonists (bromocriptine/haloperidol), or placebo in a randomized, double-blind, between-subjects design. In addition, we tested 32 healthy control participants matched to 32 psychotic inpatients with SCZ—a state associated with compromised probabilistic reasoning due to reduced glutamatergic neurotransmission. All experiments employed two versions of a probabilistic reasoning (beads) task, which required participants to either sample individual amounts of sensory information to infer correct decisions or provide explicit probability estimates for presented sensory information. Our task instantiations assessed both information sampling and explicit probability estimates in different probabilistic contexts (easy vs. difficult conditions) and changing sensory information through random transitions among easy, difficult, and ambiguous trial types.

      Results

      Following administration of D-cycloserine, haloperidol, and bromocriptine, healthy participants displayed data-gathering behavior that was normal compared with placebo and was adequate in the context of all employed task conditions and trial level difficulties. However, healthy participants receiving dextromethorphan displayed a jumping-to-conclusions bias, abnormally increased probability estimates, and overweighting of sensory information. These effects were mirrored in patients with SCZ performing the same versions of the beads task.

      Conclusions

      Our findings provide novel neuropharmacological evidence linking reduced glutamatergic neurotransmission to impaired information sampling and to disrupted probabilistic reasoning, namely to overweighting of sensory evidence, in patients with SCZ.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Tandon R.
        • Nasrallah H.A.
        • Keshavan M.S.
        Schizophrenia, “just the facts” 4: Clinical features and conceptualization.
        Schizophr Res. 2009; 110: 1-23
        • van Os J.
        • Kapur S.
        Schizophrenia.
        Lancet. 2009; 374: 635-645
        • Frith C.D.
        The Cognitive Neuropsychology of Schizophrenia.
        Psychology Press, London2014
        • Evans S.L.
        • Averbeck B.B.
        • Furl N.
        Jumping to conclusions in schizophrenia.
        Neuropsychiatr Dis Treat. 2015; 11: 1615-1624
        • Fletcher P.C.
        • Frith C.D.
        Perceiving is believing: A Bayesian approach to explaining the positive symptoms of schizophrenia.
        Nat Rev Neurosci. 2009; 10: 48-58
        • Dudley R.
        • Taylor P.
        • Wickham S.
        • Hutton P.
        Psychosis, delusions and the “jumping to conclusions” reasoning bias: A systematic review and meta-analysis.
        Schizophr Bull. 2016; 42: 652-665
        • Menon M.
        • Mizrahi R.
        • Kapur S.
        “Jumping to conclusions” and delusions in psychosis: Relationship and response to treatment.
        Schizophr Res. 2008; 98: 225-231
        • Garety P.A.
        • Freeman D.
        The past and future of delusions research: From the inexplicable to the treatable.
        Br J Psychiatry. 2013; 203: 327-333
        • So S.H.
        • Siu N.Y.
        • Wong H.L.
        • Chan W.
        • Garety P.A.
        “Jumping to conclusions” data-gathering bias in psychosis and other psychiatric disorders—Two meta-analyses of comparisons between patients and healthy individuals.
        Clin Psychol Rev. 2016; 46: 151-167
        • Phillips L.D.
        • Edwards W.
        Conservatism in a simple probability inference task.
        J Exp Psychol. 1966; 72: 346-354
        • Falcone M.A.
        • Murray R.M.
        • Wiffen B.D.
        • O’Connor J.A.
        • Russo M.
        • Kolliakou A.
        • et al.
        Jumping to conclusions, neuropsychological functioning, and delusional beliefs in first episode psychosis.
        Schizophr Bull. 2015; 41: 411-418
        • Lincoln T.M.
        • Ziegler M.
        • Mehl S.
        • Rief W.
        The jumping to conclusions bias in delusions: Specificity and changeability.
        J Abnorm Psychol. 2010; 119: 40-49
        • Moritz S.
        • Woodward T.S.
        Jumping to conclusions in delusional and non-delusional schizophrenic patients.
        Br J Clin Psychol. 2005; 44: 193-207
        • Ross R.M.
        • McKay R.
        • Coltheart M.
        • Langdon R.
        Jumping to conclusions about the beads task? A meta-analysis of delusional ideation and data-gathering.
        Schizophr Bull. 2015; 41: 1183-1191
        • Warman D.M.
        • Lysaker P.H.
        • Martin J.M.
        • Davis L.
        • Haudenschield S.L.
        Jumping to conclusions and the continuum of delusional beliefs.
        Behav Res Ther. 2007; 45: 1255-1269
        • Kapur S.
