Advertisement

Causes and Consequences of Diagnostic Heterogeneity in Depression: Paths to Discovering Novel Biological Depression Subtypes

      Abstract

      Depression is a highly heterogeneous syndrome that bears only modest correlations with its biological substrates, motivating a renewed interest in rethinking our approach to diagnosing depression for research purposes and new efforts to discover subtypes of depression anchored in biology. Here, we review the major causes of diagnostic heterogeneity in depression, with consideration of both clinical symptoms and behaviors (symptomatology and trajectory of depressive episodes) and biology (genetics and sexually dimorphic factors). Next, we discuss the promise of using data-driven strategies to discover novel subtypes of depression based on functional neuroimaging measures, including dimensional, categorical, and hybrid approaches to parsing diagnostic heterogeneity and understanding its biological basis. The merits of using resting-state functional magnetic resonance imaging functional connectivity techniques for subtyping are considered along with a set of technical challenges and potential solutions. We conclude by identifying promising future directions for defining neurobiologically informed depression subtypes and leveraging them in the future for predicting treatment outcomes and informing clinical decision making.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • American Psychiatric Association
        Diagnostic and Statistical Manual of Mental Disorders–Third Edition.
        APA Press, Washington, DC1980
        • Insel T.R.
        • Cuthbert B.N.
        Brain disorders? Precisely: Precision medicine comes to psychiatry.
        Science. 2015; 348: 499-500
        • Insel T.R.
        The NIMH Research Domain Criteria (RDoC) project: Precision medicine for psychiatry.
        Am J Psychiatry. 2014; 171: 395-397
        • Insel T.
        • Cuthbert B.
        • Garvey M.
        • Heinssen R.
        • Pine D.S.
        • Quinn K.
        • et al.
        Research Domain Criteria (RDoC): Toward a new classification framework for research on mental disorders.
        Am J Psychiatry. 2010; 167: 748-751
        • Casey B.J.
        • Craddock N.
        • Cuthbert B.N.
        • Hyman S.E.
        • Lee F.S.
        • Ressler K.J.
        DSM-5 and RDoC: Progress in psychiatry research?.
        Nat Rev Neurosci. 2013; 14: 810-814
        • Deisseroth K.
        • Etkin A.
        • Malenka R.C.
        Optogenetics and the circuit dynamics of psychiatric disease.
        JAMA. 2015; 313: 2019-2020
        • Goodkind M.
        • Eickhoff S.B.
        • Oathes D.J.
        • Jiang Y.
        • Chang A.
        • Jones-Hagata L.B.
        • et al.
        Identification of a common neurobiological substrate for mental illness.
        JAMA Psychiatry. 2015; 72: 305-315
        • Kempton M.J.
        • Salvador Z.
        • Munafò M.R.
        • Geddes J.R.
        • Simmons A.
        • Frangou S.
        • Williams S.C.R.
        Structural neuroimaging studies in major depressive disorder: Meta-analysis and comparison with bipolar disorder.
        Arch Gen Psychiatry. 2011; 68: 675-690
        • Gold P.W.
        • Chrousos G.P.
        Organization of the stress system and its dysregulation in melancholic and atypical depression: High vs low CRH/NE states.
        Mol Psychiatry. 2002; 7: 254-275
        • Lewy A.J.
        • Sack R.L.
        • Miller L.S.
        • Hoban T.M.
        Antidepressant and circadian phase-shifting effects of light.
        Science. 1987; 235: 352-354
        • Lewy A.J.
        • Lefler B.J.
        • Emens J.S.
        • Bauer V.K.
        The circadian basis of winter depression.
        Proc Natl Acad Sci U S A. 2006; 103: 7414-7419
        • Schatzberg A.F.
        • Posener J.A.
        • DeBattista C.
        • Kalehzan B.M.
        • Rothschild A.J.
        • Shear P.K.
        Neuropsychological deficits in psychotic versus nonpsychotic major depression and no mental illness.
        Am J Psychiatry. 2000; 157: 1095-1100
        • Thase M.E.
        • Fava M.
        • Halbreich U.
        • Kocsis J.H.
        • Koran L.
        • Davidson J.
        • et al.
        A placebo-controlled, randomized clinical trial comparing sertraline and imipramine for the treatment of dysthymia.
        Arch Gen Psychiatry. 1996; 53: 777-784
        • Keller M.B.
        • Shapiro R.W.
        “Double depression”: Superimposition of acute depressive episodes on chronic depressive-disorders.
        Am J Psychiatry. 1982; 139: 438-442
        • de Bodinat C.
        • Guardiola-Lemaitre B.
        • Mocaër E.
        • Renard P.
        • Muñoz C.
        • Millan M.J.
        Agomelatine, the first melatonergic antidepressant: Discovery, characterization and development.
        Nat Rev Drug Discov. 2010; 9: 628-642
        • McClung C.A.
        Circadian genes, rhythms and the biology of mood disorders.
        Pharmacol Ther. 2007; 114: 222-232
        • Trivedi M.H.
        • Rush A.J.
        • Crismon M.L.
        • Kashner T.M.
        • Toprac M.G.
        • Carmody T.J.
