Advertisement

Potential Roles of Redox Dysregulation in the Development of Schizophrenia

      Abstract

      Converging evidence implicates redox dysregulation as a pathological mechanism driving the emergence of psychosis. Increased oxidative damage and decreased capacity of intracellular redox modulatory systems are consistent findings in persons with schizophrenia as well as in persons at clinical high risk who subsequently developed frank psychosis. Levels of glutathione, a key regulator of cellular redox status, are reduced in the medial prefrontal cortex, striatum, and thalamus in schizophrenia. In humans with schizophrenia and in rodent models recapitulating various features of schizophrenia, redox dysregulation is linked to reductions of parvalbumin containing gamma-aminobutyric acid (GABA) interneurons and volumes of their perineuronal nets, white matter abnormalities, and microglia activation. Importantly, the activity of transcription factors, kinases, and phosphatases regulating diverse aspects of neurodevelopment and synaptic plasticity varies according to cellular redox state. Molecules regulating interneuron function under redox control include NMDA receptor subunits GluN1 and GluN2A as well as KEAP1 (regulator of transcription factor NRF2). In a rodent schizophrenia model characterized by impaired glutathione synthesis, the Gclm knockout mouse, oxidative stress activated MMP9 (matrix metalloprotease 9) via its redox-responsive regulatory sites, causing a cascade of molecular events leading to microglia activation, perineural net degradation, and impaired NMDA receptor function. Molecular pathways under redox control are implicated in the etiopathology of schizophrenia and are attractive drug targets for individualized drug therapy trials in the contexts of prevention and treatment of psychosis.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Valko M.
        • Leibfritz D.
        • Moncol J.
        • Cronin M.T.
        • Mazur M.
        • Telser J.
        Free radicals and antioxidants in normal physiological functions and human disease.
        Int J Biochem Cell Biol. 2007; 39: 44-84
        • Koga M.
        • Serritella A.V.
        • Sawa A.
        • Sedlak T.W.
        Implications for reactive oxygen species in schizophrenia pathogenesis.
        Schizophr Res. 2016; 176: 52-71
        • Perkins D.O.
        • Jeffries C.D.
        • Addington J.
        • Bearden C.E.
        • Cadenhead K.S.
        • Cannon T.D.
        • et al.
        Towards a psychosis risk blood diagnostic for persons experiencing high-risk symptoms: Preliminary results from the NAPLS project.
        Schizophr Bull. 2015; 41: 419-428
        • Lavoie S.
        • Berger M.
        • Schlogelhofer M.
        • Schafer M.R.
        • Rice S.
        • Kim S.W.
        • et al.
        Erythrocyte glutathione levels as long-term predictor of transition to psychosis.
        Transl Psychiatry. 2017; 7e1064
        • Powell S.B.
        • Sejnowski T.J.
        • Behrens M.M.
        Behavioral and neurochemical consequences of cortical oxidative stress on parvalbumin-interneuron maturation in rodent models of schizophrenia.
        Neuropharmacology. 2012; 62: 1322-1331
        • Steullet P.
        • Cabungcal J.H.
        • Coyle J.
        • Didriksen M.
        • Gill K.
        • Grace A.A.
        • et al.
        Oxidative stress-driven parvalbumin interneuron impairment as a common mechanism in models of schizophrenia.
        Mol Psychiatry. 2017; 22: 936-943
        • Moldogazieva N.T.
        • Mokhosoev I.M.
        • Feldman N.B.
        • Lutsenko S.V.
        ROS and RNS signalling: Adaptive redox switches through oxidative/nitrosative protein modifications.
        Free Radic Res. 2018; 52: 507-543
        • McCutcheon R.A.
        • Krystal J.H.
        • Howes O.D.
        Dopamine and glutamate in schizophrenia: Biology, symptoms and treatment.
        World Psychiatry. 2020; 19: 15-33
        • Egerton A.
        • Chaddock C.A.
        • Winton-Brown T.T.
        • Bloomfield M.A.
        • Bhattacharyya S.
        • Allen P.
        • et al.
        Presynaptic striatal dopamine dysfunction in people at ultra-high risk for psychosis: Findings in a second cohort.
        Biol Psychiatry. 2013; 74: 106-112
        • Fusar-Poli P.
        • Howes O.D.
        • Allen P.
        • Broome M.
        • Valli I.
        • Asselin M.C.
        • et al.
        Abnormal frontostriatal interactions in people with prodromal signs of psychosis: A multimodal imaging study.
        Arch Gen Psychiatry. 2010; 67: 683-691
        • Fusar-Poli P.
        • Howes O.D.
        • Allen P.
        • Broome M.
        • Valli I.
        • Asselin M.C.
        • et al.
        Abnormal prefrontal activation directly related to pre-synaptic striatal dopamine dysfunction in people at clinical high risk for psychosis.
        Mol Psychiatry. 2011; 16: 67-75
        • Howes O.
        • Bose S.
        • Turkheimer F.
        • Valli I.
        • Egerton A.
        • Stahl D.
        • et al.
        Progressive increase in striatal dopamine synthesis capacity as patients develop psychosis: A PET study.
        Mol Psychiatry. 2011; 16: 885-886
        • Howes O.D.
        • Bose S.K.
        • Turkheimer F.
        • Valli I.
        • Egerton A.
        • Valmaggia L.R.
        • et al.
        Dopamine synthesis capacity before onset of psychosis: A prospective [18F]-DOPA PET imaging study.
        Am J Psychiatry. 2011; 168: 1311-1317
        • Avissar M.
        • Javitt D.
        Mismatch negativity: A simple and useful biomarker of N-methyl-d-aspartate receptor (NMDAR)-type glutamate dysfunction in schizophrenia.
        Schizophr Res. 2018; 191: 1-4
        • Perez V.B.
        • Woods S.W.
        • Roach B.J.
