Advertisement

Gene Expression in Patient-Derived Neural Progenitors Implicates WNT5A Signaling in the Etiology of Schizophrenia

      Abstract

      Background

      Genome-wide association studies of schizophrenia have demonstrated that variations in noncoding regions are responsible for most of the common variation heritability of the disease. It is hypothesized that these risk variants alter gene expression. Therefore, studying alterations in gene expression in schizophrenia may provide a direct approach to understanding the etiology of the disease. In this study we use cultured neural progenitor cells derived from olfactory neuroepithelium (CNON cells) as a genetically unaltered cellular model to elucidate the neurodevelopmental aspects of schizophrenia.

      Methods

      We performed a gene expression study using RNA sequencing of CNON cells from 111 control subjects and 144 individuals with schizophrenia. Differentially expressed genes were identified with DESeq2 software, using covariates to correct for sex, age, library batches, and 1 surrogate variable component.

      Results

      A total of 80 genes were differentially expressed (false discovery rate < 10%), showing enrichment in cell migration, cell adhesion, developmental process, synapse assembly, cell proliferation, and related Gene Ontology categories. Cadherin and Wnt signaling pathways were positive in overrepresentation test, and, in addition, many genes were specifically involved in WNT5A signaling. The differentially expressed genes were modestly, but significantly, enriched in the genes overlapping single nucleotide polymorphisms with genome-wide significant association from the Psychiatric Genomics Consortium genome-wide association study of schizophrenia. We also found substantial overlap with genes associated with other psychiatric disorders or brain development, enrichment in the same Gene Ontology categories as genes with mutations de novo in schizophrenia, and studies of induced pluripotent stem cell–derived neural progenitor cells.