        • et al.
        Clinical results for patients with major depressive disorder in the Texas Medication Algorithm Project.
        Arch Gen Psychiatry. 2004; 61: 669-680
        • Suehs B.
        • Argo T.R.
        • Bendele S.D.
        • Crismon M.L.
        • Trivedi M.H.
        • Kurian B.
        Texas Medication Algorithm Project Procedural Manual.
        Texas Department of State Health Services, Austin2008
        • Belanoff J.K.
        • Rothschild A.J.
        • Cassidy F.
        • DeBattista C.
        • Baulieu E.-E.
        • Schold C.
        • Schatzberg A.F.
        An open label trial of C-1073 (mifepristone) for psychotic major depression.
        Biol Psychiatry. 2002; 52: 386-392
        • Keller J.
        • Flores B.
        • Gomez R.G.
        • Solvason H.B.
        • Kenna H.
        • Williams G.H.
        • Schatzberg A.F.
        Cortisol circadian rhythm alterations in psychotic major depression.
        Biol Psychiatry. 2006; 60: 275-281
        • Lamers F.
        • Rhebergen D.
        • Merikangas K.R.
        • de Jonge P.
        • Beekman A.T.F.
        • Penninx B.W.J.H.
        Stability and transitions of depressive subtypes over a 2-year follow-up.
        Psychol Med. 2012; 42: 2083-2093
        • Coryell W.
        • Winokur G.
        • Shea T.
        • Maser J.D.
        • Endicott J.
        • Akiskal H.S.
        The long-term stability of depressive subtypes.
        Am J Psychiatry. 1994; 151: 199-204
        • Melartin T.
        • Leskelä U.
        • Rytsälä H.
        • Sokero P.
        • Lestelä-Mielonen P.
        • Isometsä E.
        Co-morbidity and stability of melancholic features in DSM-IV major depressive disorder.
        Psychol Med. 2004; 34: 1443-1452
        • Kessler R.C.
        • Nelson C.B.
        • McGonagle K.A.
        Comorbidity of DSM-III-R major depressive disorder in the geeral population: Results from the US National Comorbidity Survey.
        Br J Psychiatry. 1996; 168: 17-30
        • Blazer D.G.
        • Kessler R.C.
        • McGonagle K.A.
        • Swartz M.S.
        The prevalence and distribution of major depression in a national community sample: The National Comorbidity Survey.
        Am J Psychiatry. 1994; 151: 979-986
        • Post R.M.
        • Denicoff K.D.
        • Leverich G.S.
        • Altshuler L.L.
        • Frye M.A.
        • Suppes T.M.
        • et al.
        Morbidity in 258 bipolar outpatients followed for 1 year with daily prospective ratings on the NIMH Life Chart Method.
        J Clin Psychiatry. 2003; 64 (quiz 738–739): 680-690
        • Post R.M.
        Kindling and sensitization as models for affective episode recurrence, cyclicity, and tolerance phenomena.
        Neurosci Biobehav Rev. 2007; 31: 858-873
        • van der Markt A.
        • Klumpers U.M.
        • Draisma S.
        • Dols A.
        • Nolen W.A.
        • Post R.M.
        • et al.
        Testing a clinical staging model for bipolar disorder using longitudinal life chart data.
        Bipolar Disord. 2019; 21: 228-234
        • Fergus E.L.
        • Miller R.B.
        • Luckenbaugh D.A.
        • Leverich G.S.
        • Findling R.L.
        • Speer A.M.
        • Post R.M.
        Is there progression from irritability/dyscontrol to major depressive and manic symptoms? A retrospective community survey of parents of bipolar children.
        J Affect Disord. 2003; 77: 71-78
        • Kessler R.C.
        • Avenevoli S.
        • Ries Merikangas K.
        Mood disorders in children and adolescents: An epidemiologic perspective.
        Biol Psychiatry. 2001; 49: 1002-1014
        • Zisook S.
        • Rush A.J.
        • Albala A.
        • Alpert J.
        • Balasubramani G.K.
        • Fava M.
        • et al.
        Factors that differentiate early vs. later onset of major depression disorder.
        Psychiatry Res. 2004; 129: 127-140
        • Zisook S.
        • Rush A.J.
        • Lesser I.
        • Wisniewski S.R.
        • Trivedi M.
        • Husain M.M.
        • et al.
        Preadult onset vs. adult onset of major depressive disorder: A replication study.
        Acta Psychiatr Scand. 2007; 115: 196-205
        • Sung S.C.
        • Wisniewski S.R.
        • Balasubramani G.K.
        • Zisook S.
        • Kurian B.
        • Warden D.
        • et al.
        Does early-onset chronic or recurrent major depression impact outcomes with antidepressant medications? A CO-MED trial report.
        Psychol Med. 2013; 43: 945-960
        • Kozel F.A.
        • Trivedi M.H.
        • Wisniewski S.R.
        • Miyahara S.
        • Husain M.M.
        • Fava M.
        • et al.
        Treatment outcomes for older depressed patients with earlier versus late onset of first depressive episode: A Sequenced Treatment Alternatives to Relieve Depression (STAR∗D) report.