        • Ford J.M.
        • McGlashan T.H.
        • Srihari V.H.
        • et al.
        Automatic auditory processing deficits in schizophrenia and clinical high-risk patients: Forecasting psychosis risk with mismatch negativity.
        Biol Psychiatry. 2014; 75: 459-469
        • Hamilton H.K.
        • Roach B.J.
        • Bachman P.M.
        • Belger A.
        • Carrion R.E.
        • Duncan E.
        • et al.
        Association between P300 responses to auditory oddball stimuli and clinical outcomes in the psychosis risk syndrome.
        JAMA Psychiatry. 2019; : 1187-1197
        • Lavoie S.
        • Jack B.N.
        • Griffiths O.
        • Ando A.
        • Amminger P.
        • Couroupis A.
        • et al.
        Impaired mismatch negativity to frequency deviants in individuals at ultra-high risk for psychosis, and preliminary evidence for further impairment with transition to psychosis.
        Schizophr Res. 2018; 191: 95-100
        • van Tricht M.J.
        • Ruhrmann S.
        • Arns M.
        • Muller R.
        • Bodatsch M.
        • Velthorst E.
        • et al.
        Can quantitative EEG measures predict clinical outcome in subjects at clinical high risk for psychosis? A prospective multicenter study.
        Schizophr Res. 2014; 153: 42-47
        • Kim M.
        • Lee T.H.
        • Yoon Y.B.
        • Lee T.Y.
        • Kwon J.S.
        Predicting remission in subjects at clinical high risk for psychosis using mismatch negativity.
        Schizophr Bull. 2018; 44: 575-583
        • Dienel S.J.
        • Lewis D.A.
        Alterations in cortical interneurons and cognitive function in schizophrenia.
        Neurobiol Dis. 2019; 131: 104208
        • Hoftman G.D.
        • Volk D.W.
        • Bazmi H.H.
        • Li S.
        • Sampson A.R.
        • Lewis D.A.
        Altered cortical expression of GABA-related genes in schizophrenia: Illness progression vs developmental disturbance.
        Schizophr Bull. 2015; 41: 180-191
        • Tsubomoto M.
        • Kawabata R.
        • Zhu X.
        • Minabe Y.
        • Chen K.
        • Lewis D.A.
        • et al.
        Expression of transcripts selective for GABA neuron subpopulations across the cortical visuospatial working memory network in the healthy state and schizophrenia.
        Cereb Cortex. 2019; 29: 3540-3550
        • Hashimoto T.
        • Bazmi H.H.
        • Mirnics K.
        • Wu Q.
        • Sampson A.R.
        • Lewis D.A.
        Conserved regional patterns of GABA-related transcript expression in the neocortex of subjects with schizophrenia.
        Am J Psychiatry. 2008; 165: 479-489
        • Konradi C.
        • Yang C.K.
        • Zimmerman E.I.
        • Lohmann K.M.
        • Gresch P.
        • Pantazopoulos H.
        • et al.
        Hippocampal interneurons are abnormal in schizophrenia.
        Schizophr Res. 2011; 131: 165-173
        • Toker L.
        • Mancarci B.O.
        • Tripathy S.
        • Pavlidis P.
        Transcriptomic evidence for alterations in astrocytes and parvalbumin interneurons in subjects with bipolar disorder and schizophrenia.
        Biol Psychiatry. 2018; 84: 787-796
        • Enwright J.F.
        • Sanapala S.
        • Foglio A.
        • Berry R.
        • Fish K.N.
        • Lewis D.A.
        Reduced labeling of parvalbumin neurons and perineuronal nets in the dorsolateral prefrontal cortex of subjects with schizophrenia.
        Neuropsychopharmacology. 2016; 41: 2206-2214
        • Steullet P.
        • Cabungcal J.H.
        • Bukhari S.A.
        • Ardelt M.I.
        • Pantazopoulos H.
        • Hamati F.
        • et al.
        The thalamic reticular nucleus in schizophrenia and bipolar disorder: Role of parvalbumin-expressing neuron networks and oxidative stress.
        Mol Psychiatry. 2018; 23: 2057-2065
        • Pantazopoulos H.
        • Wiseman J.T.
        • Markota M.
        • Ehrenfeld L.
        • Berretta S.
        Decreased numbers of somatostatin-expressing neurons in the amygdala of subjects with bipolar disorder or schizophrenia: Relationship to circadian rhythms.
        Biol Psychiatry. 2017; 81: 536-547
        • Pantazopoulos H.
        • Woo T.U.
        • Lim M.P.
        • Lange N.
        • Berretta S.
        Extracellular matrix-glial abnormalities in the amygdala and entorhinal cortex of subjects diagnosed with schizophrenia.
        Arch Gen Psychiatry. 2010; 67: 155-166
        • Javitt D.C.
        • Lee M.
        • Kantrowitz J.T.
        • Martinez A.
        Mismatch negativity as a biomarker of theta band oscillatory dysfunction in schizophrenia.
        Schizophr Res. 2018; 191: 51-60
        • Basar-Eroglu C.
        • Basar E.
        • Demiralp T.
        • Schurmann M.
        P300-response: Possible psychophysiological correlates in delta and theta frequency channels: A review.
        Int J Psychophysiol. 1992; 13: 161-179
        • Cardin J.A.
        • Carlen M.
        • Meletis K.
        • Knoblich U.
        • Zhang F.
        • Deisseroth K.
        • et al.
        Driving fast-spiking cells induces gamma rhythm and controls sensory responses.
        Nature. 2009; 459: 663-667
        • Reilly T.J.
        • Nottage J.F.
        • Studerus E.
        • Rutigliano G.
        • Micheli A.I.
        • Fusar-Poli P.
        • et al.
        Gamma band oscillations in the early phase of psychosis: A systematic review.
        Neurosci Biobehav Rev. 2018; 90: 381-399
        • Ramyead A.
