Advertisement

Acetylcholine Muscarinic M4 Receptors as a Therapeutic Target for Alcohol Use Disorder: Converging Evidence From Humans and Rodents

Published:February 28, 2020DOI:https://doi.org/10.1016/j.biopsych.2020.02.019

      Abstract

      Background

      Alcohol use disorder (AUD) is a major socioeconomic burden on society, and current pharmacotherapeutic treatment options are inadequate. Aberrant alcohol use and seeking alters frontostriatal function.

      Methods

      We performed genome-wide RNA sequencing and subsequent quantitative polymerase chain reaction and receptor binding validation in the caudate–putamen of human AUD samples to identify potential therapeutic targets. We then back-translated our top candidate targets into a rodent model of long-term alcohol consumption to assess concordance of molecular adaptations in the rat striatum. Finally, we adopted rat behavioral models of alcohol intake and seeking to validate a potential therapeutic target.

      Results

      We found that G protein–coupled receptors were the top canonical pathway differentially regulated in individuals with AUD. The M4 muscarinic acetylcholine receptor (mAChR) was downregulated at the gene and protein levels in the putamen, but not in the caudate, of AUD samples. We found concordant downregulation of the M4 mAChR, specifically on dopamine D1 receptor–expressing medium spiny neurons in the rat dorsolateral striatum. Systemic administration of the selective M4 mAChR positive allosteric modulator, VU0467154, reduced home cage and operant alcohol self-administration, motivation to obtain alcohol, and cue-induced reinstatement of alcohol seeking in rats. Local microinjections of VU0467154 in the rat dorsolateral striatum reduced alcohol self-administration and cue-induced reinstatement of alcohol seeking.