        Am J Geriatr Psychiatry. 2008; 16: 58-64
        • Perlis R.H.
        • Dennehy E.B.
        • Miklowitz D.J.
        • Delbello M.P.
        • Ostacher M.
        • Calabrese J.R.
        • et al.
        Retrospective age at onset of bipolar disorder and outcome during two-year follow-up: Results from the STEP-BD study.
        Bipolar Disord. 2009; 11: 391-400
        • Weissman M.M.
        • Bland R.C.
        • Canino G.J.
        • Faravelli C.
        • Greenwald S.
        • Hwu H.G.
        • et al.
        Cross-national epidemiology of major depression and bipolar disorder.
        JAMA. 1996; 276: 293-299
        • Lewinsohn P.M.
        • Clarke G.N.
        • Seeley J.R.
        • Rohde P.
        Major depression in community adolescents: Age at onset, episode duration, and time to recurrence.
        J Am Acad Child Adolesc Psychiatry. 1994; 33: 809-818
        • Ormel J.
        • Hartman C.A.
        • Snieder H.
        The genetics of depression: Successful genome-wide association studies introduce new challenges.
        Transl Psychiatry. 2019; 9: 114
        • Smoller J.W.
        • Finn C.T.
        Family, twin, and adoption studies of bipolar disorder.
        Am J Med Genet C Semin Med Genet. 2003; 123C: 48-58
        • Sullivan P.F.
        • Daly M.J.
        • O’Donovan M.
        Genetic architectures of psychiatric disorders: The emerging picture and its implications.
        Nat Rev Genet. 2012; 13: 537-551
        • McIntosh A.M.
        • Sullivan P.F.
        • Lewis C.M.
        Uncovering the genetic architecture of major depression.
        Neuron. 2019; 102: 91-103
        • Smoller J.W.
        The genetics of stress-related disorders: PTSD, depression, and anxiety disorders.
        Neuropsychopharmacology. 2016; 41: 297-319
        • Sullivan P.F.
        • Agrawal A.
        • Bulik C.M.
        • Andreassen O.A.
        • Børglum A.D.
        • Breen G.
        • et al.
        Psychiatric genomics: An update and an agenda.
        Am J Psychiatry. 2018; 175: 15-27
        • Howard D.M.
        • Adams M.J.
        • Clarke T.-K.
        • Hafferty J.D.
        • Gibson J.
        • Shirali M.
        • et al.
        Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions.
        Nat Neurosci. 2019; 22: 343-352
        • Howard D.M.
        • Adams M.J.
        • Shirali M.
        • Clarke T.-K.
        • Marioni R.E.
        • Davies G.
        • et al.
        Genome-wide association study of depression phenotypes in UK Biobank identifies variants in excitatory synaptic pathways.
        Nat Commun. 2018; 9: 1470
        • Wray N.R.
        • Ripke S.
        • Mattheisen M.
        • Trzaskowski M.
        • Byrne E.M.
        • Abdellaoui A.
        • et al.
        Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression.
        Nat Genet. 2018; 50: 668-681
        • Hyde C.L.
        • Nagle M.W.
        • Tian C.
        • Chen X.
        • Paciga S.A.
        • Wendland J.R.
        • et al.
        Identification of 15 genetic loci associated with risk of major depression in individuals of European descent.
        Nat Genet. 2016; 48: 1031-1036
        • Musliner K.L.
        • Mortensen P.B.
        • McGrath J.J.
        • Suppli N.P.
        • Hougaard D.M.
        • Bybjerg-Grauholm J.
        • et al.
        Association of polygenic liabilities for major depression, bipolar disorder, and schizophrenia with risk for depression in the Danish population.
        JAMA Psychiatry. 2019; 76: 516-525
        • Purcell S.M.
        • Wray N.R.
        • Stone J.L.
        • Visscher P.M.
        • O’Donovan M.C.
        • et al.
        • International Schizophrenia Consortium
        Common polygenic variation contributes to risk of schizophrenia and bipolar disorder.
        Nature. 2009; 460: 748-752
        • Milaneschi Y.
        • Lamers F.
        • Peyrot W.J.
        • Abdellaoui A.
        • Willemsen G.
        • Hottenga J.-J.
        • et al.
        Polygenic dissection of major depression clinical heterogeneity.
        Mol Psychiatry. 2016; 21: 516-522
        • Choi K.W.
        • Chen C.-Y.
        • Stein M.B.
        • Klimentidis Y.C.
        • Wang M.-J.
        • Koenen K.C.
        • et al.
        Assessment of bidirectional relationships between physical activity and depression among adults: A 2-sample Mendelian randomization study.
        JAMA Psychiatry. 2019; 76: 399-408
        • Whitaker K.J.
        • Vértes P.E.
        • Romero-Garcia R.
        • Váša F.
        • Moutoussis M.
        • Prabhu G.
        • et al.
        Adolescence is associated with genomically patterned consolidation of the hubs of the human brain connectome.
        Proc Natl Acad Sci U S A. 2016; 113: 9105-9110
        • Vértes P.E.
        • Rittman T.
        • Whitaker K.J.
        • Romero-Garcia R.
