Advertisement
Review| Volume 88, ISSUE 1, P51-62, July 01, 2020

Approaches to Defining Common and Dissociable Neurobiological Deficits Associated With Psychopathology in Youth

Published:December 21, 2019DOI:https://doi.org/10.1016/j.biopsych.2019.12.015

      Abstract

      Psychiatric disorders show high rates of comorbidity and nonspecificity of presenting clinical symptoms, while demonstrating substantial heterogeneity within diagnostic categories. Notably, many of these psychiatric disorders first manifest in youth. We review progress and next steps in efforts to parse heterogeneity in psychiatric symptoms in youths by identifying abnormalities within neural circuits. To address this fundamental challenge in psychiatry, a number of methods have been proposed. We provide an overview of these methods, broadly organized into dimensional versus categorical approaches and single-view versus multiview approaches. Dimensional approaches including factor analysis and canonical correlation analysis aim to capture dimensional associations between psychopathology and brain measures across a continuous spectrum from health to disease. In contrast, categorical approaches, such as clustering and community detection, aim to identify subtypes of individuals within a class of symptoms or brain features. We highlight several studies that apply these methods to samples of youths and discuss issues to consider when using these approaches. Finally, we end by highlighting avenues for future research.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kessler R.C.
        • Amminger G.P.
        • Aguilar-Gaxiola S.
        • Alonso J.
        • Lee S.
        • Üstün T.B.
        Age of onset of mental disorders: A review of recent literature.
        Curr Opin Psychiatry. 2007; 20: 359-364
        • Roza S.J.
        • Hofstra M.B.
        • Van Der Ende J.
        • Verhulst F.C.
        Stable prediction of mood and anxiety disorders based on behavioral and emotional problems in childhood: A 14-year follow-up during childhood, adolescence, and young adulthood.
        Am J Psychiatry. 2003; 160: 2116-2121
        • Luciana M.
        Adolescent brain development in normality and psychopathology.
        Dev Psychopathol. 2013; 25: 1325-1345
        • Stiles J.
        • Jernigan T.L.
        The basics of brain development.
        Neuropsychol Rev. 2010; 20: 327-348
        • Kessler R.C.
        • Chiu W.T.
        • Demler O.
        • Walters E.E.
        Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey replication.
        Arch Gen Psychiatry. 2005; 62: 617-627
        • McTeague L.M.
        • Huemer J.
        • Carreon D.M.
        • Jiang Y.
        • Eickhoff S.B.
        • Etkin A.
        Identification of common neural circuit disruptions in cognitive control across psychiatric disorders.
        Am J Psychiatry. 2017; 174: 676-685
        • Sprooten E.
        • Rasgon A.
        • Goodman M.
        • Carlin A.
        • Leibu E.
        • Lee W.H.
        • Frangou S.
        Addressing reverse inference in psychiatric neuroimaging: Meta-analyses of task-related brain activation in common mental disorders.
        Hum Brain Mapp. 2017; 38: 1846-1864
        • Kotkowski E.
        • Price L.R.
        • Fox P.M.
        • Vanasse T.J.
        • Fox P.T.
        The hippocampal network model: A transdiagnostic metaconnectomic approach.
        Neuroimage Clin. 2018; 18: 115-129
        • Cauda F.
        • Costa T.
        • Nani A.
        • Fava L.
        • Palermo S.
        • Bianco F.
        • et al.
        Are schizophrenia, autistic, and obsessive spectrum disorders dissociable on the basis of neuroimaging morphological findings? A voxel-based meta-analysis.
        Autism Res. 2017; 10: 1079-1095
        • Cauda F.
        • Nani A.
        • Manuello J.
        • Premi E.
        • Palermo S.
        • Tatu K.
        • et al.
        Brain structural alterations are distributed following functional, anatomic and genetic connectivity.
        Brain A J Neurol. 2018; 141: 3211-3232
        • Etkin A.
        • Wager T.D.
        Functional neuroimaging of anxiety: A meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia.
        Am J Psychiatry. 2007; 164: 1476-1488
        • Zhao Y.
        • Chen L.
        • Zhang W.