        • Studerus E.
        • Kometer M.
        • Uttinger M.
        • Gschwandtner U.
        • Fuhr P.
        • et al.
        Prediction of psychosis using neural oscillations and machine learning in neuroleptic-naive at-risk patients.
        World J Biol Psychiatry. 2016; 17: 285-295
        • Koshiyama D.
        • Kirihara K.
        • Tada M.
        • Nagai T.
        • Fujioka M.
        • Ichikawa E.
        • et al.
        Electrophysiological evidence for abnormal glutamate-GABA association following psychosis onset.
        Transl Psychiatry. 2018; 8: 211
        • Oribe N.
        • Hirano Y.
        • Del Re E.
        • Seidman L.J.
        • Mesholam-Gately R.I.
        • Woodberry K.A.
        • et al.
        Progressive reduction of auditory evoked gamma in first episode schizophrenia but not clinical high risk individuals.
        Schizophr Res. 2019; 208: 145-152
        • van Erp T.G.M.
        • Walton E.
        • Hibar D.P.
        • Schmaal L.
        • Jiang W.
        • Glahn D.C.
        • et al.
        Cortical brain abnormalities in 4474 individuals with schizophrenia and 5098 control subjects via the Enhancing Neuro Imaging Genetics Through Meta-Analysis (ENIGMA) consortium.
        Biol Psychiatry. 2018; 84: 644-654
        • van Erp T.G.
        • Hibar D.P.
        • Rasmussen J.M.
        • Glahn D.C.
        • Pearlson G.D.
        • Andreassen O.A.
        • et al.
        Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy controls via the ENIGMA consortium.
        Mol Psychiatry. 2016; 21: 547-553
        • Haijma S.V.
        • Van Haren N.
        • Cahn W.
        • Koolschijn P.C.
        • Hulshoff Pol H.E.
        • Kahn R.S.
        Brain volumes in schizophrenia: A meta-analysis in over 18 000 subjects.
        Schizophr Bull. 2013; 39: 1129-1138
        • Kelly S.
        • Jahanshad N.
        • Zalesky A.
        • Kochunov P.
        • Agartz I.
        • Alloza C.
        • et al.
        Widespread white matter microstructural differences in schizophrenia across 4322 individuals: Results from the ENIGMA Schizophrenia DTI Working Group.
        Mol Psychiatry. 2018; 23: 1261-1269
        • Klauser P.
        • Baker S.T.
        • Cropley V.L.
        • Bousman C.
        • Fornito A.
        • Cocchi L.
        • et al.
        White matter disruptions in schizophrenia are spatially widespread and topologically converge on brain network hubs.
        Schizophr Bull. 2017; 43: 425-435
        • Li T.
        • Wang Q.
        • Zhang J.
        • Rolls E.T.
        • Yang W.
        • Palaniyappan L.
        • et al.
        Brain-wide analysis of functional connectivity in first-episode and chronic stages of schizophrenia.
        Schizophr Bull. 2017; 43: 436-438
        • Cannon T.D.
        • Chung Y.
        • He G.
        • Sun D.
        • Jacobson A.
        • van Erp T.G.
        • et al.
        Progressive reduction in cortical thickness as psychosis develops: A multisite longitudinal neuroimaging study of youth at elevated clinical risk.
        Biol Psychiatry. 2015; 77: 147-157
        • Chung Y.
        • Haut K.M.
        • He G.
        • van Erp T.G.
        • McEwen S.
        • Addington J.
        • et al.
        Ventricular enlargement and progressive reduction of cortical gray matter are linked in prodromal youth who develop psychosis.
        Schizophr Res. 2017; 189: 169-174
        • Borgwardt S.J.
        • McGuire P.K.
        • Aston J.
        • Gschwandtner U.
        • Pfluger M.O.
        • Stieglitz R.D.
        • et al.
        Reductions in frontal, temporal and parietal volume associated with the onset of psychosis.
        Schizophr Res. 2008; 106: 108-114
        • Sun D.
        • Phillips L.
        • Velakoulis D.
        • Yung A.
        • McGorry P.D.
        • Wood S.J.
        • et al.
        Progressive brain structural changes mapped as psychosis develops in “at risk” individuals.
        Schizophr Res. 2009; 108: 85-92
        • Provenzano F.A.
        • Guo J.
        • Wall M.M.
        • Feng X.
        • Sigmon H.C.
        • Brucato G.
        • et al.
        Hippocampal pathology in clinical high-risk patients and the onset of schizophrenia.
        Biol Psychiatry. 2020; 87: 234-242
        • Cao H.
        • Chen O.Y.
        • Chung Y.
        • Forsyth J.K.
        • McEwen S.C.
        • Gee D.G.
        • et al.
        Cerebello-thalamo-cortical hyperconnectivity as a state-independent functional neural signature for psychosis prediction and characterization.
        Nat Commun. 2018; 9: 3836
        • Bernard J.A.
        • Orr J.M.
        • Mittal V.A.
        Cerebello-thalamo-cortical networks predict positive symptom progression in individuals at ultra-high risk for psychosis.
        NeuroImage Clin. 2017; 14: 622-628
        • Anticevic A.
        • Haut K.
        • Murray J.D.
        • Repovs G.
        • Yang G.J.
        • Diehl C.
        • et al.
        Association of thalamic dysconnectivity and conversion to psychosis in youth and young adults at elevated clinical risk.
        JAMA Psychiatry. 2015; 72: 882-891
        • Lakatos P.
        • O’Connell M.N.
        • Barczak A.
        • McGinnis T.
        • Neymotin S.
        • Schroeder C.E.
        • et al.
        The thalamocortical circuit of auditory mismatch negativity.
        Biol Psychiatry. 2020; 87: 770-780
        • Javitt D.C.
        • Steinschneider M.
        • Schroeder C.E.
