Advertisement

Methods and Challenges for Assessing Heterogeneity

  • Eric Feczko
    Correspondence
    Address correspondence to Eric Feczko, M.B.I., Ph.D., Oregon Health & Science University, Department of Behavioral Neuroscience, 3181 SW Sam Jackson Park Road, Portland, OR 97239-3098.
    Affiliations
    Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon
    Search for articles by this author
  • Damien A. Fair
    Affiliations
    Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon

    Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon
    Search for articles by this author
Published:February 26, 2020DOI:https://doi.org/10.1016/j.biopsych.2020.02.015

      Abstract

      The widely acknowledged homogeneity assumption limits progress in refining clinical diagnosis, understanding mechanisms, and developing new treatments for mental health disorders. This homogeneity assumption drives both a comorbidity and a heterogeneity problem, where two different approaches tackle the problems. One, a unifying approach, tackles the comorbidity problem by assuming that a single general psychopathology factor underlies multiple disorders. Another, a multifactorial approach, tackles the heterogeneity problem by assuming that disorders comprise multiple subtypes driven by multiple discrete factors. We show how each of these approaches can make useful contributions to mental health–related research and clinical practice. For example, the unifying approach can develop a rapid assessment tool that may be clinically valuable for triaging cases. The multifactorial approach can reveal subtypes that are differentially responsive to treatments and highlight distinct mechanisms leading to similar phenotypes. Because both approaches tackle different problems, both have different limitations. We describe the statistical frameworks that incorporate and adjudicate between both approaches (e.g., the bifactor model, normative modeling, and the functional random forest). Such frameworks can identify whether sets of disorders are more affected by heterogeneity or comorbidity. Therefore, future studies that incorporate such frameworks can provide further insight into the nature of psychopathology.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kendler K.S.
        An historical framework for psychiatric nosology.
        Psychol Med. 2009; 39: 1935-1941
        • Nigg J.T.
        Temperament and developmental psychopathology.
        J Child Psychol Psychiatry. 2006; 47: 395-422
        • Mason D.
        • Hsin H.
        “A more perfect arrangement of plants”: The botanical model in psychiatric nosology, 1676 to the present day.
        Hist Psychiatry. 2018; 29: 131-146
        • Wang T.
        • Zhang X.
        • Li A.
        • Zhu M.
        • Liu S.
        • Qin W.
        • et al.
        Polygenic risk for five psychiatric disorders and cross-disorder and disorder-specific neural connectivity in two independent populations.
        Neuroimage Clin. 2017; 14: 441-449
        • Smoller J.W.
        • Craddock N.
        • Kendler K.
        • Lee P.H.
        • Neale B.M.
        • et al.
        • Cross-Disorder Group of the Psychiatric Genomics Consortium
        Identification of risk loci with shared effects on five major psychiatric disorders: A genome-wide analysis.
        Lancet. 2013; 381: 1371-1379
        • Sabuncu M.R.
        • Konukoglu E.
        • Alzheimer’s Disease Neuroimaging Initiative
        Clinical prediction from structural brain MRI scans: A large-scale empirical study.
        Neuroinformatics. 2015; 13: 31-46
        • Katuwal G.J.
        • Baum S.A.
        • Cahill N.D.
        • Michael A.M.
        Divide and conquer: Sub-grouping of ASD improves ASD detection based on brain morphometry.
        PLoS One. 2016; 11: 1-24
        • Chen C.P.
        • Keown C.L.
        • Jahedi A.
        • Nair A.
        • Pflieger M.E.
        • Bailey B.A.
        • Müller R.-A.
        Diagnostic classification of intrinsic functional connectivity highlights somatosensory, default mode, and visual regions in autism.
        Neuroimage Clin. 2015; 8: 238-245
        • Sen B.
        • Borle N.C.
        • Greiner R.
        • Brown M.R.G.
        A general prediction model for the detection of ADHD and autism using structural and functional MRI.