        • Váša F.
        • Kitzbichler M.G.
        • et al.
        Gene transcription profiles associated with inter-modular hubs and connection distance in human functional magnetic resonance imaging networks.
        Philos Trans R Soc Lond B Biol Sci. 2016; 371: 20150362
        • Elbau I.G.
        • Brücklmeier B.
        • Uhr M.
        • Arloth J.
        • Czamara D.
        • Spoormaker V.I.
        • et al.
        The brain’s hemodynamic response function rapidly changes under acute psychosocial stress in association with genetic and endocrine stress response markers.
        Proc Natl Acad Sci U S A. 2018; 115: E10206-E10215
        • Zarate Jr., C.A.
        • Singh J.B.
        • Carlson P.J.
        • Brutsche N.E.
        • Ameli R.
        • Luckenbaugh D.A.
        • et al.
        A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression.
        Arch Gen Psychiatry. 2006; 63: 856-864
        • Berman R.M.
        • Cappiello A.
        • Anand A.
        • Oren D.A.
        • Heninger G.R.
        • Charney D.S.
        • Krystal J.H.
        Antidepressant effects of ketamine in depressed patients.
        Biol Psychiatry. 2000; 47: 351-354
        • Kanes S.
        • Colquhoun H.
        • Gunduz-Bruce H.
        • Raines S.
        • Arnold R.
        • Schacterle A.
        • et al.
        Brexanolone (SAGE-547 injection) in post-partum depression: A randomised controlled trial.
        Lancet. 2017; 390: 480-489
        • Mayberg H.S.
        • Lozano A.M.
        • Voon V.
        • McNeely H.E.
        • Seminowicz D.
        • Hamani C.
        • et al.
        Deep brain stimulation for treatment-resistant depression.
        Neuron. 2005; 45: 651-660
        • O’Reardon J.P.
        • Solvason H.B.
        • Janicak P.G.
        • Sampson S.
        • Isenberg K.E.
        • Nahas Z.
        • et al.
        Efficacy and safety of transcranial magnetic stimulation in the acute treatment of major depression: A multisite randomized controlled trial.
        Biol Psychiatry. 2007; 62: 1208-1216
        • Cyranowski J.M.
        • Frank E.
        • Young E.
        • Shear M.K.
        Adolescent onset of the gender difference in lifetime rates of major depression: A theoretical model.
        Arch Gen Psychiatry. 2000; 57: 21-27
        • Patten S.B.
        • Wang J.L.
        • Williams J.V.A.
        • Currie S.
        • Beck C.A.
        • Maxwell C.J.
        • El-Guebaly N.
        Descriptive epidemiology of major depression in Canada.
        Can J Psychiatry. 2006; 51: 84-90
        • Bebbington P.
        • Dunn G.
        • Jenkins R.
        • Lewis G.
        • Brugha T.
        • Farrell M.
        • Meltzer H.
        The influence of age and sex on the prevalence of depressive conditions: Report from the National Survey of Psychiatric Morbidity.
        Int Rev Psychiatry. 2003; 15: 74-83
        • Mehta D.
        • Rex-Haffner M.
        • Søndergaard H.B.
        • Pinborg A.
        • Binder E.B.
        • Frokjaer V.G.
        Evidence for oestrogen sensitivity in perinatal depression: Pharmacological sex hormone manipulation study.
        Br J Psychiatry. 2019; 215: 519-527
        • Putnam K.T.
        • Wilcox M.
        • Robertson-Blackmore E.
        • Sharkey K.
        • Bergink V.
        • Munk-Olsen T.
        • et al.
        Clinical phenotypes of perinatal depression and time of symptom onset: Analysis of data from an international consortium.
        Lancet Psychiatry. 2017; 4: 477-485
        • Postpartum Depression: Action Towards Causes and Treatment (PACT) Consortium
        Heterogeneity of postpartum depression: A latent class analysis.
        Lancet Psychiatry. 2015; 2: 59-67
        • Lai C.-H.
        Major depressive disorder: Gender differences in symptoms, life quality, and sexual function.
        J Clin Psychopharmacol. 2011; 31: 39-44
        • Schuch J.J.
        • Roest A.M.
        • Nolen W.A.
        • Penninx B.W.
        • de Jonge P.
        Gender differences in major depressive disorder: Results from the Netherlands Study of Depression and Anxiety.
        J Affect Disord. 2014; 156: 156-163
        • Yao Z.
        • Yan R.
        • Wei M.
        • Tang H.
        • Qin J.
        • Lu Q.
        Gender differences in brain activity and the relationship between brain activity and differences in prevalence rates between male and female major depressive disorder patients: A resting-state fMRI study.
        Clin Neurophysiol. 2014; 125: 2232-2239
        • Kong L.
        • Chen K.
        • Womer F.
        • Jiang W.
        • Luo X.
        • Driesen N.
        • et al.
        Sex differences of gray matter morphology in cortico-limbic-striatal neural system in major depressive disorder.
        J Psychiatr Res. 2013; 47: 733-739
        • Jenkins L.M.
        • Kendall A.D.
        • Kassel M.T.
        • Patrón V.G.