      Conclusions

      Collectively, these results identify the M4 mAChR as a potential therapeutic target for the treatment of AUD and the D1 receptor–positive medium spiny neurons in the dorsolateral striatum as a key site mediating the actions of M4 mAChR in relation to alcohol consumption and seeking.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Litten R.Z.
        • Ryan M.L.
        • Falk D.E.
        • Reilly M.
        • Fertig J.B.
        • Koob G.F.
        Heterogeneity of alcohol use disorder: Understanding mechanisms to advance personalized treatment.
        Alcohol Clin Exp Res. 2015; 39: 579-584
        • Litten R.Z.
        • Falk D.E.
        • Ryan M.L.
        • Fertig J.B.
        Discovery, development, and adoption of medications to treat alcohol use disorder: Goals for the phases of medications development.
        Alcohol Clin Exp Res. 2016; 40: 1368-1379
        • Abrahao K.P.
        • Salinas A.G.
        • Lovinger D.M.
        Alcohol and the brain: Neuronal molecular targets, synapses, and circuits.
        Neuron. 2017; 96: 1223-1238
        • Walker L.C.
        • Lawrence A.J.
        Investigational drug therapies in phase I and phase II clinical trials for alcohol use disorders.
        Expert Opin Investig Drugs. 2018; 27: 677-690
        • Arrowsmith J.
        • Miller P.
        Trial watch: Phase II and phase III attrition rates 2011–2012.
        Nat Rev Drug Discov. 2013; 10: 328-329
        • Everitt B.J.
        • Robbins T.W.
        Neural systems of reinforcement for drug addiction: From actions to habits to compulsion.
        Nat Neurosci. 2005; 8: 1481-1489
        • Kalivas P.
        • Volkow N.
        • Seamans J.
        Unmanageable motivation in addiction: A pathology in prefrontal-accumbens glutamate transmission.
        Neuron. 2005; 45: 647-650
        • Koob G.F.
        • Volkow N.D.
        Neurocircuitry of addiction.
        Neuropsychopharmacology. 2010; 35: 217-238
        • Vollstädt-Klein S.
        • Wichert S.
        • Rabinstein J.
        • Bühler M.
        • Klein O.
        • Ende G.
        • et al.
        Initial, habitual and compulsive alcohol use is characterized by a shift of cue processing from ventral to dorsal striatum.
        Addiction. 2010; 105: 1741-1749
        • Corbit L.H.
        • Nie H.
        • Janak P.H.
        Habitual alcohol seeking: Time course and the contribution of subregions of the dorsal striatum.
        Biol Psychiatry. 2012; 72: 389-395
        • Grodin E.N.
        • Sussman L.
        • Sundby K.
        • Brennan G.M.
        • Diazgranados N.
        • Heilig M.
        • et al.
        Neural correlates of compulsive alcohol seeking in heavy drinkers.
        Biol Psychiatry Cogn Neurosci Neuroimaging. 2018; 3: 1022-1031
        • Pratt W.E.
        • Kelley A.E.
        Nucleus accumbens acetylcholine regulates appetitive learning and motivation for food via activation of muscarinic receptors.
        Behav Neurosci. 2004; 118: 730-739
        • Jeon J.
        • Dencker D.
        • Wörtwein G.
        • Woldbye D.P.
        • Cui Y.
        • Davis A.A.
        • et al.
        A subpopulation of neuronal M4 muscarinic acetylcholine receptors plays a critical role in modulating dopamine-dependent behaviors.
        J Neurosci. 2010; 30: 2396-2405
        • Threlfell S.
        • Clements M.A.
        • Khodai T.
        • Pienaar I.S.
        • Exley R.
        • Wess J.
        • et al.
        Striatal muscarinic receptors promote activity dependence of dopamine transmission via distinct receptor subtypes on cholinergic interneurons in ventral versus dorsal striatum.
        J Neurosci. 2010; 30: 3398-3408
        • Sulzer D.
        • Cragg S.J.
        • Rice M.E.
        Striatal dopamine neurotransmission: Regulation of release and uptake.
        Basal Ganglia. 2016; 6: 123-148
        • Foster D.J.
        • Wilson J.M.
        • Remke D.H.
        • Mahmood M.S.
        • Uddin M.J.
        • Wess J.
        • et al.
        Antipsychotic-like effects of M4 positive allosteric modulators are mediated by CB2 receptor-dependent inhibition of dopamine release.
        Neuron. 2016; 91: 1244-1252
        • Cragg S.J.
        • Exley R.
        • Clements M.A.
        Striatal acetylcholine control of reward-related dopamine signalling.
        in: Bolam J.P. Ingham C.A. Magill P.J. The Basal Ganglia VIII. Springer, New York2005: 99-108
        • Bender A.M.
        • Garrison A.T.
        • Lindsley C.W.
        The muscarinic acetylcholine receptor M5: Therapeutic implications and allosteric modulation.
        ACS Chem Neurosci. 2018; 10: 1025-1034
        • Berizzi A.E.
        • Perry C.J.
        • Shackleford D.M.
        • Lindsley C.W.
        • Jones C.K.
        • Chen N.A.
        • et al.
        Muscarinic M5 receptors modulate ethanol seeking in rats.
        Neuropsychopharmacology. 2018; 43: 1510-1517