        PLoS One. 2018; 13e0194856
        • Moffitt T.E.
        • Harrington H.
        • Caspi A.
        • Kim-Cohen J.
        • Goldberg D.
        • Gregory A.M.
        • Poulton R.
        Depression and generalized anxiety disorder: Cumulative and sequential comorbidity in a birth cohort followed prospectively to age 32 years.
        Arch Gen Psychiatry. 2007; 64: 651-660
        • Copeland W.
        • Shanahan L.
        • Costello E.J.
        • Angold A.
        Cumulative prevalence of psychiatric disorders by young adulthood: A prospective cohort analysis from the Great Smoky Mountains Study.
        J Am Acad Child Adolesc Psychiatry. 2011; 50: 252-261
        • Kessler R.C.
        • Ormel J.
        • Petukhova M.
        • McLaughlin K.A.
        • Green J.G.
        • Russo L.J.
        • et al.
        Development of lifetime comorbidity in the World Health Organization world mental health surveys.
        Arch Gen Psychiatry. 2011; 68: 90-100
        • Lichtenstein P.
        • Yip B.H.
        • Bjork C.
        • Pawitan Y.
        • Cannon T.D.
        • Sullivan P.F.
        • Hultman C.M.
        Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: A population-based study.
        Lancet. 2009; 373: 234-239
        • Sartor C.E.
        • Grant J.D.
        • Bucholz K.K.
        • Madden P.A.F.
        • Heath A.C.
        • Agrawal A.
        • et al.
        Common genetic contributions to alcohol and cannabis use and dependence symptomatology.
        Alcohol Clin Exp Res. 2010; 34: 545-554
        • Guo W.
        • Samuels J.F.
        • Wang Y.
        • Cao H.
        • Ritter M.
        • Nestadt P.S.
        • et al.
        Polygenic risk score and heritability estimates reveals a genetic relationship between ASD and OCD.
        Eur Neuropsychopharmacol. 2017; 27: 657-666
        • Gaugler T.
        • Klei L.
        • Sanders S.J.
        • Bodea C.A.
        • Goldberg A.P.
        • Lee A.B.
        • et al.
        Most genetic risk for autism resides with common variation.
        Nat Genet. 2014; 46: 881-885
        • Murray A.L.
        • Eisner M.
        • Ribeaud D.
        The development of the general factor of psychopathology “p factor” through childhood and adolescence.
        J Abnorm Child Psychol. 2016; 44: 1573-1586
        • Feczko E.
        • Miranda-Domínguez Ó.
        • Marr M.
        • Graham A.M.
        • Nigg J.T.
        • Fair D.A.
        The heterogeneity problem: Approaches to identify psychiatric subtypes.
        Trends Cogn Sci. 2019; 23: 584-601
        • Marquand A.F.
        • Rezek I.
        • Buitelaar J.
        • Beckmann C.F.
        Understanding heterogeneity in clinical cohorts using normative models: Beyond case-control studies.
        Biol Psychiatry. 2016; 80: 552-561
        • Anttila V.
        • Bulik-Sullivan B.
        • Finucane H.K.
        • Walters R.K.
        • Bras J.
        • et al.
        • Brainstorm Consortium
        Analysis of shared heritability in common disorders of the brain.
        Science. 2018; 360eaap8757
        • Constantino J.N.
        • Charman T.
        Diagnosis of autism spectrum disorder: Reconciling the syndrome, its diverse origins, and variation in expression.
        Lancet Neurol. 2016; 15: 279-291
        • Regier D.A.
        • Narrow W.E.
        • Clarke D.E.
        • Kraemer H.C.
        • Kuramoto S.J.
        • Kuhl E.A.
        • Kupfer D.J.
        DSM-5 field trials in the United States and Canada, part II: Test-retest reliability of selected categorical diagnoses.
        Am J Psychiatry. 2013; 170: 59-70
        • Fried E.I.