        • Gowins J.R.
        • Dion C.
        • et al.
        Considering sex differences clarifies the effects of depression on facial emotion processing during fMRI.
        J Affect Disord. 2018; 225: 129-136
        • Labonté B.
        • Engmann O.
        • Purushothaman I.
        • Menard C.
        • Wang J.
        • Tan C.
        • et al.
        Sex-specific transcriptional signatures in human depression.
        Nat Med. 2017; 23: 1102-1111
        • Beijers L.
        • Wardenaar K.J.
        • van Loo H.M.
        • Schoevers R.A.
        Data-driven biological subtypes of depression: Systematic review of biological approaches to depression subtyping.
        Mol Psychiatry. 2019; 24: 888-900
        • Feczko E.
        • Miranda-Dominguez O.
        • Marr M.
        • Graham A.M.
        • Nigg J.T.
        • Fair D.A.
        The heterogeneity problem: Approaches to identify psychiatric subtypes.
        Trends Cogn Sci. 2019; 23: 584-601
        • Beijers L.
        • Wardenaar K.J.
        • Bosker F.J.
        • Lamers F.
        • van Grootheest G.
        • de Boer M.K.
        • et al.
        Biomarker-based subtyping of depression and anxiety disorders using latent class analysis: A NESDA study.
        Psychol Med. 2019; 49: 617-627
        • Maglanoc L.A.
        • Landrø N.I.
        • Jonassen R.
        • Kaufmann T.
        • Córdova-Palomera A.
        • Hilland E.
        • Westlye L.T.
        Data-driven clustering reveals a link between symptoms and functional brain connectivity in depression.
        Biol Psychiatry Cogn Neurosci Neuroimaging. 2019; 4: 16-26
        • Clementz B.A.
        • Sweeney J.A.
        • Hamm J.P.
        • Ivleva E.I.
        • Ethridge L.E.
        • Pearlson G.D.
        • et al.
        Identification of distinct psychosis biotypes using brain-based biomarkers.
        Am J Psychiatry. 2016; 173: 373-384
        • Hill S.K.
        • Reilly J.L.
        • Keefe R.S.E.
        • Gold J.M.
        • Bishop J.R.
        • Gershon E.S.
        • et al.
        Neuropsychological impairments in schizophrenia and psychotic bipolar disorder: Findings from the Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP) study.
        Am J Psychiatry. 2013; 170: 1275-1284
        • Cao H.
        • Chén O.Y.
        • Chung Y.
        • Forsyth J.K.
        • McEwen S.C.
        • Gee D.G.
        • et al.
        Cerebello-thalamo-cortical hyperconnectivity as a state-independent functional neural signature for psychosis prediction and characterization.
        Nat Commun. 2018; 9: 3836
        • Anticevic A.
        • Cole M.W.
        • Repovs G.
        • Murray J.D.
        • Brumbaugh M.S.
        • Winkler A.M.
        • et al.
        Characterizing thalamo-cortical disturbances in schizophrenia and bipolar illness.
        Cereb Cortex. 2014; 24: 3116-3130
        • Jacobs G.R.
        • Ameis S.H.
        • Ji J.L.
        • Viviano J.D.
        • Dickie E.W.
        • Wheeler A.L.
        • et al.
        Developmentally divergent sexual dimorphism in the cortico-striatal-thalamic-cortical psychosis risk pathway.
        Neuropsychopharmacology. 2019; 44: 1649-1658
        • Price R.B.
        • Lane S.
        • Gates K.
        • Kraynak T.E.
        • Horner M.S.
        • Thase M.E.
        • Siegle G.J.
        Parsing heterogeneity in the brain connectivity of depressed and healthy adults during positive mood.
        Biol Psychiatry. 2017; 81: 347-357
        • Price R.B.
        • Gates K.
        • Kraynak T.E.
        • Thase M.E.
        • Siegle G.J.
        Data-driven subgroups in depression derived from directed functional connectivity paths at rest.
        Neuropsychopharmacology. 2017; 42: 2623-2632
        • Feder S.
        • Sundermann B.
        • Wersching H.
        • Teuber A.
        • Kugel H.
        • Teismann H.
        • et al.
        Sample heterogeneity in unipolar depression as assessed by functional connectivity analyses is dominated by general disease effects.
        J Affect Disord. 2017; 222: 79-87
        • Cheng Y.
        • Xu J.
        • Yu H.
        • Nie B.
        • Li N.
        • Luo C.
        • et al.
        Delineation of early and later adult onset depression by diffusion tensor imaging.
        PLoS One. 2014; 9e112307
        • Smith S.M.
        • Nichols T.E.
        • Vidaurre D.
        • Winkler A.M.
        • Behrens T.E.J.
        • Glasser M.F.
        • et al.
        A positive-negative mode of population covariation links brain connectivity, demographics and behavior.
        Nat Neurosci. 2015; 18: 1565-1567
        • Sui J.
        • He H.
        • Pearlson G.D.
        • Adali T.
        • Kiehl K.A.
        • Yu Q.
        • et al.
        Three-way (N-way) fusion of brain imaging data based on mCCA+jICA and its application to discriminating schizophrenia.
