Advertisement

MEF2C Hypofunction in Neuronal and Neuroimmune Populations Produces MEF2C Haploinsufficiency Syndrome–like Behaviors in Mice

      Abstract

      Background

      Microdeletions of the MEF2C gene are linked to a syndromic form of autism termed MEF2C haploinsufficiency syndrome (MCHS). MEF2C hypofunction in neurons is presumed to underlie most of the symptoms of MCHS. However, it is unclear in which cell populations MEF2C functions to regulate neurotypical development.

      Methods

      Multiple biochemical, molecular, electrophysiological, behavioral, and transgenic mouse approaches were used to characterize MCHS-relevant synaptic, behavioral, and gene expression changes in mouse models of MCHS.

      Results

      We showed that MCHS-associated missense mutations cluster in the conserved DNA binding domain and disrupt MEF2C DNA binding. DNA binding–deficient global Mef2c heterozygous mice (Mef2c-Het) displayed numerous MCHS-related behaviors, including autism-related behaviors, changes in cortical gene expression, and deficits in cortical excitatory synaptic transmission. We detected hundreds of dysregulated genes in Mef2c-Het cortex, including significant enrichments of autism risk and excitatory neuron genes. In addition, we observed an enrichment of upregulated microglial genes, but this was not due to neuroinflammation in the Mef2c-Het cortex. Importantly, conditional Mef2c heterozygosity in forebrain excitatory neurons reproduced a subset of the Mef2c-Het phenotypes, while conditional Mef2c heterozygosity in microglia reproduced social deficits and repetitive behavior.