        • Maksymetz J.
        • Joffe M.E.
        • Moran S.P.
        • Stansley B.J.
        • Li B.
        • Temple K.
        • et al.
        M1 muscarinic receptors modulate fear-related inputs to the prefrontal cortex: Implications for novel treatments of posttraumatic stress disorder.
        Biol Psychiatry. 2019; 85: 989-1000
        • Stoll K.
        • Hart R.
        • Lindsley C.W.
        • Thomsen M.
        Effects of muscarinic M1 and M4 acetylcholine receptor stimulation on extinction and reinstatement of cocaine seeking in male mice, independent of extinction learning.
        Psychopharmacology. 2018; 235: 815-827
        • Langmead C.J.
        • Watson J.
        • Reavill C.
        Muscarinic acetylcholine receptors as CNS drug targets.
        Pharmacol Ther. 2008; 117: 232-243
        • Matsui M.
        • Yamada S.
        • Oki T.
        • Manabe T.
        • Taketo M.M.
        • Ehlert F.J.
        Functional analysis of muscarinic acetylcholine receptors using knockout mice.
        Life Sci. 2004; 75: 2971-2981
        • Bernard V.
        • Levey A.I.
        • Bloch B.
        Regulation of the subcellular distribution of m4 muscarinic acetylcholine receptors in striatal neurons in vivo by the cholinergic environment: Evidence for regulation of cell surface receptors by endogenous and exogenous stimulation.
        J Neurosci. 1999; 19: 10237-10249
        • Ince E.
        • Ciliax B.J.
        • Levey A.I.
        Differential expression of D1 and D2 dopamine and m4 muscarinic acetylcholine receptor proteins in identified striatonigral neurons.
        Synapse. 1997; 27: 357-366
        • Weiner D.M.
        • Levey A.I.
        • Brann M.R.
        Expression of muscarinic acetylcholine and dopamine receptor mRNAs in rat basal ganglia.
        Proc Natl Acad Sci U S A. 1990; 87: 7050-7054
        • Schmidt L.S.
        • Thomsen M.
        • Weikop P.
        • Dencker D.
        • Wess J.
        • Woldbye D.P.
        • et al.
        Increased cocaine self-administration in M4 muscarinic acetylcholine receptor knockout mice.
        Psychopharmacology. 2011; 216: 367-378
        • de la Cour C.
        • Sørensen G.
        • Wortwein G.
        • Weikop P.
        • Dencker D.
        • Fink-Jensen A.
        • et al.
        Enhanced self-administration of alcohol in muscarinic acetylcholine M4 receptor knockout mice.
        Eur J Pharmacol. 2015; 746: 1-5
        • Levran O.
        • Randesi M.
        • Peles E.
        • Correa da Rosa J.
        • Ott J.
        • Rotrosen J.
        • et al.
        African-specific variability in the acetylcholine muscarinic receptor M4: Association with cocaine and heroin addiction.
        Pharmacogenomics. 2016; 17: 995-1003
        • Farris S.P.
        • Arasappan D.
        • Hunicke-Smith S.
        • Harris R.A.
        • Mayfield R.D.
        Transcriptome organization for chronic alcohol abuse in human brain.
        Mol Psychiatry. 2015; 20: 1438-1447
        • Ponomarev I.
        • Wang S.
        • Zhang L.
        • Harris R.A.
        • Mayfield R.D.
        Gene coexpression networks in human brain identify epigenetic modifications in alcohol dependence.
        J Neurosci. 2012; 32: 1884-1897
        • Farris S.P.
        • Harris R.A.
        • Ponomarev I.
        Epigenetic modulation of brain gene networks for cocaine and alcohol abuse.
        Front Neurosci. 2015; 9: 176
        • Zhou Z.
        • Yuan Q.
        • Mash D.C.
        • Goldman D.
        Substance-specific and shared transcription and epigenetic changes in the human hippocampus chronically exposed to cocaine and alcohol.
        Proc Natl Acad Sci U S A. 2011; 108: 6626-6631
        • Wang F.
        • Flanagan J.
        • Su N.
        • Wang L.-C.
        • Bui S.
        • Nielson A.
        • et al.
        RNAscope: A novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues.
        J Mol Diagn. 2012; 14: 22-29
        • Ch’ng S.S.
        • Fu J.
        • Brown R.M.
        • Smith C.M.
        • Hossain M.A.
        • McDougall S.J.
        • et al.
        Characterization of the relaxin family peptide receptor 3 system in the mouse bed nucleus of the stria terminalis.
        J Comp Neurol. 2019; 527: 2615-2633
        • Paxinos G.
        • Watson C.
        The Rat Brain in Stereotaxic Coordinates.
        Academic Press, San Diego2007
        • Bubser M.
        • Bridges T.M.
        • Dencker D.
        • Gould R.W.
        • Grannan M.
        • Noetzel M.J.
        • et al.
        Selective activation of M4 muscarinic acetylcholine receptors reverses MK-801-induced behavioral impairments and enhances associative learning in rodents.
        ACS Chem Neurosci. 2014; 5: 920-942
        • Walker L.C.
        • Kastman H.E.
        • Krstew E.V.
        • Gundlach A.L.
        • Lawrence A.J.