        NeuroImage. 2013; 66: 119-132
        • Sui J.
        • Pearlson G.
        • Caprihan A.
        • Adali T.
        • Kiehl K.A.
        • Liu J.
        • et al.
        Discriminating schizophrenia and bipolar disorder by fusing fMRI and DTI in a multimodal CCA+ joint ICA model.
        NeuroImage. 2011; 57: 839-855
        • Kotov R.
        • Krueger R.F.
        • Watson D.
        • Achenbach T.M.
        • Althoff R.R.
        • Bagby R.M.
        • et al.
        The hierarchical taxonomy of psychopathology (HiTOP): A dimensional alternative to traditional nosologies.
        J Abnorm Psychol. 2017; 126: 454-477
        • Watson D.
        Rethinking the mood and anxiety disorders: A quantitative hierarchical model for DSM-V.
        J Abnorm Psychol. 2005; 114: 522-536
        • Krueger R.F.
        • Markon K.E.
        Reinterpreting comorbidity: A model-based approach to understanding and classifying psychopathology.
        Annu Rev Clin Psychol. 2006; 2: 111-133
        • Xia C.H.
        • Ma Z.
        • Ciric R.
        • Gu S.
        • Betzel R.F.
        • Kaczkurkin A.N.
        • et al.
        Linked dimensions of psychopathology and connectivity in functional brain networks.
        Nat Commun. 2018; 9: 3003
        • Mihalik A.
        • Ferreira F.S.
        • Rosa M.J.
        • Moutoussis M.
        • Ziegler G.
        • Monteiro J.M.
        • et al.
        Brain-behaviour modes of covariation in healthy and clinically depressed young people.
        Sci Rep. 2019; 9: 11536
        • Zou H.
        • Hastie T.
        Regularization and variable selection via the elastic net.
        J R Statist Soc B Statist Methodol. 2005; 67: 301-320
        • Drysdale A.T.
        • Grosenick L.
        • Downar J.
        • Dunlop K.
        • Mansouri F.
        • Meng Y.
        • et al.
        Resting-state connectivity biomarkers define neurophysiological subtypes of depression.
        Nat Med. 2017; 23: 28-38
        • Anand A.
        • Li Y.
        • Wang Y.
        • Wu J.W.
        • Gao S.J.
        • Bukhari L.
        • et al.
        Antidepressant effect on connectivity of the mood-regulating circuit: An fMRI study.
        Neuropsychopharmacology. 2005; 30: 1334-1344
        • Anand A.
        • Li Y.
        • Wang Y.
        • Gardner K.
        • Lowe M.J.
        Reciprocal effects of antidepressant treatment on activity and connectivity of the mood regulating circuit: An fMRI study.
        J Neuropsychiatry Clin Neurosci. 2007; 19: 274-282
        • Kaiser R.H.
        • Andrews-Hanna J.R.
        • Wager T.D.
        • Pizzagalli D.A.
        Large-scale network dysfunction in major depressive disorder: A meta-analysis of resting-state functional connectivity.
        JAMA Psychiatry. 2015; 72: 603-611
        • McCabe C.
        • Mishor Z.
        Antidepressant medications reduce subcortical-cortical resting-state functional connectivity in healthy volunteers.
        NeuroImage. 2011; 57: 1317-1323
        • Dunlop B.W.
        • Rajendra J.K.
        • Edward Craighead W.
        • Kelley M.E.
        • McGrath C.L.
        • Choi K.S.
        • et al.
        Functional connectivity of the subcallosal cingulate cortex and differential outcomes to treatment with cognitive-behavioral therapy or antidepressant medication for major depressive disorder.
        Am J Psychiatry. 2017; 174: 533-545
        • Crowther A.
        • Smoski M.J.
        • Minkel J.
        • Moore T.
        • Gibbs D.
        • Petty C.
        • et al.
        Resting-state connectivity predictors of response to psychotherapy in major depressive disorder.
        Neuropsychopharmacology. 2015; 40: 1659-1673
        • Yoshimura S.
        • Okamoto Y.
        • Matsunaga M.
        • Onoda K.
        • Okada G.
        • Kunisato Y.
        • et al.
        Cognitive behavioral therapy changes functional connectivity between medial prefrontal and anterior cingulate cortices.
        J Affect Disord. 2017; 208: 610-614
        • Huang X.
        • Huang P.
        • Li D.
        • Zhang Y.
        • Wang T.
        • Mu J.
        • et al.
        Early brain changes associated with psychotherapy in major depressive disorder revealed by resting-state fMRI: Evidence for the top-down regulation theory.
        Int J Psychophysiol. 2014; 94: 437-444
        • Tokuda T.
        • Yoshimoto J.
        • Shimizu Y.
        • Okada G.
        • Takamura M.
        • Okamoto Y.
        • et al.
        Identification of depression subtypes and relevant brain regions using a data-driven approach.
        Sci Rep. 2018; 8: 14082
        • Dinga R.
        • Schmaal L.
        • Penninx B.W.J.H.
        • van Tol M.J.
        • Veltman D.J.
        • van Velzen L.
        • et al.