      Conclusions

      Taken together, our findings show that mutations found in individuals with MCHS disrupt the DNA-binding function of MEF2C, and DNA binding–deficient Mef2c global heterozygous mice display numerous MCHS-related phenotypes, including excitatory neuron and microglia gene expression changes. Our findings suggest that MEF2C regulates typical brain development and function through multiple cell types, including excitatory neuronal and neuroimmune populations.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Assali A.
        • Harrington A.J.
        • Cowan C.W.
        Emerging roles for MEF2 in brain development and mental disorders.
        Curr Opin Neurobiol. 2019; 59: 49-58
        • Harrington A.J.
        • Raissi A.
        • Rajkovich K.
        • Berto S.
        • Kumar J.
        • Molinaro G.
        • et al.
        MEF2C regulates cortical inhibitory and excitatory synapses and behaviors relevant to neurodevelopmental disorders.
        Elife. 2016; 5: e20059
        • Morrow E.M.
        • Yoo S.Y.
        • Flavell S.W.
        • Kim T.K.
        • Lin Y.
        • Hill R.S.
        • et al.
        Identifying autism loci and genes by tracing recent shared ancestry.
        Science. 2008; 321: 218-223
        • Flavell S.W.
        • Kim T.K.
        • Gray J.M.
        • Harmin D.A.
        • Hemberg M.
        • Hong E.J.
        • et al.
        Genome-wide analysis of MEF2 transcriptional program reveals synaptic target genes and neuronal activity-dependent polyadenylation site selection.
        Neuron. 2008; 60: 1022-1038
        • Flavell S.W.
        • Cowan C.W.
        • Kim T.K.
        • Greer P.L.
        • Lin Y.
        • Paradis S.
        • et al.
        Activity-dependent regulation of MEF2 transcription factors suppresses excitatory synapse number.
        Science. 2006; 311: 1008-1012
        • Pfeiffer B.E.
        • Zang T.
        • Wilkerson J.R.
        • Taniguchi M.
        • Maksimova M.A.
        • Smith L.N.
        • et al.
        Fragile X mental retardation protein is required for synapse elimination by the activity-dependent transcription factor MEF2.
        Neuron. 2010; 66: 191-197
        • Tsai N.P.
        • Wilkerson J.R.
        • Guo W.
        • Maksimova M.A.
        • DeMartino G.N.
        • Cowan C.W.
        • et al.
        Multiple autism-linked genes mediate synapse elimination via proteasomal degradation of a synaptic scaffold PSD-95.
        Cell. 2012; 151: 1581-1594
        • Zang T.
        • Maksimova M.A.
        • Cowan C.W.
        • Bassel-Duby R.
        • Olson E.N.
        • Huber K.M.
        Postsynaptic FMRP bidirectionally regulates excitatory synapses as a function of developmental age and MEF2 activity.
        Mol Cell Neurosci. 2013; 56: 39-49
        • Barbosa A.C.
        • Kim M.S.
        • Ertunc M.
        • Adachi M.
        • Nelson E.D.
        • McAnally J.
        • et al.
        MEF2C, a transcription factor that facilitates learning and memory by negative regulation of synapse numbers and function.
        Proc Natl Acad Sci U S A. 2008; 105: 9391-9396
        • Li H.
        • Radford J.C.
        • Ragusa M.J.
        • Shea K.L.
        • McKercher S.R.
        • Zaremba J.D.
        • et al.
        Transcription factor MEF2C influences neural stem/progenitor cell differentiation and maturation in vivo.
        Proc Natl Acad Sci U S A. 2008; 105: 9397-9402
        • Rajkovich K.E.
        • Loerwald K.W.
        • Hale C.F.
        • Hess C.T.
        • Gibson J.R.
        • Huber K.M.
        Experience-dependent and differential regulation of local and long-range excitatory neocortical circuits by postsynaptic Mef2c.
        Neuron. 2017; 93: 48-56
        • Adachi M.
        • Lin P.-Y.
        • Pranav H.
        • Monteggia L.M.
        Postnatal loss of Mef2c results in dissociation of effects on synapse number and learning and memory.
        Biol Psychiatry. 2016; 80: 140-148
        • Zhang Y.
        • Chen K.
        • Sloan S.A.
        • Bennett M.L.
        • Scholze A.R.
        • Keeffe S.
        • et al.
        An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex.
        J Neurosci. 2014; 34: 11929-11947
        • Deczkowska A.
        • Matcovitch-Natan O.
        • Tsitsou-Kampeli A.
        • Ben-Hamo S.
        • Dvir-Szternfeld R.
        • Spinrad A.
        • et al.
        Mef2C restrains microglial inflammatory response and is lost in brain ageing in an IFN-I-dependent manner.