        • Arezzo J.C.
        Role of cortical N-methyl-D-aspartate receptors in auditory sensory memory and mismatch negativity generation: Implications for schizophrenia.
        Proc Natl Acad Sci U S A. 1996; 93 (–11967): 11962
        • Sabeti M.
        • Katebi S.D.
        • Rastgar K.
        • Azimifar Z.
        A multi-resolution approach to localize neural sources of P300 event-related brain potential.
        Comput Methods Programs Biomed. 2016; 133: 155-168
        • Justen C.
        • Herbert C.
        The spatio-temporal dynamics of deviance and target detection in the passive and active auditory oddball paradigm: A sLORETA study.
        BMC Neurosci. 2018; 19: 25
        • Sohal V.S.
        • Zhang F.
        • Yizhar O.
        • Deisseroth K.
        Parvalbumin neurons and gamma rhythms enhance cortical circuit performance.
        Nature. 2009; 459: 698-702
        • Leicht G.
        • Vauth S.
        • Polomac N.
        • Andreou C.
        • Rauh J.
        • Mussmann M.
        • et al.
        EEG-informed fMRI reveals a disturbed gamma-band-specific network in subjects at high risk for psychosis.
        Schizophr Bull. 2016; 42: 239-249
        • Glantz L.A.
        • Lewis D.A.
        Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia.
        Arch Gen Psychiatry. 2000; 57: 65-73
        • Garey L.J.
        • Ong W.Y.
        • Patel T.S.
        • Kanani M.
        • Davis A.
        • Mortimer A.M.
        • et al.
        Reduced dendritic spine density on cerebral cortical pyramidal neurons in schizophrenia.
        J Neurol Neurosurg Psychiatry. 1998; 65: 446-453
        • Sweet R.A.
        • Henteleff R.A.
        • Zhang W.
        • Sampson A.R.
        • Lewis D.A.
        Reduced dendritic spine density in auditory cortex of subjects with schizophrenia.
        Neuropsychopharmacology. 2009; 34: 374-389
        • Alcaide J.
        • Guirado R.
        • Crespo C.
        • Blasco-Ibanez J.M.
        • Varea E.
        • Sanjuan J.
        • et al.
        Alterations of perineuronal nets in the dorsolateral prefrontal cortex of neuropsychiatric patients.
        Int J Bipolar Disord. 2019; 7: 24
        • Mauney S.A.
        • Athanas K.M.
        • Pantazopoulos H.
        • Shaskan N.
        • Passeri E.
        • Berretta S.
        • et al.
        Developmental pattern of perineuronal nets in the human prefrontal cortex and their deficit in schizophrenia.
        Biol Psychiatry. 2013; 74: 427-435
        • Berretta S.
        Extracellular matrix abnormalities in schizophrenia.
        Neuropharmacology. 2012; 62: 1584-1597
        • Chelini G.
        • Pantazopoulos H.
        • Durning P.
        • Berretta S.
        The tetrapartite synapse: A key concept in the pathophysiology of schizophrenia.
        Eur Psychiatry. 2018; 50: 60-69
        • Rosenfeld M.
        • Brenner-Lavie H.
        • Ari S.G.
        • Kavushansky A.
        • Ben-Shachar D.
        Perturbation in mitochondrial network dynamics and in complex I dependent cellular respiration in schizophrenia.
        Biol Psychiatry. 2011; 69: 980-988
        • van Kesteren C.F.
        • Gremmels H.
        • de Witte L.D.
        • Hol E.M.
        • Van Gool A.R.
        • Falkai P.G.
        • et al.
        Immune involvement in the pathogenesis of schizophrenia: A meta-analysis on postmortem brain studies.
        Transl Psychiatry. 2017; 7: e1075
        • Wilton D.K.
        • Dissing-Olesen L.
        • Stevens B.
        Neuron-glia signaling in synapse elimination.
        Annu Rev Neurosci. 2019; 42: 107-127
        • Hu H.
        • Gan J.
        • Jonas P.
        Fast-spiking, parvalbumin+ GABAergic interneurons: From cellular design to microcircuit function.
        Science. 2014; 345: 1255263
        • Kann O.
        • Papageorgiou I.E.
        • Draguhn A.
        Highly energized inhibitory interneurons are a central element for information processing in cortical networks.
        J Cereb Blood Flow Metab. 2014; 34: 1270-1282
        • Cabungcal J.H.
        • Steullet P.
        • Morishita H.
        • Kraftsik R.
        • Cuenod M.
        • Hensch T.K.
        • et al.
        Perineuronal nets protect fast-spiking interneurons against oxidative stress.
        Proc Natl Acad Sci U S A. 2013; 110: 9130-9135
        • Haslund-Vinding J.
        • McBean G.
        • Jaquet V.
        • Vilhardt F.
        NADPH oxidases in oxidant production by microglia: Activating receptors, pharmacology and association with disease.
        Br J Pharmacol. 2017; 174: 1733-1749
        • Roth A.D.
        • Nunez M.T.
        Oligodendrocytes: Functioning in a delicate balance between high metabolic requirements and oxidative damage.
        Adv Exp Med Biol. 2016; 949: 167-181
        • Monin A.
        • Baumann P.S.
        • Griffa A.
        • Xin L.
        • Mekle R.
        • Fournier M.
        • et al.
        Glutathione deficit impairs myelin maturation: Relevance for white matter integrity in schizophrenia patients.
        Mol Psychiatry. 2015; 20: 827-838
        • Steullet P.
        • Cabungcal J.H.
        • Monin A.
        • Dwir D.
        • O’Donnell P.
        • Cuenod M.
        • et al.
        Redox dysregulation, neuroinflammation, and NMDA receptor hypofunction: A “central hub” in schizophrenia pathophysiology?.
        Schizophr Res. 2016; 176: 41-51
        • Monin A.
        • Fournier M.