        Problematic assumptions have slowed down depression research: Why symptoms, not syndromes are the way forward.
        Front Psychol. 2015; 6: 1-11
        • Uddin L.Q.
        • Dajani D.R.
        • Voorhies W.
        • Bednarz H.
        • Kana R.K.
        Progress and roadblocks in the search for brain-based biomarkers of autism and attention-deficit/hyperactivity disorder.
        Transl Psychiatry. 2017; 7: e1218
        • Arbabshirani M.R.
        • Plis S.
        • Sui J.
        • Calhoun V.D.
        Single subject prediction of brain disorders in neuroimaging: Promises and pitfalls.
        Neuroimage. 2017; 145: 137-165
        • Friston K.J.
        • Redish A.D.
        • Gordon J.A.
        Computational nosology and precision psychiatry.
        Comput Psychiatry. 2017; 1: 2-23
        • Caspi A.
        • Moffitt T.E.
        All for one and one for all: Mental disorders in one dimension.
        Am J Psychiatry. 2018; 175: 831-844
        • Neumann A.
        • Pappa I.
        • Lahey B.B.
        • Verhulst F.C.
        • Medina-Gomez C.
        • Jaddoe V.W.
        • et al.
        Single nucleotide polymorphism heritability of a p factor in children.
        J Am Acad Child Adolesc Psychiatry. 2016; 55: 1038-1045.e4
        • Pruett J.R.
        • Povinelli D.J.
        Commentary—Autism spectrum disorder: Spectrum or cluster?.
        Autism Res. 2016; 9: 1237-1240
        • Kotov R.
        • Krueger R.F.
        • Watson D.
        • Achenbach T.M.
        • Althoff R.R.
        • Bagby R.M.
        • et al.
        The Hierarchical Taxonomy of Psychopathology (HiTOP): A dimensional alternative to traditional nosologies.
        J Abnorm Psychol. 2017; 126: 454-477
        • Costa Dias T.G.
        • Iyer S.P.
        • Carpenter S.D.
        • Cary R.P.
        • Wilson V.B.
        • Mitchel S.H.
        • et al.
        Characterizing heterogeneity in children with and without ADHD based on reward system connectivity.
        Dev Cogn Neurosci. 2015; 11: 155-174
        • Caspi A.
        • Houts R.M.
        • Belsky D.W.
        • Goldman-Mellor S.J.
        • Harrington H.
        • Israel S.
        • et al.
        The p factor.
        Clin Psychol Sci. 2014; 2: 119-137
        • Lahey B.B.
        • Applegate B.
        • Hakes J.K.
        • Zald D.H.
        • Hariri A.R.
        • Rathouz P.J.
        Is there a general factor of prevalent psychopathology during adulthood?.
        J Abnorm Psychol. 2012; 121: 971-977
        • Kaczkurkin A.N.
        • Moore T.M.
        • Calkins M.E.
        • Ciric R.
        • Detre J.A.
        • Elliott M.A.
        • et al.
        Common and dissociable regional cerebral blood flow differences associate with dimensions of psychopathology across categorical diagnoses.
        Mol Psychiatry. 2018; 23: 1981-1989
        • Kaczkurkin A.N.
        • Park S.S.
        • Sotiras A.
        • Moore T.M.
        • Calkins M.E.
        • Cieslak M.
        • et al.
        Evidence for dissociable linkage of dimensions of psychopathology to brain structure in youths.
        Am J Psychiatry. 2019; 176: 1000-1009
        • Shanmugan S.
        • Wolf D.H.
        • Calkins M.E.
        • Moore T.M.
        • Ruparel K.
        • Hopson R.D.
        • et al.
        Common and dissociable mechanisms of executive system dysfunction across psychiatric disorders in youth.
        Am J Psychiatry. 2016; 173: 517-526
        • Brikell I.
        • Larsson H.
        • Lu Y.
        • Pettersson E.
        • Chen Q.