      Conclusions

      CNON cells are a good model of the neurodevelopmental aspects of schizophrenia and can be used to elucidate the etiology of the disorder.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Goldner E.M.
        • Hsu L.
        • Waraich P.
        • Somers J.M.
        Prevalence and incidence studies of schizophrenic disorders: A systematic review of the literature.
        Can J Psychiatry. 2002; 47: 833-843
        • Sullivan P.F.
        • Kendler K.S.
        • Neale M.C.
        Schizophrenia as a complex trait.
        Arch Gen Psychiatry. 2003; 60: 1187-1192
        • Weinberger D.R.
        Implications of normal brain development for the pathogenesis of schizophrenia.
        Arch Gen Psychiatry. 1987; 44: 660-669
        • Lewis D.A.
        • Levitt P.
        Schizophrenia as a disorder of neurodevelopment.
        Annu Rev Neurosci. 2002; 25: 409-432
        • Raedler T.J.
        • Knabel M.B.
        • Weinberger D.R.
        Schizophrenia as a developmental disorder of the cerebral cortex.
        Curr Opin Neurobiol. 1998; 8: 157-161
        • Brennand K.J.
        • Simone A.
        • Jou J.
        • Gelboin-Burkhart C.
        • Tran N.
        • Sangar S.
        • et al.
        Modelling schizophrenia using human induced pluripotent stem cells.
        Nature. 2011; 473: 221-225
        • Cascella N.G.
        • Takaki M.
        • Lin S.
        • Sawa A.
        Neurodevelopmental involvement in schizophrenia: The olfactory epithelium as an alternative model for research.
        J Neurochem. 2007; 102: 587-594
        • Lavoie J.
        • Sawa A.
        • Ishizuka K.
        Application of olfactory tissue and its neural progenitors to schizophrenia and psychiatric research.
        Curr Opin Psychiatry. 2017; 30: 176-183
        • Evgrafov O.V.
        • Wrobel B.B.
        • Kang X.
        • Simpson G.
        • Malaspina D.
        • Knowles J.A.
        Olfactory neuroepithelium–derived neural progenitor cells as a model system for investigating the molecular mechanisms of neuropsychiatric disorders.
        Psychiatr Genet. 2011; 21: 217-228
        • Pato M.T.
        • Sobell J.L.
        • Medeiros H.
        • Abbott C.
        • Sklar B.M.
        • Buckley P.F.
        • et al.
        The genomic psychiatry cohort: Partners in discovery.
        Am J Med Genet B Neuropsychiatr Genet. 2013; 162: 306-312
        • Lee S.H.
        • Ripke S.
        • Neale B.M.
        • Faraone S.V.
        • Purcell S.M.
        • Perlis R.H.
        • et al.
        • Cross-Disorder Group of the Psychiatric Genomics Consortium
        Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs.
        Nat Genet. 2013; 45: 984-994
        • Wrobel B.B.
        • Mazza J.M.
        • Evgrafov O.V.
        • Knowles J.A.
        Assessing the efficacy of endoscopic office olfactory biopsy sites to produce neural progenitor cell cultures for the study of neuropsychiatric disorders.
        Int Forum Allergy Rhinol. 2013; 3: 133-138
        • Karlen Y.
        • McNair A.
        • Perseguers S.
        • Mazza C.
        • Mermod N.
        Statistical significance of quantitative PCR.
        BMC Bioinformatics. 2007; 8: 131
        • Love M.I.
        • Huber W.
        • Anders S.
        Moderated estimation of fold change and dispersion for RNA-Seq data with DESeq2.
        Genome Biol. 2014; 15: 550
        • Li H.-D.
        GTFtools: A Python package for analyzing various modes of gene models.
        bioRxiv. 2018; https://doi.org/10.1101/263517
        • Wagner G.P.
        • Kin K.
        • Lynch V.J.
        Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples.
        Theory Biosci. 2012; 131: 281-285
        • Langfelder P.
        • Horvath S.
        WGCNA: An R package for weighted correlation network analysis.
        BMC Bioinformatics. 2008; 9: 559
        • Li M.
        • Santpere G.
        • Imamura Kawasawa Y.
        • Evgrafov O.V.
        • Gulden F.O.
        • Pochareddy S.
        • et al.
        Integrative functional genomic analysis of human brain development and neuropsychiatric risks.
        Science. 2018; 362: eaat7615
        • Gallagher M.D.
        • Chen-Plotkin A.S.
        The post-GWAS era: From association to function.
        Am J Hum Genet. 2018; 102: 717-730
        • Tak Y.G.
        • Farnham P.J.
        Making sense of GWAS: Using epigenomics and genome engineering to understand the functional relevance of SNPs in noncoding regions of the human genome.
        Epigenetics Chromatin. 2015; 8: 57
        • Hauberg M.E.
        • Zhang W.
        • Giambartolomei C.
        • Franzén O.
        • Morris D.L.
        • Vyse T.J.
        • et al.
        Large-scale identification of common trait and disease variants affecting gene expression.
        Am J Hum Genet. 2017; 100: 885-894
        • Ripke S.
        • Neale B.M.
        • Corvin A.
        • Walters J.T.R.
        • Farh K.-H.
        • Holmans P.a.
        • et al.