        • Xiao Y.
        • Shah C.
        • Zhu H.
        • et al.
        Gray matter abnormalities in non-comorbid medication-naive patients with major depressive disorder or social anxiety disorder.
        EBioMedicine. 2017; 21: 228-235
        • Goodkind M.
        • Eickhoff S.B.
        • Oathes D.J.
        • Jiang Y.
        • Chang A.
        • Jones-Hagata L.B.
        • et al.
        Identification of a common neurobiological substrate for mental illness.
        JAMA Psychiatry. 2015; 72: 305-315
        • Fried E.I.
        Problematic assumptions have slowed down depression research: Why symptoms, not syndromes are the way forward.
        Front Psychol. 2015; 6: 1-11
        • Fried E.I.
        The 52 symptoms of major depression: Lack of content overlap among seven common depression scales.
        J Affect Disord. 2017; 208: 191-197
        • Luo Y.
        • Weibman D.
        • Halperin J.M.
        • Li X.
        A review of heterogeneity in attention deficit/hyperactivity disorder (ADHD).
        Front Hum Neurosci. 2019; 13: 1-12
        • Nandi A.
        • Beard J.R.
        • Galea S.
        Epidemiologic heterogeneity of common mood and anxiety disorders over the lifecourse in the general population: A systematic review.
        BMC Psychiatry. 2009; 9: 1-11
        • Lahey B.B.
        • Krueger R.F.
        • Rathouz P.J.
        • Waldman I.D.
        • Zald D.H.
        A hierarchical causal taxonomy of psychopathology across the life span.
        Psychol Bull. 2017; 143: 142-186
        • Marquand A.F.
        • Rezek I.
        • Buitelaar J.
        • Beckmann C.F.
        Understanding heterogeneity in clinical cohorts using normative models: Beyond case-control studies.
        Biol Psychiatry. 2016; 80: 552-561
        • Zhao J.
        • Xie X.
        • Xu X.
        • Sun S.
        Multi-view learning overview: Recent progress and new challenges.
        Inf Fusion. 2017; 38: 43-54
        • Nassar R.
        • Kaczkurkin A.N.
        • Xia C.H.
        • Sotiras A.
        • Pehlivanova M.
        • Moore T.M.
        • et al.
        Gestational age is dimensionally associated with structural brain network abnormalities across development.
        Cereb Cortex. 2018; 29: 2102-2114
        • Kaczkurkin A.N.
        • Park S.S.
        • Sotiras A.
        • Moore T.M.
        • Calkins M.E.
        • Cieslak M.
        • et al.
        Evidence for dissociable linkage of dimensions of psychopathology to brain structure in youths.
        Am J Psychiatry. 2019; 176: 1000-1009
        • Calhoun V.D.
        • Adali T.
        • Pearlson G.D.
        • Pekar J.J.
        Spatial and temporal independent component analysis of functional MRI data containing a pair of task-related waveforms.
        Hum Brain Mapp. 2001; 13: 43-53
        • Pehlivanova M.
        • Wolf D.H.
        • Sotiras A.
        • Kaczkurkin A.N.
        • Moore T.M.
        • Ciric R.
        • et al.
        Diminished cortical thickness is associated with impulsive choice in adolescence.
        J Neurosci. 2018; 38: 2471-2481
        • Smith S.M.
        • Hyvärinen A.
        • Varoquaux G.
        • Miller K.L.
        • Beckmann C.F.
        Group-PCA for very large fMRI datasets.
        Neuroimage. 2014; 101: 738-749
        • Beckmann C.F.
        • Smith S.M.
        Probabilistic independent component analysis for functional magnetic resonance imaging.
        IEEE Trans Med Imaging. 2004; 23: 137-152
        • Sotiras A.
        • Resnick S.M.
        • Davatzikos C.
        Finding imaging patterns of structural covariance via non-negative matrix factorization.
        Neuroimage. 2015; 108: 1-16
        • Sotiras A.
        • Toledo J.B.
        • Gur R.E.
        • Gur R.C.
        • Satterthwaite T.D.
        • Davatzikos C.