        Central amygdala relaxin-3/relaxin family peptide receptor 3 signalling modulates alcohol seeking in rats.
        Br J Pharmacol. 2017; 174: 3359-3369
        • Walker L.C.
        • Kastman H.E.
        • Lawrence A.J.
        Pattern of neural activation following yohimbine-induced reinstatement of alcohol seeking in rats.
        Eur J Neurosci. 2020; 51: 706-720
        • Farid W.O.
        • Lawrence A.J.
        • Krstew E.V.
        • Tait R.J.
        • Hulse G.K.
        • Dunlop S.A.
        Maternally administered sustained-release naltrexone in rats affects offspring neurochemistry and behaviour in adulthood.
        PLoS One. 2012; 7e52812
        • Campbell E.J.
        • Flanagan J.P.
        • Walker L.C.
        • Hill M.K.
        • Marchant N.J.
        • Lawrence A.J.
        Anterior insular cortex is critical for the propensity to relapse following punishment-imposed abstinence of alcohol seeking.
        J Neurosci. 2019; 39: 1077-1087
        • Klawonn A.M.
        • Wilhelms D.B.
        • Lindström S.H.
        • Singh A.K.
        • Jaarola M.
        • Wess J.
        • et al.
        Muscarinic M4 receptors on cholinergic and dopamine D1 receptor-expressing neurons have opposing functionality for positive reinforcement and influence impulsivity.
        Front Mol Neurosci. 2018; 11: 139
        • Gould R.W.
        • Grannan M.D.
        • Gunter B.W.
        • Ball J.
        • Bubser M.
        • Bridges T.M.
        • et al.
        Cognitive enhancement and antipsychotic-like activity following repeated dosing with the selective M4 PAM VU0467154.
        Neuropharmacology. 2018; 128: 492-502
        • Chapman K.L.
        • Vaswani D.
        • Hendry N.
        • Langmead C.J.
        • Kew J.N.
        • Watson J.M.
        The muscarinic M4 receptor is the functionally predominant subtype in rat and mouse striatum as demonstrated using [35S] GTPγS binding.
        Eur J Pharmacol. 2011; 652: 1-6
        • Leurquin-Sterk G.
        • Crunelle C.
        • Ceccarini J.
        • de Laat B.
        • Peuskens H.
        • Bormans G.
        • et al.
        Alcohol addiction is associated with decreased limbic mGluR5 availability: A 18F-FPEB PET study in human.
        J Nuclear Med. 2016; 57: 15
        • Ceccarini J.
        • Leurquin-Sterk G.
        • Crunelle C.
        • De Laat B.
        • Bormans G.
        • Peuskens H.
        • Van Laere K.
        Recovery of decreased metabotropic glutamate receptor 5 availability in abstinent alcohol-dependent subjects.
        J Nuclear Med. 2017; 58: 14
        • Schmidt L.G.
        • Samochowiec J.
        • Finckh U.
        • Fiszer-Piosik E.
        • Horodnicki J.
        • Wendel B.
        • et al.
        Association of a CB1 cannabinoid receptor gene (CNR1) polymorphism with severe alcohol dependence.
        Drug Alcohol Depend. 2002; 65: 221-224
        • Hirvonen J.
        • Zanotti-Fregonara P.
        • Umhau J.C.
        • George D.T.
        • Rallis-Frutos D.
        • Lyoo C.H.
        • et al.
        Reduced cannabinoid CB1 receptor binding in alcohol dependence measured with positron emission tomography.
        Mol Psychiatry. 2013; 18: 916-921
        • Hungund B.L.
        • Szakall I.
        • Adam A.
        • Basavarajappa B.S.
        • Vadasz C.
        Cannabinoid CB1 receptor knockout mice exhibit markedly reduced voluntary alcohol consumption and lack alcohol-induced dopamine release in the nucleus accumbens.
        J Neurochem. 2003; 84: 698-704
        • Hirth N.
        • Meinhardt M.W.
        • Noori H.R.
        • Salgado H.
        • Torres-Ramirez O.
        • Uhrig S.
        • et al.
        Convergent evidence from alcohol-dependent humans and rats for a hyperdopaminergic state in protracted abstinence.
        Proc Natl Acad Sci U S A. 2016; 113: 3024-3029
        • Anokhin P.
        • Razumkina E.
        • Shamakina I.Y.
        A comparison of mRNA expression of dopamine receptors, tyrosine hydroxylase, and dopamine transporter in the mesolimbic system of rats with different levels of alcohol consumption.
        Neurochem J. 2019; 13: 137-144
        • Hamida S.B.
        • Mendonça-Netto S.
        • Arefin T.M.
        • Nasseef M.T.
        • Boulos L.-J.
        • McNicholas M.
        • et al.
        Increased alcohol seeking in mice lacking Gpr88 involves dysfunctional mesocorticolimbic networks.
        Biol Psychiatry. 2018; 84: 202-212
        • Jin C.
        • Decker A.M.
        • Makhijani V.H.
        • Besheer J.
        • Darcq E.
        • Kieffer B.L.
        • et al.
        Discovery of a potent, selective, and brain-penetrant small molecule that activates the orphan receptor GPR88 and reduces alcohol intake.
        J Med Chem. 2018; 61: 6748-6758
        • Hersch S.M.
        • Gutekunst C.-A.
        • Rees H.
        • Heilman C.J.
        • Levey A.I.