        Psychosis as a state of aberrant salience: A framework linking biology, phenomenology, and pharmacology in schizophrenia.
        Am J Psychiatry. 2003; 160: 13-23
        • Speechley W.J.
        • Whitman J.C.
        • Woodward T.S.
        The contribution of hypersalience to the “jumping to conclusions” bias associated with delusions in schizophrenia.
        J Psychiatry Neurosci. 2010; 35: 7-17
        • Adams R.A.
        • Huys Q.J.
        • Roiser J.P.
        Computational psychiatry: Towards a mathematically informed understanding of mental illness.
        J Neurol Neurosurg Psychiatry. 2016; 87: 53-63
        • Sterzer P.
        • Adams R.A.
        • Fletcher P.
        • Frith C.
        • Lawrie S.M.
        • Muckli L.
        • et al.
        The predictive coding account of psychosis.
        Biol Psychiatry. 2018; 84: 634-643
        • Baker S.C.
        • Konova A.B.
        • Daw N.D.
        • Horga G.
        A distinct inferential mechanism for delusions in schizophrenia.
        Brain. 2019; 142: 1797-1812
        • Adams R.A.
        • Napier G.
        • Roiser J.P.
        • Mathys C.
        • Gilleen J.
        Attractor-like dynamics in belief updating in schizophrenia.
        J Neurosci. 2018; 38: 9471-9485
        • Jardri R.
        • Duverne S.
        • Litvinova A.S.
        • Deneve S.
        Experimental evidence for circular inference in schizophrenia.
        Nat Commun. 2017; 8: 14218
        • Adams R.A.
        • Stephan K.E.
        • Brown H.R.
        • Frith C.D.
        • Friston K.J.
        The computational anatomy of psychosis.
        Front Psychiatry. 2013; 4: 47
        • FitzGerald T.H.
        • Schwartenbeck P.
        • Moutoussis M.
        • Dolan R.J.
        • Friston K.
        Active inference, evidence accumulation, and the urn task.
        Neural Comput. 2015; 27: 306-328
        • Corlett P.R.
        • Frith C.D.
        • Fletcher P.C.
        From drugs to deprivation: A Bayesian framework for understanding models of psychosis.
        Psychopharmacology (Berl). 2009; 206: 515-530
        • Corlett P.R.
        • Taylor J.R.
        • Wang X.J.
        • Fletcher P.C.
        • Krystal J.H.
        Toward a neurobiology of delusions.
        Prog Neurobiol. 2010; 92: 345-369
        • Peters E.
        • Garety P.
        Cognitive functioning in delusions: A longitudinal analysis.
        Behav Res Ther. 2006; 44: 481-514
        • Pfuhl G.
        A Bayesian perspective on delusions: Suggestions for modifying two reasoning tasks.
        J Behav Ther Exp Psychiatry. 2017; 56: 4-11
        • Heinz A.
        • Schlagenhauf F.
        Dopaminergic dysfunction in schizophrenia: Salience attribution revisited.
        Schizophr Bull. 2010; 36: 472-485
        • Howes O.
        • McCutcheon R.
        • Stone J.
        Glutamate and dopamine in schizophrenia: An update for the 21st century.
        J Psychopharmacol. 2015; 29: 97-115
        • Javitt D.C.
        Glutamatergic theories of schizophrenia.
        Isr J Psychiatry Relat Sci. 2010; 47: 4-16
        • Peters E.
        • Joseph S.
        • Day S.
        • Garety P.
        Measuring delusional ideation: The 21-item Peters et al. Delusions Inventory (PDI).
        Schizophr Bull. 2004; 30: 1005-1022
        • Bestmann S.
        • Ruge D.
        • Rothwell J.
        • Galea J.M.
        The role of dopamine in motor flexibility.
        J Cogn Neurosci. 2015; 27: 365-376
        • Marshall L.
        • Mathys C.
        • Ruge D.
        • de Berker A.O.
        • Dayan P.
        • Stephan K.E.
        • et al.
        Pharmacological fingerprints of contextual uncertainty.
        PLoS Biol. 2016; 14e1002575
        • Onur O.A.
        • Schlaepfer T.E.
        • Kukolja J.
        • Bauer A.
        • Jeung H.
        • Patin A.
        • et al.
        The N-methyl-D-aspartate receptor co-agonist D-cycloserine facilitates declarative learning and hippocampal activity in humans.
        Biol Psychiatry. 2010; 67: 1205-1211
        • Ziemann U.
        • Chen R.
        • Cohen L.G.
        • Hallett M.