        • Kuja-Halkola R.
        • et al.
        The contribution of common genetic risk variants for ADHD to a general factor of childhood psychopathology.
        Mol Psychiatry. 2018; ([published online ahead of print Jun 22])
        • Jones H.J.
        • Heron J.
        • Hammerton G.
        • Stochl J.
        • Jones P.B.
        • Cannon M.
        • et al.
        Investigating the genetic architecture of general and specific psychopathology in adolescence.
        Transl Psychiatry. 2018; 8: 145
        • Tackett J.L.
        • Lahey B.B.
        • van Hulle C.
        • Waldman I.
        • Krueger R.F.
        • Rathouz P.J.
        Common genetic influences on negative emotionality and a p factor in childhood and adolescence.
        J Abnorm Psychol. 2013; 122: 1142-1153
        • McDougall G.J.
        A review of screening instruments for assessing cognition and mental status in older adults.
        Nurse Pract. 1990; 15: 18-28
        • Moore T.M.
        • Calkins M.E.
        • Satterthwaite T.D.
        • Roalf D.R.
        • Rosen A.F.G.
        • Gur R.C.
        • Gur R.E.
        Development of a computerized adaptive screening tool for overall psychopathology (“p”).
        J Psychiatr Res. 2019; 116: 26-33
        • Oparil S.
        • Schmieder R.E.
        New approaches in the treatment of hypertension.
        Circ Res. 2015; 116: 1074-1095
        • Hamrahian S.M.
        Management of hypertension in patients with chronic kidney disease.
        Curr Hypertens Rep. 2017; 19: 43
        • Liu M.-Y.
        • Li N.
        • Li W.A.
        • Khan H.
        Association between psychosocial stress and hypertension: A systematic review and meta-analysis.
        Neurol Res. 2017; 39: 573-580
        • Appel L.J.
        The effects of dietary factors on blood pressure.
        Cardiol Clin. 2017; 35: 197-212
        • Cornelissen V.A.
        • Smart N.A.
        Exercise training for blood pressure: A systematic review and meta-analysis.
        J Am Heart Assoc. 2013; 2e004473
        • Rossi G.P.
        • Ceolotto G.
        • Caroccia B.
        • Lenzini L.
        Genetic screening in arterial hypertension.
        Nat Rev Endocrinol. 2017; 13: 289-298
        • Insel T.R.
        The NIMH Research Domain Criteria (RDoC) Project: Precision medicine for psychiatry.
        Am J Psychiatry. 2014; 171: 395-397
        • Easson A.K.
        • Fatima Z.
        • McIntosh A.R.
        Functional connectivity-based subtypes of individuals with and without autism spectrum disorder.
        Netw Neurosci. 2019; 3: 344-362
        • Karalunas S.L.
        • Fair D.
        • Musser E.D.
        • Aykes K.
        • Iyer S.P.
        • Nigg J.T.
        Subtyping attention-deficit/hyperactivity disorder using temperament dimensions.
        JAMA Psychiatry. 2014; 71: 1015
        • Vaidya C.J.
        • You X.
        • Mostofsky S.
        • Pereira F.
        • Berl M.M.
        • Kenworthy L.
        Data-driven identification of subtypes of executive function across typical development, attention deficit hyperactivity disorder, and autism spectrum disorders.
        J Child Psychol Psychiatry. 2019; 61: 51-61
        • Drysdale A.T.
        • Grosenick L.
        • Downar J.
        • Dunlop K.
        • Mansouri F.
        • Meng Y.
        • et al.
        Resting-state connectivity biomarkers define neurophysiological subtypes of depression.
        Nat Med. 2017; 23: 28-38
        • Dunlop B.W.
        • Rajendra J.K.
        • Craighead W.E.
        • Kelley M.E.
        • McGrath C.L.
        • Choi K.S.
        • et al.