        Evaluating the evidence for biotypes of depression: Methodological replication and extension of Drysdale et al. (2017).
        NeuroImage Clin. 2019; 22: 101796
        • Grosenick L.
        • Shi T.C.
        • Gunning F.M.
        • Dubin M.J.
        • Downar J.
        • Liston C.
        Functional and optogenetic approaches to discovering stable subtype-specific circuit mechanisms in depression.
        Biol Psychiatry Cogn Neurosci Neuroimaging. 2019; 4: 554-566
        • Bianciardi M.
        • Fukunaga M.
        • van Gelderen P.
        • Horovitz S.G.
        • de Zwart J.A.
        • Shmueli K.
        • Duyn J.H.
        Sources of functional magnetic resonance imaging signal fluctuations in the human brain at rest: A 7 T study.
        Magn Reson Imaging. 2009; 27: 1019-1029
        • Marcus D.S.
        • Harms M.P.
        • Snyder A.Z.
        • Jenkinson M.
        • Wilson J.A.
        • Glasser M.F.
        • et al.
        Human Connectome Project informatics: Quality control, database services, and data visualization.
        NeuroImage. 2013; 80: 202-219
        • Van Dijk K.R.A.
        • Sabuncu M.R.
        • Buckner R.L.
        The influence of head motion on intrinsic functional connectivity MRI.
        NeuroImage. 2012; 59: 431-438
        • Power J.D.
        • Barnes K.A.
        • Snyder A.Z.
        • Schlaggar B.L.
        • Petersen S.E.
        Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion.
        NeuroImage. 2012; 59: 2142-2154
        • Power J.D.
        • Mitra A.
        • Laumann T.O.
        • Snyder A.Z.
        • Schlaggar B.L.
        • Petersen S.E.
        Methods to detect, characterize, and remove motion artifact in resting state fMRI.
        NeuroImage. 2014; 84: 320-341
        • Satterthwaite T.D.
        • Wolf D.H.
        • Loughead J.
        • Ruparel K.
        • Elliott M.A.
        • Hakonarson H.
        • et al.
        Impact of in-scanner head motion on multiple measures of functional connectivity: Relevance for studies of neurodevelopment in youth.
        NeuroImage. 2012; 60: 623-632
        • Siegel J.S.
        • Power J.D.
        • Dubis J.W.
        • Vogel A.C.
        • Church J.A.
        • Schlaggar B.L.
        • Petersen S.E.
        Statistical improvements in functional magnetic resonance imaging analyses produced by censoring high-motion data points.
        Hum Brain Mapp. 2014; 35: 1981-1996
        • Ciric R.
        • Wolf D.H.
        • Power J.D.
        • Roalf D.R.
        • Baum G.L.
        • Ruparel K.
        • et al.
        Benchmarking of participant-level confound regression strategies for the control of motion artifact in studies of functional connectivity.
        NeuroImage. 2017; 154: 174-187
        • Ciric R.
        • Rosen A.F.G.
        • Erus G.
        • Cieslak M.
        • Adebimpe A.
        • Cook P.A.
        • et al.
        Mitigating head motion artifact in functional connectivity MRI.
        Nat Protoc. 2018; 13: 2801-2826
        • Power J.D.
        • Schlaggar B.L.
        • Petersen S.E.
        Recent progress and outstanding issues in motion correction in resting state fMRI.
        NeuroImage. 2015; 105: 536-551
        • Posse S.
        Multi-echo acquisition.
        NeuroImage. 2012; 62: 665-671
        • Caballero-Gaudes C.
        • Reynolds R.C.
        Methods for cleaning the BOLD fMRI signal.
        NeuroImage. 2017; 154: 128-149
        • Kundu P.
        • Voon V.
        • Balchandani P.
        • Lombardo M.V.
        • Poser B.A.
        • Bandettini P.A.
        Multi-echo fMRI: A review of applications in fMRI denoising and analysis of BOLD signals.
        NeuroImage. 2017; 154: 59-80
        • Power J.D.
        • Plitt M.
        • Gotts S.J.
        • Kundu P.
        • Voon V.
        • Bandettini P.A.
        • Martin A.
        Ridding fMRI data of motion-related influences: Removal of signals with distinct spatial and physical bases in multiecho data.
        Proc Natl Acad Sci U S A. 2018; 115: E2105-E2114
        • Power J.D.
        • Silver B.
        • Silverman M.R.
        • Ajodan E.L.
        • Bos D.J.
        • Jones R.M.
        Customized head molds reduce motion during resting state fMRI scans.
        NeuroImage. 2019; 189: 141-149
        • Dosenbach N.U.F.
        • Koller J.M.
        • Earl E.A.
        • Miranda-Dominguez O.
        • Klein R.L.
        • Van A.N.
        • et al.
        Real-time motion analytics during brain MRI improve data quality and reduce costs.
        NeuroImage. 2017; 161: 80-93
        • Vanderwal T.
        • Kelly C.
        • Eilbott J.
        • Mayes L.C.
        • Castellanos F.X.
        Inscapes: A movie paradigm to improve compliance in functional magnetic resonance imaging.