        Nat Commun. 2017; 8: 717
        • Gosselin D.
        • Skola D.
        • Coufal N.G.
        • Holtman I.R.
        • Schlachetzki J.C.M.
        • Sajti E.
        • et al.
        An environment-dependent transcriptional network specifies human microglia identity.
        Science. 2017; 356eaal3222
        • Schafer D.P.
        • Lehrman E.K.
        • Kautzman A.G.
        • Koyama R.
        • Mardinly A.R.
        • Yamasaki R.
        • et al.
        Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner.
        Neuron. 2012; 74: 691-705
        • Paolicelli R.C.
        • Bolasco G.
        • Pagani F.
        • Maggi L.
        • Scianni M.
        • Panzanelli P.
        • et al.
        Synaptic pruning by microglia is necessary for normal brain development.
        Science. 2011; 333: 1456
        • Zhan Y.
        • Paolicelli R.C.
        • Sforazzini F.
        • Weinhard L.
        • Bolasco G.
        • Pagani F.
        • et al.
        Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behavior.
        Nat Neurosci. 2014; 17: 400-406
        • Stevens B.
        • Allen N.J.
        • Vazquez L.E.
        • Howell G.R.
        • Christopherson K.S.
        • Nouri N.
        • et al.
        The classical complement cascade mediates CNS synapse elimination.
        Cell. 2007; 131: 1164-1178
        • Parkhurst C.N.
        • Yang G.
        • Ninan I.
        • Savas J.N.
        • Yates 3rd, J.R.
        • Lafaille J.J.
        • et al.
        Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor.
        Cell. 2013; 155: 1596-1609
        • Pont-Lezica L.
        • Beumer W.
        • Colasse S.
        • Drexhage H.
        • Versnel M.
        • Bessis A.
        Microglia shape corpus callosum axon tract fasciculation: Functional impact of prenatal inflammation.
        Eur J Neurosci. 2014; 39: 1551-1557
        • Hagemeyer N.
        • Hanft K.M.
        • Akriditou M.A.
        • Unger N.
        • Park E.S.
        • Stanley E.R.
        • et al.
        Microglia contribute to normal myelinogenesis and to oligodendrocyte progenitor maintenance during adulthood.
        Acta Neuropathol. 2017; 134: 441-458
        • Shigemoto-Mogami Y.
        • Hoshikawa K.
        • Goldman J.E.
        • Sekino Y.
        • Sato K.
        Microglia enhance neurogenesis and oligodendrogenesis in the early postnatal subventricular zone.
        J Neurosci. 2014; 34: 2231
        • Sierra A.
        • Encinas J.M.
        • Deudero J.J.P.
        • Chancey J.H.
        • Enikolopov G.
        • Overstreet-Wadiche L.S.
        • et al.
        Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis.
        Cell Stem Cell. 2010; 7: 483-495
        • Li Q.
        • Barres B.A.
        Microglia and macrophages in brain homeostasis and disease.
        Nat Rev Immunol. 2018; 18: 225-242
        • Schafer D.P.
        • Heller C.T.
        • Gunner G.
        • Heller M.
        • Gordon C.
        • Hammond T.
        • et al.
        Microglia contribute to circuit defects in Mecp2 null mice independent of microglia-specific loss of Mecp2 expression.
        Elife. 2016; 5: e15224
        • Derecki N.C.
        • Cronk J.C.
        • Lu Z.
        • Xu E.
        • Abbott S.B.
        • Guyenet P.G.
        • et al.
        Wild-type microglia arrest pathology in a mouse model of Rett syndrome.
        Nature. 2012; 484: 105-109
        • Horiuchi M.
        • Smith L.
        • Maezawa I.
        • Jin L.W.
        CX3CR1 ablation ameliorates motor and respiratory dysfunctions and improves survival of a Rett syndrome mouse model.
        Brain Behav Immun. 2017; 60: 106-116
        • Wang J.
        • Wegener J.E.
        • Huang T.W.
        • Sripathy S.
        • De Jesus-Cortes H.
        • Xu P.
        • et al.
        Wild-type microglia do not reverse pathology in mouse models of Rett syndrome.
        Nature. 2015; 521: E1
        • Le Meur N.
        • Holder-Espinasse M.
        • Jaillard S.
        • Goldenberg A.
        • Joriot S.
        • Amati-Bonneau P.
        • et al.
        MEF2C haploinsufficiency caused by either microdeletion of the 5q14.3 region or mutation is responsible for severe mental retardation with stereotypic movements, epilepsy and/or cerebral malformations.
        J Med Genet. 2010; 47: 22-29
        • Zweier M.
        • Gregor A.
        • Zweier C.
        • Engels H.
        • Sticht H.