        Biological insights from 108 schizophrenia-associated genetic loci.
        Nature. 2014; 511: 421-427
        • Mi H.
        • Poudel S.
        • Muruganujan A.
        • Casagrande J.T.
        • Thomas P.D.
        PANTHER version 10: Expanded protein families and functions, and analysis tools.
        Nucleic Acids Res. 2016; 44: D336-D342
        • Katoh M.
        • Katoh M.
        STAT3-induced Wnt5a signaling loop in embryonic stem cells, adult normal tissues, chronic persistent inflammation, rheumatoid arthritis and cancer (review).
        Int J Mol Med. 2007; 19: 273-278
        • Lin X.
        • Yang L.
        • Wang G.
        • Zi F.
        • Yan H.
        • Guo X.
        • et al.
        Interleukin-32a promotes the proliferation of multiple myeloma cells by inducing production of IL-6 in bone marrow stromal cells.
        Oncotarget. 2017; 8: 92841-92854
        • Luykx J.J.
        • Boks M.P.M.
        • Terwindt A.P.R.
        • Bakker S.
        • Kahn R.S.
        • Ophoff R.A.
        The involvement of GSK3β in bipolar disorder: Integrating evidence from multiple types of genetic studies.
        Eur Neuropsychopharmacol. 2010; 20: 357-368
        • Hoogeboom D.
        • Essers M.A.G.
        • Polderman P.E.
        • Voets E.
        • Smits L.M.M.
        • Burgering B.M.T.
        Interaction of FOXO with β-catenin inhibits β-catenin/T cell factor activity.
        J Biol Chem. 2008; 283: 9224-9230
        • Monteagudo S.
        • Cornelis F.M.F.
        • Aznar-Lopez C.
        • Yibmantasiri P.
        • Guns L.A.
        • Carmeliet P.
        • et al.
        DOT1L safeguards cartilage homeostasis and protects against osteoarthritis.
        Nat Commun. 2017; 8: 15889
        • Martinez S.
        • Scerbo P.
        • Giordano M.
        • Daulat A.M.
        • Lhoumeau A.C.
        • Thomé V.
        • et al.
        The PTK7 and ROR2 protein receptors interact in the vertebrate Wnt/planar cell polarity (PCP) pathway.
        J Biol Chem. 2015; 290: 30562-30572
        • Davey C.F.
        • Moens C.B.
        Planar cell polarity in moving cells: Think globally, act locally.
        Development. 2017; 144: 187-200
        • Ye Z.
        • Zhang C.
        • Tu T.
        • Sun M.
        • Liu D.
        • Lu D.
        • et al.
        Wnt5a uses CD146 as a receptor to regulate cell motility and convergent extension.
        Nat Commun. 2013; 4: 2803
        • Lee J.J.
        • Wedow R.
        • Okbay A.
        • Kong E.
        • Maghzian O.
        • Zacher M.
        • et al.
        Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals.
        Nat Genet. 2018; 50: 1112-1121
        • Kichaev G.
        • Bhatia G.
        • Loh P.-R.R.
        • Gazal S.
        • Burch K.
        • Freund M.K.
        • et al.
        Leveraging polygenic functional enrichment to improve GWAS power.
        Am J Hum Genet. 2019; 104: 65-75
        • Fromer M.
        • Pocklington A.J.
        • Kavanagh D.H.
        • Williams H.J.
        • Dwyer S.
        • Gormley P.
        • et al.
        De novo mutations in schizophrenia implicate synaptic networks.
        Nature. 2014; 506: 179-184
        • Xu B.
        • Ionita-Laza I.
        • Roos J.L.
        • Boone B.
        • Woodrick S.
        • Sun Y.
        • et al.
        De novo gene mutations highlight patterns of genetic and neural complexity in schizophrenia.
        Nat Genet. 2012; 44: 1365-1369
        • Iossifov I.
        • Ronemus M.
        • Levy D.
        • Wang Z.
        • Hakker I.
        • Rosenbaum J.
        • et al.
        De novo gene disruptions in children on the autistic spectrum.
        Neuron. 2012; 74: 285-299
        • O’Roak B.J.
        • Vives L.
        • Girirajan S.
        • Karakoc E.
        • Krumm N.
        • Coe B.P.
        • et al.
        Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations.
        Nature. 2012; 485: 246-250
        • Neale B.M.
        • Kou Y.
        • Liu L.
        • Ma’ayan A.
        • Samocha K.E.
        • Sabo A.
        • et al.
        Patterns and rates of exonic de novo mutations in autism spectrum disorders.
        Nature. 2012; 485: 242-245
        • Ruzzo E.K.
        • Pérez-Cano L.
        • Jung J.Y.
        • Wang L.K.
        • Kashef-Haghighi D.
        • Hartl C.
        • et al.
        Inherited and de novo genetic risk for autism impacts shared networks.
        Cell. 2019; 178: 850-866.e26
        • Melhem N.
        • Middleton F.
        • McFadden K.
        • Klei L.
        • Faraone S.V.
        • Vinogradov S.
        • et al.
        Copy number variants for schizophrenia and related psychotic disorders in Oceanic Palau: Risk and transmission in extended pedigrees.
        Biol Psychiatry. 2011; 70: 1115-1121
        • Montani C.
        • Gritti L.
        • Beretta S.
        • Verpelli C.
        • Sala C.
        The synaptic and neuronal functions of the x-linked intellectual disability protein interleukin-1 receptor accessory protein like 1 (IL1RAPL1).