        Functional connectivity of the subcallosal cingulate cortex and differential outcomes to treatment with cognitive-behavioral therapy or antidepressant medication for major depressive disorder.
        Am J Psychiatry. 2017; 174: 533-545
        • Dinga R.
        • Schmaal L.
        • Penninx B.W.J.H.
        • van Tol M.J.
        • Veltman D.J.
        • van Velzen L.
        • et al.
        Evaluating the evidence for biotypes of depression: Methodological replication and extension of.
        Neuroimage Clin. 2019; 22: 101796
        • Wagenmakers E.
        • Farrell S.
        AIC model selection using Akaike weights.
        Psychon Bull Rev. 2004; 11: 192-196
        • Akaike H.
        Information theory and an extension of the maximum likelihood principle.
        in: Petrov B.N. Csaki F. Proceedings of the Second International Symposium on Information Theory. Akademiai Kiado, Budapest1973: 267-281
        • Greene A.L.
        • Eaton N.R.
        • Li K.
        • Forbes M.K.
        • Krueger R.F.
        • Markon K.E.
        • et al.
        Are fit indices used to test psychopathology structure biased? A simulation study.
        J Abnorm Psychol. 2019; 128: 740-764
        • Haltigan J.D.
        • Aitken M.
        • Skilling T.
        • Henderson J.
        • Hawke L.
        • Battaglia M.
        • et al.
        P” and “DP:” Examining symptom-level bifactor models of psychopathology and dysregulation in clinically referred children and adolescents.
        J Am Acad Child Adolesc Psychiatry. 2018; 57: 384-396
        • Marquand A.F.
        • Kia S.M.
        • Zabihi M.
        • Wolfers T.
        • Buitelaar J.K.
        • Beckmann C.F.
        Conceptualizing mental disorders as deviations from normative functioning.
        Mol Psychiatry. 2019; 24: 1415-1424
        • Zabihi M.
        • Oldehinkel M.
        • Wolfers T.
        • Frouin V.
        • Goyard D.
        • Loth E.
        • et al.
        Dissecting the heterogeneous cortical anatomy of autism spectrum disorder using normative models.
        Biol Psychiatry Cogn Neurosci Neuroimaging. 2019; 4: 567-578
        • Wolfers T.
        • Doan N.T.
        • Kaufmann T.
        • Alnæs D.
        • Moberget T.
        • Agartz I.
        • et al.
        Mapping the heterogeneous phenotype of schizophrenia and bipolar disorder using normative models.
        JAMA Psychiatry. 2018; 75: 1146
        • Feczko E.
        • Balba N.
        • Miranda-Dominguez O.
        • Cordova M.
        • Karalunas S.L.
        • Irwin L.
        • et al.
        Subtyping cognitive profiles in autism spectrum disorder using a random forest algorithm.
        Neuroimage. 2018; 172: 674-688
        • Breiman L.E.O.
        Random forests.
        Mach Learn. 2001; 45: 5-32
        • Rovall M.
        • Bergstrom C.
        Maps of random walks on complex network reveal community structure.
        Proc Natl Acad Sci U S A. 2008; 105: 1118-1123
        • Newman M.E.J.
        Modularity and community structure in networks.
        Proc Natl Acad Sci U S A. 2006; 103: 8577-8582
        • Ramsay T.
        Spline smoothing over difficult regions.
        J R Stat Soc Ser B Stat Methodol. 2002; 64: 307-319
        • Cortés J.
        • González J.A.
        • Medina M.N.
        • Vogler M.
        • Vilaró M.
        • Elmore M.
        • et al.
        Does evidence support the high expectations placed in precision medicine? A bibliographic review.
        F1000Research. 2019; 7: 30
        • Senn S.
        • Julious S.
        Measurement in clinical trials: A neglected issue for statisticians?.
        Stat Med. 2009; 28: 3189-3209
        • Senn S.
        Mastering variation: Variance components and personalised medicine.
        Stat Med. 2016; 35: 966-977