        • Wohlleber E.
        • et al.
        Mutations in MEF2C from the 5q14.3q15 microdeletion syndrome region are a frequent cause of severe mental retardation and diminish MECP2 and CDKL5 expression.
        Hum Mutat. 2010; 31: 722-733
        • Vrecar I.
        • Innes J.
        • Jones E.A.
        • Kingston H.
        • Reardon W.
        • Kerr B.
        • et al.
        Further clinical delineation of the MEF2C haploinsufficiency syndrome: Report on new cases and literature review of severe neurodevelopmental disorders presenting with seizures, absent speech, and involuntary movements.
        J Pediatr Gene. 2017; 6: 129-141
        • Paciorkowski A.R.
        • Traylor R.N.
        • Rosenfeld J.A.
        • Hoover J.M.
        • Harris C.J.
        • Winter S.
        • et al.
        MEF2C haploinsufficiency features consistent hyperkinesis, variable epilepsy, and has a role in dorsal and ventral neuronal developmental pathways.
        Neurogenetics. 2013; 14: 99-111
        • Zweier M.
        • Rauch A.
        The MEF2C-related and 5q14.3q15 microdeletion syndrome.
        Mol Syndromol. 2012; 2: 164-170
        • Mikhail F.M.
        • Lose E.J.
        • Robin N.H.
        • Descartes M.D.
        • Rutledge K.D.
        • Rutledge S.L.
        • et al.
        Clinically relevant single gene or intragenic deletions encompassing critical neurodevelopmental genes in patients with developmental delay, mental retardation, and/or autism spectrum disorders.
        Am J Med Genet A. 2011; 155A: 2386-2396
        • Novara F.
        • Beri S.
        • Giorda R.
        • Ortibus E.
        • Nageshappa S.
        • Darra F.
        • et al.
        Refining the phenotype associated with MEF2C haploinsufficiency.
        Clin Genet. 2010; 78: 471-477
        • Engels H.
        • Wohlleber E.
        • Zink A.
        • Hoyer J.
        • Ludwig K.U.
        • Brockschmidt F.F.
        • et al.
        A novel microdeletion syndrome involving 5q14.3-q15: Clinical and molecular cytogenetic characterization of three patients.
        Eur J Hum Genet. 2009; 17: 1592-1599
        • Berland S.
        • Houge G.
        Late-onset gain of skills and peculiar jugular pit in an 11-year-old girl with 5q14.3 microdeletion including MEF2C.
        Clin Dysmorphol. 2010; 19: 222-224
        • Bienvenu T.
        • Diebold B.
        • Chelly J.
        • Isidor B.
        Refining the phenotype associated with MEF2C point mutations.
        Neurogenetics. 2013; 14: 71-75
        • Tonk V.
        • Kyhm J.H.
        • Gibson C.E.
        • Wilson G.N.
        Interstitial deletion 5q14.3q21.3 with MEF2C haploinsufficiency and mild phenotype: When more is less.
        Am J Med Genet A. 2011; 155A: 1437-1441
        • Velmeshev D.
        • Schirmer L.
        • Jung D.
        • Haeussler M.
        • Perez Y.
        • Mayer S.
        • et al.
        Single-cell genomics identifies cell type-specific molecular changes in autism.
        Science. 2019; 364: 685-689
        • Gorski J.A.
        • Talley T.
        • Qiu M.
        • Puelles L.
        • Rubenstein J.L.R.
        • Jones K.R.
        Cortical excitatory neurons and glia, but not GABAergic neurons, are produced in the Emx1-expressing lineage.
        J Neurosci. 2002; 22: 6309-6314
        • Tu S.
        • Akhtar M.W.
        • Escorihuela R.M.
        • Amador-Arjona A.
        • Swarup V.
        • Parker J.
        • et al.
        NitroSynapsin therapy for a mouse MEF2C haploinsufficiency model of human autism.
        Nat Commun. 2017; 8: 1488
        • Fioravante D.
        • Regehr W.G.
        Short-term forms of presynaptic plasticity.
        Curr Opin Neurobiol. 2011; 21: 269-274
        • Gandal M.J.
        • Zhang P.
        • Hadjimichael E.
        • Walker R.L.
        • Chen C.
        • Liu S.
        • et al.
        Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder.
        Science. 2018; 362: eaat8127
        • Saunders A.
        • Macosko E.Z.
        • Wysoker A.
        • Goldman M.
        • Krienen F.M.
        • de Rivera H.
        • et al.
        Molecular diversity and specializations among the cells of the adult mouse brain.
        Cell. 2018; 174: 1015-1030.e1016
        • Telese F.
        • Ma Q.
        • Perez P.M.
        • Notani D.
        • Oh S.
        • Li W.
        • et al.
        LRP8-reelin-regulated neuronal enhancer signature underlying learning and memory formation.