        Dev Neurobiol. 2019; 79: 85-95
        • Yuan H.
        • Wang Q.
        • Liu Y.
        • Yang W.
        • He Y.
        • Gusella J.F.
        • et al.
        A rare exonic NRXN3 deletion segregating with neurodevelopmental and neuropsychiatric conditions in a three-generation Chinese family.
        Am J Med Genet B Neuropsychiatr Genet. 2018; 177: 589-595
        • Fromer M.
        • Roussos P.
        • Sieberts S.K.
        • Johnson J.S.
        • Kavanagh D.H.
        • Perumal T.M.
        • et al.
        Gene expression elucidates functional impact of polygenic risk for schizophrenia.
        Nat Neurosci. 2016; 19: 1442-1453
        • Brennand K.
        • Savas J.N.
        • Kim Y.
        • Tran N.
        • Simone A.
        • Hashimoto-Torii K.
        • et al.
        Phenotypic differences in hiPSC NPCs derived from patients with schizophrenia.
        Mol Psychiatry. 2015; 20: 361-368
        • Topol A.
        • Zhu S.
        • Tran N.
        • Simone A.
        • Fang G.
        • Brennand K.J.
        Altered WNT signaling in human induced pluripotent stem cell neural progenitor cells derived from four schizophrenia patients.
        Biol Psychiatry. 2015; 78: e29-e34
        • Hoffman G.E.
        • Hartley B.J.
        • Flaherty E.
        • Ladran I.
        • Gochman P.
        • Ruderfer D.M.
        • et al.
        Transcriptional signatures of schizophrenia in hiPSC-derived NPCs and neurons are concordant with post-mortem adult brains.
        Nat Commun. 2017; 8 (2225)
        • Boksa P.
        Maternal infection during pregnancy and schizophrenia.
        J Psychiatry Neurosci. 2008; 33: 183-185
        • Khandaker G.M.
        • Zimbron J.
        • Lewis G.
        • Jones P.B.
        Prenatal maternal infection, neurodevelopment and adult schizophrenia: A systematic review of population-based studies.
        Psychol Med. 2013; 43: 239-257
        • Igolkina A.A.
        • Armoskus C.
        • Newman J.R.B.
        • Evgrafov O.V.
        • McIntyre L.M.
        • Nuzhdin S.V.
        • et al.
        Analysis of gene expression variance in schizophrenia using structural equation modeling.
        Front Mol Neurosci. 2018; 11: 192
        • Panaccione I.
        • Napoletano F.
        • Forte A.M.
        • Kotzalidis G.D.
        • del Casale A.
        • Rapinesi C.
        • et al.
        Neurodevelopment in schizophrenia: The role of the Wnt pathways.
        Curr Neuropharmacol. 2013; 11: 535-558
        • Mulligan K.A.
        • Cheyette B.N.R.
        Neurodevelopmental perspectives on Wnt signaling in psychiatry.
        Mol Neuropsychiatry. 2016; 2: 219-246
        • Singh K.
        An emerging role for Wnt and GSK3 signaling pathways in schizophrenia.
        Clin Genet. 2013; 83: 511-517
        • Srikanth P.
        • Han K.
        • Callahan D.G.
        • Makovkina E.
        • Muratore C.R.
        • Lalli M.A.
        • et al.
        Genomic DISC1 disruption in hiPSCs alters Wnt signaling and neural cell fate.
        Cell Rep. 2015; 12: 1414-1429
        • Hoseth E.Z.
        • Krull F.
        • Dieset I.
        • Mørch R.H.
        • Hope S.
        • Gardsjord E.S.
        • et al.
        Exploring the Wnt signaling pathway in schizophrenia and bipolar disorder.
        Transl Psychiatry. 2018; 8: 1-10
        • Nimmagadda S.
        • Buchtová M.
        • Fu K.
        • Geetha-Loganathan P.
        • Hosseini-Farahabadi S.
        • Trachtenberg A.J.
        • et al.
        Identification and functional analysis of novel facial patterning genes in the duplicated beak chicken embryo.
        Dev Biol. 2015; 407: 275-288
        • Witze E.S.
        • Litman E.S.
        • Argast G.M.
        • Moon R.T.
        • Ahn N.G.
        Wnt5a control of cell polarity and directional movement by polarized redistribution of adhesion receptors.
        Science. 2008; 320: 365-369
        • Lee C.S.
        • Buttitta L.
        • Fan C.-M.
        Evidence that the WNT-inducible growth arrest–specific gene 1 encodes an antagonist of sonic hedgehog signaling in the somite.
        Proc Natl Acad Sci U S A. 2001; 98: 11347-11352
        • Liu Y.
        • May N.R.
        • Fan C.-M.
        Growth arrest specific gene 1 is a positive growth regulator for the cerebellum.
        Dev Biol. 2001; 236: 30-45
        • Moberget T.
        • Doan N.T.
        • Alnæs D.
        • Kaufmann T.
        • Córdova-Palomera A.
        • Lagerberg T.V.
        • et al.
        Cerebellar volume and cerebellocerebral structural covariance in schizophrenia: A multisite mega-analysis of 983 patients and 1349 healthy controls.
        Mol Psychiatry. 2018; 23: 1512-1520
        • Spitsyna V.N.
        • Farnham P.J.
        • Guo Y.
        • Knowles J.A.
        • Lay F.D.
        • Rhie S.K.
        • et al.
        Using 3D epigenomic maps of primary olfactory neuronal cells from living individuals to understand gene regulation.
        Sci Adv. 2018; 4 (eaav8550)