        Dextromethorphan decreases the excitability of the human motor cortex.
        Neurology. 1998; 51: 1320-1324
        • Taylor C.P.
        • Traynelis S.F.
        • Siffert J.
        • Pope L.E.
        • Matsumoto R.R.
        Pharmacology of dextromethorphan: Relevance to dextromethorphan/quinidine (Nuedexta®) clinical use.
        Pharmacol Ther. 2016; 164: 170-182
        • Stefan K.
        • Kunesch E.
        • Benecke R.
        • Cohen L.G.
        • Classen J.
        Mechanisms of enhancement of human motor cortex excitability induced by interventional paired associative stimulation.
        J Physiol. 2002; 543: 699-708
        • Günthner J.
        • Scholl J.
        • Favaron E.
        • Harmer C.J.
        • Johansen-Berg H.
        • Reinecke A.
        The NMDA receptor partial agonist D-cycloserine does not enhance motor learning.
        J Psychopharmacol. 2016; 30: 994-999
        • Norberg M.M.
        • Krystal J.H.
        • Tolin D.F.
        A meta-analysis of D-cycloserine and the facilitation of fear extinction and exposure therapy.
        Biol Psychiatry. 2008; 63: 1118-1126
        • Scholl J.
        • Günthner J.
        • Kolling N.
        • Favaron E.
        • Rushworth M.F.
        • Harmer C.J.
        • et al.
        A role beyond learning for NMDA receptors in reward-based decision-making—A pharmacological study using D-cycloserine.
        Neuropsychopharmacology. 2014; 39: 2900-2909
        • Woud M.L.
        • Blackwell S.E.
        • Steudte-Schmiedgen S.
        • Browning M.
        • Holmes E.A.
        • Harmer C.J.
        • et al.
        Investigating D-cycloserine as a potential pharmacological enhancer of an emotional bias learning procedure.
        J Psychopharmacol. 2018; 32: 569-577
        • Huq S.F.
        • Garety P.A.
        • Hemsley D.R.
        Probabilistic judgements in deluded and non-deluded subjects.
        Q J Exp Psychol A. 1988; 40: 801-812
        • Evans S.
        • Almahdi B.
        • Sultan P.
        • Sohanpal I.
        • Brandner B.
        • Collier T.
        • et al.
        Performance on a probabilistic inference task in healthy subjects receiving ketamine compared with patients with schizophrenia.
        J Psychopharmacol. 2012; 26: 1211-1217
        • Hemsley D.R.
        • Garety P.A.
        The formation of maintenance of delusions: A Bayesian analysis.
        Br J Psychiatry. 1986; 149: 51-56
        • Dudley R.
        • Daley K.
        • Nicholson M.
        • Shaftoe D.
        • Spencer H.
        • Cavanagh K.
        • et al.
        “Jumping to conclusions” in first-episode psychosis: A longitudinal study.
        Br J Clin Psychol. 2013; 52: 380-393
        • Garety P.A.
        • Hemsley D.R.
        • Wessely S.
        Reasoning in deluded schizophrenic and paranoid patients: Biases in performance on a probabilistic inference task.
        J Nerv Ment Dis. 1991; 179: 194-201
        • Lieberman J.A.
        • Stroup T.S.
        • McEvoy J.P.
        • Swartz M.S.
        • Rosenheck R.A.
        • Perkins D.O.
        • et al.
        Effectiveness of antipsychotic drugs in patients with chronic schizophrenia.
        N Engl J Med. 2005; 353: 1209-1223
        • University Hospital Munich
        Effects of early clozapine treatment on remission rates in acute schizophrenia (EARLY).
        University Hospital Munich, Munich2019
        • Fine C.
        • Gardner M.
        • Craigie J.
        • Gold I.
        Hopping, skipping or jumping to conclusions? Clarifying the role of the JTC bias in delusions.
        Cogn Neuropsychiatry. 2007; 12: 46-77
        • Wallwork R.S.
        • Fortgang R.
        • Hashimoto R.
        • Weinberger D.R.
        • Dickinson D.
        Searching for a consensus five-factor model of the Positive and Negative Syndrome Scale for schizophrenia.
        Schizophr Res. 2012; 137: 246-250
        • Langdon R.
        • Ward P.B.
        • Coltheart M.
        Reasoning anomalies associated with delusions in schizophrenia.
        Schizophr Bull. 2010; 36: 321-330
        • Friston K.
        • Brown H.R.
        • Siemerkus J.
        • Stephan K.E.
        The dysconnection hypothesis (2016).
        Schizophr Res. 2016; 176: 83-94
        • Stephan K.E.