        Neuron. 2015; 86: 696-710
        • Ito D.
        • Imai Y.
        • Ohsawa K.
        • Nakajima K.
        • Fukuuchi Y.
        • Kohsaka S.
        Microglia-specific localisation of a novel calcium binding protein.
        Iba1. Mol Brain Res. 1998; 57: 1-9
        • Ito D.
        • Tanaka K.
        • Suzuki S.
        • Dembo T.
        • Fukuuchi Y.
        Enhanced expression of Iba1, ionized calcium-binding adapter molecule 1, after transient focal cerebral ischemia in rat brain.
        Stroke. 2001; 32: 1208-1215
        • Bialas A.R.
        • Stevens B.
        TGF-β signaling regulates neuronal C1q expression and developmental synaptic refinement.
        Nat Neurosci. 2013; 16: 1773
        • Odell D.
        • Maciulis A.
        • Cutler A.
        • Warren L.
        • McMahon W.M.
        • Coon H.
        • et al.
        Confirmation of the association of the C4B null allele in autism.
        Hum Immunol. 2005; 66: 140-145
        • Sekar A.
        • Bialas A.R.
        • de Rivera H.
        • Davis A.
        • Hammond T.R.
        • Kamitaki N.
        • et al.
        Schizophrenia risk from complex variation of complement component 4.
        Nature. 2016; 530: 177
        • Kamath S.P.
        • Chen A.I.
        Myocyte enhancer factor 2c regulates dendritic complexity and connectivity of cerebellar purkinje cells.
        Mol Neurobiol. 2019; 56: 4102-4119
        • Mayer C.
        • Hafemeister C.
        • Bandler R.C.
        • Machold R.
        • Batista Brito R.
        • Jaglin X.
        • et al.
        Developmental diversification of cortical inhibitory interneurons.
        Nature. 2018; 555: 457-462
        • Li Q.
        • Cheng Z.
        • Zhou L.
        • Darmanis S.
        • Neff N.F.
        • Okamoto J.
        • et al.
        Developmental heterogeneity of microglia and brain myeloid cells revealed by deep single-cell RNA sequencing.
        Neuron. 2019; 101: 207-223.e210
        • Hammond T.R.
        • Dufort C.
        • Dissing-Olesen L.
        • Giera S.
        • Young A.
        • Wysoker A.
        • et al.
        Single-cell RNA sequencing of microglia throughout the mouse lifespan and in the injured brain reveals complex cell-state changes.
        Immunity. 2019; 50: 253-271.e256
        • McKinsey T.A.
        • Zhang C.L.
        • Olson E.N.
        MEF2: A calcium-dependent regulator of cell division, differentiation and death.
        Trends Biochem Sci. 2002; 27: 40-47
        • Ataman B.
        • Boulting G.L.
        • Harmin D.A.
        • Yang M.G.
        • Baker-Salisbury M.
        • Yap E.L.
        • et al.
        Evolution of Osteocrin as an activity-regulated factor in the primate brain.
        Nature. 2016; 539: 242-247
        • Hoogland I.C.
        • Houbolt C.
        • van Westerloo D.J.
        • van Gool W.A.
        • van de Beek D.
        Systemic inflammation and microglial activation: Systematic review of animal experiments.
        J Neuroinflammation. 2015; 12: 114
        • Wright-Jin E.C.
        • Gutmann D.H.
        Microglia as dynamic cellular mediators of brain function.
        Trends Mol Med. 2019; 25: 967-979
        • Lenz K.M.
        • Nugent B.M.
        • Haliyur R.
        • McCarthy M.M.
        Microglia are essential to masculinization of brain and behavior.
        J Neurosci. 2013; 33: 2761
        • Smith C.J.
        • Bilbo S.D.
        Microglia sculpt sex differences in social behavior.
        Neuron. 2019; 102: 275-277
        • Villa A.
        • Gelosa P.
        • Castiglioni L.
        • Cimino M.
        • Rizzi N.
        • Pepe G.
        • et al.
        Sex-specific features of microglia from adult mice.
        Cell Rep. 2018; 23: 3501-3511
        • Lyons M.R.
        • Schwarz C.M.
        • West A.E.
        Members of the myocyte enhancer factor 2 transcription factor family differentially regulate Bdnf transcription in response to neuronal depolarization.
        J Neurosci. 2012; 32: 12780-12785
        • Kang J.
        • Gocke C.B.
        • Yu H.
        Phosphorylation-facilitated sumoylation of MEF2C negatively regulates its transcriptional activity.
        BMC Biochem. 2006; 7: 5
        • Pulipparacharuvil S.
        • Renthal W.
        • Hale C.F.
        • Taniguchi M.
        • Xiao G.
        • Kumar A.
        • et al.
        Cocaine regulates MEF2 to control synaptic and behavioral plasticity.
        Neuron. 2008; 59: 621-633