        NeuroImage. 2015; 122: 222-232
        • Vanderwal T.
        • Eilbott J.
        • Castellanos F.X.
        Movies in the magnet: Naturalistic paradigms in developmental functional neuroimaging.
        Dev Cogn Neurosci. 2019; 36: 100600
        • Friedman L.
        • Glover G.H.
        • FBIRN Consortium
        Reducing interscanner variability of activation in a multicenter fMRI study: Controlling for signal-to-fluctuation-noise-ratio (SFNR) differences.
        NeuroImage. 2006; 33: 471-481
        • Friedman L.
        • Glover G.H.
        Report on a multicenter fMRI quality assurance protocol.
        J Magn Reson Imaging. 2006; 23: 827-839
        • Biswal B.B.
        • Mennes M.
        • Zuo X.-N.
        • Gohel S.
        • Kelly C.
        • Smith S.M.
        • et al.
        Toward discovery science of human brain function.
        Proc Natl Acad Sci U S A. 2010; 107: 4734-4739
        • Casey B.J.
        • Cannonier T.
        • Conley M.I.
        • Cohen A.O.
        • Barch D.M.
        • Heitzeg M.M.
        • et al.
        The Adolescent Brain Cognitive Development (ABCD) study: Imaging acquisition across 21 sites.
        Dev Cogn Neurosci. 2018; 32: 43-54
        • Nielson D.M.
        • Pereira F.
        • Zheng C.Y.
        • Migineishvili N.
        • Lee J.A.
        • Thomas A.G.
        • Bandettini P.A.
        Detecting and harmonizing scanner differences in the ABCD study—Annual release 1.0.
        bioRxiv. 2018; (doi: https://doi.org/10.1101/309260): 309260
        • Johnson W.E.
        • Li C.
        • Rabinovic A.
        Adjusting batch effects in microarray expression data using empirical Bayes methods.
        Biostatistics. 2007; 8: 118-127
        • Gordon E.M.
        • Laumann T.O.
        • Gilmore A.W.
        • Newbold D.J.
        • Greene D.J.
        • Berg J.J.
        • et al.
        Precision functional mapping of individual human brains.
        Neuron. 2017; 95: 791-807.e7
        • Gordon E.M.
        • Laumann T.O.
        • Adeyemo B.
        • Gilmore A.W.
        • Nelson S.M.
        • Dosenbach N.U.F.
        • Petersen S.E.
        Individual-specific features of brain systems identified with resting state functional correlations.
        NeuroImage. 2017; 146: 918-939
        • Marek S.
        • Siegel J.S.
        • Gordon E.M.
        • Raut R.V.
        • Gratton C.
        • Newbold D.J.
        • et al.
        Spatial and temporal organization of the individual human cerebellum.
        Neuron. 2018; 100: 977-993.e7
        • Xu T.
        • Opitz A.
        • Craddock R.C.
        • Wright M.J.
        • Zuo X.-N.
        • Milham M.P.
        Assessing variations in areal organization for the intrinsic brain: From fingerprints to reliability.
        Cereb Cortex. 2016; 26: 4192-4211
        • Laumann T.O.
        • Gordon E.M.
        • Adeyemo B.
        • Snyder A.Z.
        • Joo S.J.
        • Chen M.-Y.
        • et al.
        Functional system and areal organization of a highly sampled individual human brain.
        Neuron. 2015; 87: 657-670
        • Fox M.D.
        • Buckner R.L.
        • White M.P.
        • Greicius M.D.
        • Pascual-Leone A.
        Efficacy of transcranial magnetic stimulation targets for depression is related to intrinsic functional connectivity with the subgenual cingulate.
        Biol Psychiatry. 2012; 72: 595-603
        • McMullen D.P.
        Where to target? The precision medicine approach to brain stimulation.
        Biol Psychiatry. 2018; 84: e1-e2
        • Medaglia J.D.
        • Erickson B.
        • Zimmerman J.
        • Kelkar A.
        Personalizing neuromodulation [published online ahead of print Jan 24].
        Int J Psychophysiol. 2019;
        • Arnow B.A.
        • Blasey C.
        • Williams L.M.
        • Palmer D.M.
        • Rekshan W.
        • Schatzberg A.F.
        • et al.
        Depression subtypes in predicting antidepressant response: A report from the iSPOT-D trial.
        Am J Psychiatry. 2015; 172: 743-750
        • Schatzberg A.F.
        • DeBattista C.
        • Lazzeroni L.C.
        • Etkin A.
        • Murphy Jr., G.M.
        • Williams L.M.
        ABCB1 genetic effects on antidepressant outcomes: A report from the iSPOT-D trial.
        Am J Psychiatry. 2015; 172: 751-759
        • Williams L.M.
        Precision psychiatry: A neural circuit taxonomy for depression and anxiety.
        Lancet Psychiatry. 2016; 3: 472-480
        • Etkin A.
        • Maron-Katz A.
        • Wu W.
        • Fonzo G.A.
        • Huemer J.
        • Vértes P.E.
        • et al.
        Using fMRI connectivity to define a treatment-resistant form of post-traumatic stress disorder.
        Sci Transl Med. 2019; 11eaal3236