        • Baumann P.S.
        • Cuenod M.
        • Do K.Q.
        Role of redox dysregulation in white matter anomalies associated with schizophrenia.
        in: Pletnikov M. Waddington J. Modeling the Psychopathological Dimensions of Schizophrenia: From Molecules to Behavior. Academic Press, London2015: 481-500
        • Do K.Q.
        • Cabungcal J.H.
        • Frank A.
        • Steullet P.
        • Cuenod M.
        Redox dysregulation, neurodevelopment, and schizophrenia.
        Curr Opin Neurobiol. 2009; 19: 220-230
        • Baxter P.S.
        • Hardingham G.E.
        Adaptive regulation of the brain's antioxidant defences by neurons and astrocytes.
        Free Radic Biol Med. 2016; 100: 147-152
        • Tonelli C.
        • Chio I.I.C.
        • Tuveson D.A.
        Transcriptional regulation by Nrf2.
        Antioxid Redox Signal. 2018; 29: 1727-1745
        • Lipton S.A.
        • Choi Y.B.
        • Takahashi H.
        • Zhang D.
        • Li W.
        • Godzik A.
        • et al.
        Cysteine regulation of protein function—as exemplified by NMDA-receptor modulation.
        Trends Neurosci. 2002; 25: 474-480
        • Bodhinathan K.
        • Kumar A.
        • Foster T.C.
        Intracellular redox state alters NMDA receptor response during aging through Ca2+/calmodulin-dependent protein kinase II.
        J Neurosci. 2010; 30: 1914-1924
        • Baxter P.S.
        • Bell K.F.
        • Hasel P.
        • Kaindl A.M.
        • Fricker M.
        • Thomson D.
        • et al.
        Synaptic NMDA receptor activity is coupled to the transcriptional control of the glutathione system.
        Nat Commun. 2015; 6: 6761
        • Behrens M.M.
        • Ali S.S.
        • Dao D.N.
        • Lucero J.
        • Shekhtman G.
        • Quick K.L.
        • et al.
        Ketamine-induced loss of phenotype of fast-spiking interneurons is mediated by NADPH-oxidase.
        Science. 2007; 318: 1645-1647
        • Wang W.
        • Barger S.W.
        Cross-linking of serine racemase dimer by reactive oxygen species and reactive nitrogen species.
        J Neurosci Res. 2012; 90: 1218-1229
        • Steullet P.
        • Neijt H.C.
        • Cuenod M.
        • Do K.Q.
        Synaptic plasticity impairment and hypofunction of NMDA receptors induced by glutathione deficit: Relevance to schizophrenia.
        Neuroscience. 2006; 137: 807-819
        • Cabungcal J.H.
        • Steullet P.
        • Kraftsik R.
        • Cuenod M.
        • Do K.Q.
        Early-life insults impair parvalbumin interneurons via oxidative stress: Reversal by N-acetylcysteine.
        Biol Psychiatry. 2013; 73: 574-582
        • Steullet P.
        • Cabungcal J.H.
        • Kulak A.
        • Kraftsik R.
        • Chen Y.
        • Dalton T.P.
        • et al.
        Redox dysregulation affects the ventral but not dorsal hippocampus: Impairment of parvalbumin neurons, gamma oscillations, and related behaviors.
        J Neurosci. 2010; 30: 2547-2558
        • Fusar-Poli P.
        • Bonoldi I.
        • Yung A.R.
        • Borgwardt S.
        • Kempton M.J.
        • Valmaggia L.
        • et al.
        Predicting psychosis: Meta-analysis of transition outcomes in individuals at high clinical risk.
        Arch Gen Psychiatry. 2012; 69: 220-229
        • Perkins D.O.
        • Jeffries C.D.
        • Cornblatt B.A.
        • Woods S.W.
        • Addington J.
        • Bearden C.E.
        • et al.
        Severity of thought disorder predicts psychosis in persons at clinical high-risk.
        Schizophr Res. 2015; 169: 169-177
        • Reyes-Madrigal F.
        • Leon-Ortiz P.
        • Mao X.
        • Mora-Duran R.
        • Shungu D.C.
        • de la Fuente-Sandoval C.
        Striatal glutathione in first-episode psychosis patients measured in vivo with proton magnetic resonance spectroscopy.
        Arch Med Res. 2019; 50: 207-213
        • Das T.K.
        • Javadzadeh A.
        • Dey A.
        • Sabesan P.
        • Theberge J.
        • Radua J.
        • et al.
        Antioxidant defense in schizophrenia and bipolar disorder: A meta-analysis of MRS studies of anterior cingulate glutathione.
        Prog Neuropsychopharmacol Biol Psychiatry. 2019; 91: 94-102
        • Wang A.M.
        • Pradhan S.
        • Coughlin J.M.
        • Trivedi A.
        • DuBois S.L.
        • Crawford J.L.
        • et al.
        Assessing brain metabolism with 7-T proton magnetic resonance spectroscopy in patients with first-episode psychosis.
        JAMA Psychiatry. 2019; 76: 314-323
        • Do K.Q.
        • Trabesinger A.H.
        • Kirsten-Kruger M.
        • Lauer C.J.
        • Dydak U.
        • Hell D.
        • et al.
        Schizophrenia: Glutathione deficit in cerebrospinal fluid and prefrontal cortex in vivo.
        Eur J Neurosci. 2000; 12: 3721-3728
        • Kumar J.
        • Liddle E.B.
        • Fernandes C.C.
        • Palaniyappan L.
        • Hall E.L.
        • Robson S.E.
        • et al.
        Glutathione and glutamate in schizophrenia: A 7T MRS study.
        Mol Psychiatry. 2020; 25: 873-883
        • Sedlak T.W.
        • Paul B.D.
        • Parker G.M.
        • Hester L.D.
        • Snowman A.M.
        • Taniguchi Y.
        • et al.