        • Mathys C.
        Computational approaches to psychiatry.
        Curr Opin Neurobiol. 2014; 25: 85-92
        • Heinz A.
        • Murray G.K.
        • Schlagenhauf F.
        • Sterzer P.
        • Grace A.A.
        • Waltz J.A.
        Towards a unifying cognitive, neurophysiological, and computational neuroscience account of schizophrenia.
        Schizophr Bull. 2019; 45: 1092-1100
        • Schwartz T.L.
        • Sachdeva S.
        • Stahl S.M.
        Glutamate neurocircuitry: Theoretical underpinnings in schizophrenia.
        Front Pharmacol. 2012; 3: 195
        • Stephan K.E.
        • Friston K.J.
        • Frith C.D.
        Dysconnection in schizophrenia: From abnormal synaptic plasticity to failures of self-monitoring.
        Schizophr Bull. 2009; 35: 509-527
        • So S.H.
        • Garety P.A.
        • Peters E.R.
        • Kapur S.
        Do antipsychotics improve reasoning biases? A review.
        Psychosom Med. 2010; 72: 681-693
        • Garety P.A.
        • Joyce E.
        • Jolley S.
        • Emsley R.
        • Waller H.
        • Kuipers E.
        • et al.
        Neuropsychological functioning and jumping to conclusions in delusions.
        Schizophr Res. 2013; 150: 570-574
        • D’Souza D.C.
        • Gil R.
        • Cassello K.
        • Morrissey K.
        • Abi-Saab D.
        • White J.
        • et al.
        IV glycine and oral D-cycloserine effects on plasma and CSF amino acids in healthy humans.
        Biol Psychiatry. 2000; 47: 450-462
        • Heresco-Levy U.
        • Gelfin G.
        • Bloch B.
        • Levin R.
        • Edelman S.
        • Javitt D.C.
        • et al.
        A randomized add-on trial of high-dose D-cycloserine for treatment-resistant depression.
        Int J Neuropsychopharmacol. 2013; 16: 501-506
        • Krystal J.H.
        • Petrakis I.L.
        • Limoncelli D.
        • Nappi S.K.
        • Trevisan L.
        • Pittman B.
        • et al.
        Characterization of the interactive effects of glycine and D-cycloserine in men: Further evidence for enhanced NMDA receptor function associated with human alcohol dependence.
        Neuropsychopharmacology. 2011; 36: 701-710
        • Krystal J.H.
        • D’Souza D.C.
        • Petrakis I.L.
        • Belger A.
        • Berman R.M.
        • Charney D.S.
        • et al.
        NMDA agonists and antagonists as probes of glutamatergic dysfunction and pharmacotherapies in neuropsychiatric disorders.
        Harv Rev Psychiatry. 1999; 7: 125-143
        • Bugarski-Kirola D.
        • Blaettler T.
        • Arango C.
        • Fleischhacker W.W.
        • Garibaldi G.
        • Wang A.
        • et al.
        Bitopertin in negative symptoms of schizophrenia—Results from the phase III FlashLyte and DayLyte Studies.
        Biol Psychiatry. 2017; 82: 8-16
        • Endicott J.
        • Spitzer R.L.
        • Fleiss J.L.
        • Cohen J.
        The Global Assessment Scale: A procedure for measuring overall severity of psychiatric disturbance.
        Arch Gen Psychiatry. 1976; 33: 766-771
        • Guy W.
        • Bonato R.
        CGI: Clinical Global Impressions.
        in: Guy W. ECDEU Assessment Manual for Psychopharmacology. National Institute of Mental Health, Rockville, MD1976: 218-222
        • Kay S.R.
        • Fiszbein A.
        • Opler L.A.
        The Positive and Negative Syndrome Scale (PANSS) for schizophrenia.
        Schizophr Bull. 1987; 13: 261-276

      Linked Article

      • Challenges Associated With Neuropharmacological Challenge Studies
        Biological PsychiatryVol. 88Issue 9
        • Preview
          In the current issue of Biological Psychiatry, Strube et al. (1) present a large-scale neuropharmacological challenge study in healthy individuals testing two candidate neurotransmitter–neuroreceptor mechanisms posited to underlie probabilistic reasoning deficits in actively psychotic schizophrenia patients: 1) deficient glutamatergic NMDA receptor (NMDAR) neurotransmission and 2) excessive dopaminergic D2 receptor (D2R) neurotransmission. Research on delusions in schizophrenia has implicated impairments in probabilistic reasoning.
        • Full-Text
        • PDF