        Distribution of m1-m4 muscarinic receptor proteins in the rat striatum: Light and electron microscopic immunocytochemistry using subtype-specific antibodies.
        J Neurosci. 1994; 14: 3351-3363
        • Levey A.
        • Kitt C.
        • Simonds W.
        • Price D.
        • Brann M.
        Identification and localization of muscarinic acetylcholine receptor proteins in brain with subtype-specific antibodies.
        J Neurosci. 1991; 11: 3218-3226
        • Calabresi P.
        • Picconi B.
        • Tozzi A.
        • Di Filippo M.
        Dopamine-mediated regulation of corticostriatal synaptic plasticity.
        Trends Neurosci. 2007; 30: 211-219
        • Exley R.
        • Cragg S.
        Presynaptic nicotinic receptors: A dynamic and diverse cholinergic filter of striatal dopamine neurotransmission.
        Br J Pharmacol. 2008; 153: S283-S297
        • Threlfell S.
        • Lalic T.
        • Platt N.J.
        • Jennings K.A.
        • Deisseroth K.
        • Cragg S.J.
        Striatal dopamine release is triggered by synchronized activity in cholinergic interneurons.
        Neuron. 2012; 75: 58-64
        • Rice M.E.
        • Cragg S.J.
        Nicotine amplifies reward-related dopamine signals in striatum.
        Nat Neurosci. 2004; 7: 583-584
        • Higley M.J.
        • Gittis A.H.
        • Oldenburg I.A.
        • Balthasar N.
        • Seal R.P.
        • Edwards R.H.
        • et al.
        Cholinergic interneurons mediate fast VGluT3-dependent glutamatergic transmission in the striatum.
        PLoS One. 2011; 6e19155
        • DePoy L.
        • Daut R.
        • Wright T.
        • Camp M.
        • Crowley N.
        • Noronha B.
        • et al.
        Chronic alcohol alters rewarded behaviors and striatal plasticity.
        Addict Biol. 2015; 20: 345-348
        • Renteria R.
        • Baltz E.T.
        • Gremel C.M.
        Chronic alcohol exposure disrupts top-down control over basal ganglia action selection to produce habits.
        Nat Commun. 2018; 9: 211
        • Garavan H.
        • Morgan R.
        • Mactutus C.
        • Levitsky D.
        • Booze R.
        • Strupp B.
        Prenatal cocaine exposure impairs selective attention: Evidence from serial reversal and extradimensional shift tasks.
        Behav Neurosci. 2000; 114: 725-738
        • Volkow N.D.
        • Wang G.-J.
        • Telang F.
        • Fowler J.S.
        • Logan J.
        • Childress A.-R.
        • et al.
        Cocaine cues and dopamine in dorsal striatum: Mechanism of craving in cocaine addiction.
        J Neurosci. 2006; 26: 6583-6588
        • Giuliano C.
        • Belin D.
        • Everitt B.J.
        Compulsive alcohol seeking results from a failure to disengage dorsolateral striatal control over behavior.
        J Neurosci. 2019; 39: 1744-1754
        • Loeber S.
        • Duka T.
        • Welzel H.
        • Nakovics H.
        • Heinz A.
        • Flor H.
        • et al.
        Impairment of cognitive abilities and decision making after chronic use of alcohol: The impact of multiple detoxifications.
        Alcohol Alcohol. 2009; 44: 372-381
        • Glass J.M.
        • Buu A.
        • Adams K.M.
        • Nigg J.T.
        • Puttler L.I.
        • Jester J.M.
        • et al.
        Effects of alcoholism severity and smoking on executive neurocognitive function.
        Addiction. 2009; 104: 38-48
        • Wilcox C.E.
        • Dekonenko C.J.
        • Mayer A.R.
        • Bogenschutz M.P.
        • Turner J.A.
        Cognitive control in alcohol use disorder: Deficits and clinical relevance.
        Rev Neurosci. 2014; 25: 1-24
        • Cheng Y.
        • Huang C.C.
        • Ma T.
        • Wei X.
        • Wang X.
        • Lu J.
        • et al.
        Distinct synaptic strengthening of the striatal direct and indirect pathways drives alcohol consumption.
        Biol Psychiatry. 2017; 81: 918-929
        • Wood M.R.
        • Noetzel M.J.
        • Poslusney M.S.
        • Melancon B.J.
        • Tarr J.C.
        • Lamsal A.
        • et al.
        Challenges in the development of an M4 PAM in vivo tool compound: The discovery of VU0467154 and unexpected DMPK profiles of close analogs.
        Bioorg Med Chem Lett. 2017; 27: 171-175
        • Engers D.W.
        • Melancon B.J.
        • Gregro A.R.
        • Bertron J.L.
        • Bollinger S.R.
        • Felts A.S.
        • et al.
        VU6005806/AZN-00016130, an advanced M4 positive allosteric modulator (PAM) profiled as a potential preclinical development candidate.
        Bioorg Med Chem Lett. 2019; 29: 1714-1718
        • Temple K.J.
        • Engers J.L.
        • Long M.F.
        • Gregro A.R.
        • Watson K.J.
        • Chang S.
        • et al.
        Discovery of a novel 3,4-dimethylcinnoline carboxamide M4 positive allosteric modulator (PAM) chemotype via scaffold hopping.
        Bioorg Med Chem Lett. 2019; 29: 126678