        The glutathione cycle shapes synaptic glutamate activity.
        Proc Natl Acad Sci U S A. 2019; 116: 2701-2706
        • Rae C.D.
        • Williams S.R.
        Glutathione in the human brain: Review of its roles and measurement by magnetic resonance spectroscopy.
        Anal Biochem. 2017; 529: 127-143
        • Gawryluk J.W.
        • Wang J.F.
        • Andreazza A.C.
        • Shao L.
        • Young L.T.
        Decreased levels of glutathione, the major brain antioxidant, in post-mortem prefrontal cortex from patients with psychiatric disorders.
        Int J Neuropsychopharmacol. 2011; 14: 123-130
        • Yao J.K.
        • Leonard S.
        • Reddy R.
        Altered glutathione redox state in schizophrenia.
        Dis Markers. 2006; 22: 83-93
        • Kim S.Y.
        • Cohen B.M.
        • Chen X.
        • Lukas S.E.
        • Shinn A.K.
        • Yuksel A.C.
        • et al.
        Redox dysregulation in schizophrenia revealed by in vivo NAD+/NADH measurement.
        Schizophr Bull. 2017; 43: 197-204
        • Xin L.
        • Mekle R.
        • Fournier M.
        • Baumann P.S.
        • Ferrari C.
        • Alameda L.
        • et al.
        Genetic polymorphism associated prefrontal glutathione and its coupling with brain glutamate and peripheral redox status in early psychosis.
        Schizophr Bull. 2016; 42: 1185-1196
        • Coles L.D.
        • Tuite P.J.
        • Oz G.
        • Mishra U.R.
        • Kartha R.V.
        • Sullivan K.M.
        • et al.
        Repeated-dose oral N-acetylcysteine in Parkinson’s disease: Pharmacokinetics and effect on brain glutathione and oxidative stress.
        J Clin Pharmacol. 2018; 58: 158-167
        • Clark R.S.B.
        • Empey P.E.
        • Bayir H.
        • Rosario B.L.
        • Poloyac S.M.
        • Kochanek P.M.
        • et al.
        Phase I randomized clinical trial of N-acetylcysteine in combination with an adjuvant probenecid for treatment of severe traumatic brain injury in children.
        PLoS One. 2017; 12e180280
        • Reyes R.C.
        • Cittolin-Santos G.F.
        • Kim J.E.
        • Won S.J.
        • Brennan-Minnella A.M.
        • Katz M.
        • et al.
        Neuronal glutathione content and antioxidant capacity can be normalized in situ by N-acetyl cysteine concentrations attained in human cerebrospinal fluid.
        Neurotherapeutics. 2016; 13: 217-225
        • Moss H.G.
        • Brown T.R.
        • Wiest D.B.
        • Jenkins D.D.
        N-acetylcysteine rapidly replenishes central nervous system glutathione measured via magnetic resonance spectroscopy in human neonates with hypoxic-ischemic encephalopathy.
        J Cereb Blood Flow Metab. 2018; 38: 950-958
        • Conus P.
        • Seidman L.J.
        • Fournier M.
        • Xin L.
        • Cleusix M.
        • Baumann P.S.
        • et al.
        N-acetylcysteine in a double-blind randomized placebo-controlled trial: Toward biomarker-guided treatment in early psychosis.
        Schizophr Bull. 2018; 44: 317-327
        • Retsa C.
        • Knebel J.F.
        • Geiser E.
        • Ferrari C.
        • Jenni R.
        • Fournier M.
        • et al.
        Treatment in early psychosis with N-acetyl-cysteine for 6 months improves low-level auditory processing: Pilot study.
        Schizophr Res. 2018; 191: 80-86
        • Breier A.
        • Liffick E.
        • Hummer T.A.
        • Vohs J.L.
        • Yang Z.
        • Mehdiyoun N.F.
        • et al.
        Effects of 12-month, double-blind N-acetyl cysteine on symptoms, cognition and brain morphology in early phase schizophrenia spectrum disorders.
        Schizophr Res. 2018; 199: 395-402
        • Berk M.
        • Copolov D.
        • Dean O.
        • Lu K.
        • Jeavons S.
        • Schapkaitz I.
        • et al.
        N-acetyl cysteine as a glutathione precursor for schizophrenia—A double-blind, randomized, placebo-controlled trial.
        Biol Psychiatry. 2008; 64: 361-368
        • Sepehrmanesh Z.
        • Heidary M.
        • Akasheh N.
        • Akbari H.
        • Heidary M.
        Therapeutic effect of adjunctive N-acetyl cysteine (NAC) on symptoms of chronic schizophrenia: A double-blind, randomized clinical trial.
        Prog Neuropsychopharmacol Biol Psychiatry. 2018; 82: 289-296
        • Rapado-Castro M.
        • Dodd S.
        • Bush A.I.
        • Malhi G.S.
        • Skvarc D.R.
        • On Z.X.
        • et al.
        Cognitive effects of adjunctive N-acetyl cysteine in psychosis.
        Psychol Med. 2017; 47: 866-876
        • Farokhnia M.
        • Azarkolah A.
        • Adinehfar F.
        • Khodaie-Ardakani M.R.
        • Hosseini S.M.
        • Yekehtaz H.
        • et al.
        N-acetylcysteine as an adjunct to risperidone for treatment of negative symptoms in patients with chronic schizophrenia: A randomized, double-blind, placebo-controlled study.
        Clin Neuropharmacol. 2013; 36: 185-192
        • Mullier E.
        • Roine T.
        • Griffa A.
        • Xin L.
        • Baumann P.S.
        • Klauser P.
        • et al.
        N-acetyl-cysteine supplementation improves functional connectivity within the cingulate cortex in early psychosis: A pilot study.
        Int J Neuropsychopharmacol. 2019; 22: 478-487
        • Klauser P.
        • Xin L.
        • Fournier M.
        • Griffa A.
        • Cleusix M.
        • Jenni R.
        • et al.
        N-acetylcysteine add-on treatment leads to an improvement of fornix white matter integrity in early psychosis: A double-blind randomized placebo-controlled trial.
        Transl Psychiatry. 2018; 8: 220
        • Lavoie S.
        • Murray M.M.
        • Deppen P.
        • Knyazeva M.G.
        • Berk M.
        • Boulat O.
        • et al.
        Glutathione precursor, N-acetyl-cysteine, improves mismatch negativity in schizophrenia patients.
        Neuropsychopharmacology. 2008; 33: 2187-2199
        • Cadenhead K.S.
        • Minichino A.
        • Kelsven S.
        • Addington J.
        • Bearden C.
        • Cannon T.D.
        • et al.
        Metabolic abnormalities and low dietary omega 3 are associated with symptom severity and worse functioning prior to the onset of psychosis: Findings from the North American Prodrome Longitudinal Studies Consortium.
        Schizophr Res. 2019; 204: 96-103
        • Gysin R.
        • Kraftsik R.
        • Sandell J.
        • Bovet P.
        • Chappuis C.
        • Conus P.
        • et al.
        Impaired glutathione synthesis in schizophrenia: Convergent genetic and functional evidence.
        Proc Natl Acad Sci U S A. 2007; 104: 16621-16626
        • Gysin R.
        • Kraftsik R.
        • Boulat O.
        • Bovet P.
        • Conus P.
        • Comte-Krieger E.
        • et al.
        Genetic dysregulation of glutathione synthesis predicts alteration of plasma thiol redox status in schizophrenia.
        Antioxid Redox Signal. 2011; 15: 2003-2010
        • Schizophrenia Working Group of the Psychiatric Genomics Consortium
        Biological insights from 108 schizophrenia-associated genetic loci.
        Nature. 2014; 511: 421-427
        • Cardis R.
        • Cabungcal J.H.
        • Dwir D.
        • Do K.Q.
        • Steullet P.
        A lack of GluN2A-containing NMDA receptors confers a vulnerability to redox dysregulation: Consequences on parvalbumin interneurons, and their perineuronal nets.
        Neurobiol Dis. 2018; 109: 64-75
        • Grima G.
        • Benz B.
        • Parpura V.
        • Cuenod M.
        • Do K.Q.
        Dopamine-induced oxidative stress in neurons with glutathione deficit: Implication for schizophrenia.
        Schizophr Res. 2003; 62: 213-224
        • Wakamatsu K.
        • Nakao K.
        • Tanaka H.
        • Kitahori Y.
        • Tanaka Y.
        • Ojika M.
        • Ito S.
        The oxidative pathway to dopamine-protein conjugates and their pro-oxidant activities: Implications for the neurodegeneration of Parkinson’s disease.
        Int J Mol Sci. 2019; 20: 2575
        • Picard N.
        • Takesian A.E.
        • Fagiolini M.
        • Hensch T.K.
        NMDA 2A receptors in parvalbumin cells mediate sex-specific rapid ketamine response on cortical activity.
        Mol Psychiatry. 2019; 24: 828-838
        • Kosten L.
        • Verhaeghe J.
        • Verkerk R.
        • Thomae D.
        • De Picker L.
        • Wyffels L.
        • et al.
        Multiprobe molecular imaging of an NMDA receptor hypofunction rat model for glutamatergic dysfunction.
        Psychiatry Res Neuroimaging. 2016; 248: 1-11
        • Cabungcal J.H.
        • Counotte D.S.
        • Lewis E.
        • Tejeda H.A.
        • Piantadosi P.
        • Pollock C.
        • et al.
        Juvenile antioxidant treatment prevents adult deficits in a developmental model of schizophrenia.
        Neuron. 2014; 83: 1073-1084
        • Phensy A.
        • Duzdabanian H.E.
        • Brewer S.
        • Panjabi A.
        • Driskill C.
        • Berz A.
        • et al.
        Antioxidant treatment with N-acetyl cysteine prevents the development of cognitive and social behavioral deficits that result from perinatal ketamine treatment.
        Front Behav Neurosci. 2017; 11: 106
        • Phensy A.
        • Driskill C.
        • Lindquist K.
        • Guo L.
        • Jeevakumar V.
        • Fowler B.
        • et al.
        Antioxidant treatment in male mice prevents mitochondrial and synaptic changes in an NMDA receptor dysfunction model of schizophrenia.
        eNeuro. 2017; 4 (ENEURO.0081-17.2017)
        • Rao K.N.
        • Sentir A.M.
        • Engleman E.A.
        • Bell R.L.
        • Hulvershorn L.A.
        • Breier A.
        • et al.
        Toward early estimation and treatment of addiction vulnerability: Radial arm maze and N-acetyl cysteine before cocaine sensitization or nicotine self-administration in neonatal ventral hippocampal lesion rats.
        Psychopharmacology (Berl). 2016; 233: 3933-3945
        • Monte A.S.
        • Mello B.S.F.
        • Borella V.C.M.
        • da Silva Araujo T.
        • da Silva F.E.R.
        • Sousa F.C.F.
        • et al.
        Two-hit model of schizophrenia induced by neonatal immune activation and peripubertal stress in rats: Study of sex differences and brain oxidative alterations.
        Behav Brain Res. 2017; 331: 30-37
        • Swanepoel T.
        • Moller M.
        • Harvey B.H.
        N-acetyl cysteine reverses bio-behavioural changes induced by prenatal inflammation, adolescent methamphetamine exposure and combined challenges.
        Psychopharmacology (Berl). 2018; 235: 351-368
        • Almaguer-Melian W.
        • Cruz-Aguado R.
        • Bergado J.A.
        Synaptic plasticity is impaired in rats with a low glutathione content.
        Synapse. 2000; 38: 369-374
        • Cabungcal J.H.
        • Nicolas D.
        • Kraftsik R.
        • Cuenod M.
        • Do K.Q.
        • Hornung J.P.
        Glutathione deficit during development induces anomalies in the rat anterior cingulate GABAergic neurons: Relevance to schizophrenia.
        Neurobiol Dis. 2006; 22: 624-637
        • das Neves Duarte J.M.
        • Kulak A.
        • Gholam-Razaee M.M.
        • Cuenod M.
        • Gruetter R.
        • Do K.Q.
        N-acetylcysteine normalizes neurochemical changes in the glutathione-deficient schizophrenia mouse model during development.
        Biol Psychiatry. 2012; 71: 1006-1014
        • Kulak A.
        • Cuenod M.
        • Do K.Q.
        Behavioral phenotyping of glutathione-deficient mice: Relevance to schizophrenia and bipolar disorder.
        Behav Brain Res. 2012; 226: 563-570
        • Steullet P.
        • Cabungcal J.
        • Kulak A.
        • Cuenod M.
        • Schenk F.
        • Do K.
        Glutathione deficit in animal models of schizophrenia.
        in: O’Donnell P. Animal Models of Schizophrenia and Related Disorders. Humana, Totowa, NJ2011: 149-188
        • Cabungcal J.H.
        • Steullet P.
        • Kraftsik R.
        • Cuenod M.
        • Do K.Q.
        A developmental redox dysregulation leads to spatio-temporal deficit of parvalbumin neuron circuitry in a schizophrenia mouse model.
        Schizophr Res. 2019; 213: 96-106
        • Gasbarri A.
        • Sulli A.
        • Packard M.G.
        The dopaminergic mesencephalic projections to the hippocampal formation in the rat.
        Prog Neuropsychopharmacol Biol Psychiatry. 1997; 21: 1-22
        • Dwir D.
        • Giangreco B.
        • Xin L.
        • Tenenbaum L.
        • Cabungcal J.H.
        • Steullet P.
        • et al.
        MMP9/RAGE pathway overactivation mediates redox dysregulation and neuroinflammation, leading to inhibitory/excitatory imbalance: A reverse translation study in schizophrenia patients [published online ahead of print Mar 25].
        Mol Psychiatry. 2019;
        • Lodge D.J.
        • Grace A.A.
        Hippocampal dysregulation of dopamine system function and the pathophysiology of schizophrenia.
        Trends Pharmacol Sci. 2011; 32: 507-513
        • Grace A.A.
        Dopamine system dysregulation and the pathophysiology of schizophrenia: Insights from the methylazoxymethanol acetate model.
        Biol Psychiatry. 2017; 81: 5-8
        • Van Wart H.E.
        • Birkedal-Hansen H.
        The cysteine switch: A principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family.
        Proc Natl Acad Sci U S A. 1990; 87: 5578-5582
        • Khandaker G.M.
        • Cousins L.
        • Deakin J.
        • Lennox B.R.
        • Yolken R.
        • Jones P.B.
        Inflammation and immunity in schizophrenia: Implications for pathophysiology and treatment.
        Lancet Psychiatry. 2015; 2: 258-270
        • Elfawy H.A.
        • Das B.
        Crosstalk between mitochondrial dysfunction, oxidative stress, and age related neurodegenerative disease: Etiologies and therapeutic strategies.
        Life Sci. 2019; 218: 165-184
        • Kim Y.
        • Vadodaria K.C.
        • Lenkei Z.
        • Kato T.
        • Gage F.H.
        • Marchetto M.C.
        • et al.
        Mitochondria, metabolism, and redox mechanisms in psychiatric disorders.
        Antioxid Redox Signal. 2019; 31: 275-317
        • Cioffi F.
        • Adam R.H.I.
        • Broersen K.
        Molecular mechanisms and genetics of oxidative stress in Alzheimer’s disease.
        J Alzheimers Dis. 2019; 72: 981-1017
        • Beck K.
        • Andreou C.
        • Studerus E.
        • Heitz U.
        • Ittig S.
        • Leanza L.
        • et al.
        Clinical and functional long-term outcome of patients at clinical high risk (CHR) for psychosis without transition to psychosis: A systematic review.
        Schizophr Res. 2019; 210: 39-47
        • Sedlak T.W.
        • Nucifora L.G.
        • Koga M.
        • Shaffer L.S.
        • Higgs C.
        • Tanaka T.
        • et al.
        Sulforaphane augments glutathione and influences brain metabolites in human subjects: A clinical pilot study.
        Mol Neuropsychiatry. 2018; 3: 214-222
        • Taguchi K.
        • Motohashi H.
        • Yamamoto M.
        Molecular mechanisms of the Keap1-Nrf2 pathway in stress response and cancer evolution.
        Genes Cells. 2011; 16: 123-140
        • Talukder I.
        • Kazi R.
        • Wollmuth L.P.
        GluN1-specific redox effects on the kinetic mechanism of NMDA receptor activation.
        Biophys J. 2011; 101: 2389-2398
        • Kazi R.
        • Dai J.
        • Sweeney C.
        • Zhou H.X.
        • Wollmuth L.P.
        Mechanical coupling maintains the fidelity of NMDA receptor-mediated currents.
        Nat Neurosci. 2014; 17: 914-922
        • Belforte J.E.
        • Zsiros V.
        • Sklar E.R.
        • Jiang Z.
        • Yu G.
        • Li Y.
        • et al.
        Postnatal NMDA receptor ablation in corticolimbic interneurons confers schizophrenia-like phenotypes.
        Nat Neurosci. 2010; 13: 76-83
        • Drose S.
        • Brandt U.
        • Wittig I.
        Mitochondrial respiratory chain complexes as sources and targets of thiol-based redox-regulation.
        Biochim Biophys Acta. 2014; 1844: 1344-1354