        Patterns of coordinated cortical remodeling during adolescence and their associations with functional specialization and evolutionary expansion.
        Proc Natl Acad Sci U S A. 2017; 114: 3527-3532
        • McKeown M.J.
        • Jung T.P.
        • Makeig S.
        • Brown G.
        • Kindermann S.S.
        • Lee T.W.
        • Sejnowski T.J.
        Spatially independent activity patterns in functional MRI data during the Stroop color-naming task.
        Proc Natl Acad Sci U S A. 1998; 95: 803-810
        • Mckeown M.J.
        • Makeig S.
        • Brown G.G.
        • Jung T.
        • Kindermann S.S.
        • Bell A.J.
        • Sejnowski T.J.
        Analysis of fMRI data by blind separation into independent spatial components.
        Hum Brain Mapp. 1998; 6: 160-188
        • Calhoun V.D.
        • Adali T.
        • Pearlson G.
        • Pekar J.
        A method for making group inferences from functional MRI data using independent component analysis.
        Hum Brain Mapp. 2001; 14: 140-151
        • Lahey B.B.
        • Applegate B.
        • Hakes J.K.
        • Zald D.H.
        • Hariri A.R.
        • Rathouz P.J.
        Is there a general factor of prevalent psychopathology during adulthood?.
        J Abnorm Psychol. 2012; 121: 971-977
        • Blanco C.
        • Wall M.M.
        • He J.P.
        • Krueger R.F.
        • Olfson M.
        • Jin C.J.
        • et al.
        The space of common psychiatric disorders in adolescents: Comorbidity structure and individual latent liabilities.
        J Am Acad Child Adolesc Psychiatry. 2015; 54: 45-52
        • Krueger R.F.
        The structure of common mental disorders.
        Arch Gen Psychiatry. 1999; 56: 921
        • Krueger R.F.
        • Markon K.E.
        Reinterpreting comorbidity: A model-based approach to understanding and classifying psychopathology.
        Annu Rev Clin Psychol. 2005; 2: 111-133
        • Slade T.
        • Watson D.
        The structure of common DSM-IV and ICD-10 mental disorders in the Australian general population.
        Psychol Med. 2006; 36: 1593-1600
        • Wright A.G.C.
        • Krueger R.F.
        • Hobbs M.J.
        • Markon K.E.
        • Eaton N.R.
        • Slade T.
        The structure of psychopathology: Toward an expanded quantitative empirical model.
        J Abnorm Psychol. 2013; 122: 281-294
        • Lahey B.B.
        • Rathouz P.J.
        • Van Hulle C.
        • Urbano R.C.
        • Krueger R.F.
        • Applegate B.
        • et al.
        Testing structural models of DSM-IV symptoms of common forms of child and adolescent psychopathology.
        J Abnorm Child Psychol. 2008; 36: 187-206
        • Reise S.P.
        • Moore T.M.
        • Haviland M.G.
        Bifactor models and rotations: Exploring the extent to which multidimensional data yield univocal scale scores.
        J Pers Assess. 2010; 92: 544-559
        • Conway C.C.
        • Forbes M.K.
        • Forbush K.T.
        • Fried E.I.
        • Hallquist M.N.
        • Kotov R.
        • et al.
        A hierarchical taxonomy of psychopathology can transform mental health research.
        Perspect Psychol Sci. 2019; 14: 419-436
        • Caspi A.
        • Houts R.M.
        • Belsky D.W.
        • Goldman-Mellor S.J.
        • Harrington H.
        • Israel S.
        • et al.
        The p factor: One general psychopathology factor in the structure of psychiatric disorders?.
        Clin Psychol Sci. 2014; 2: 119-137
        • Moore T.M.
        • Calkins M.E.
        • Satterthwaite T.D.
        • Roalf D.R.
        • Rosen A.F.G.
        • Gur R.C.
        • Gur R.E.
        Development of a computerized adaptive screening tool for overall psychopathology (“p”).
        J Psychiatr Res. 2019; 116: 26-33
        • Snyder H.R.
        • Hankin B.L.
        • Sandman C.A.
        • Head K.
        • Davis E.P.
        Distinct patterns of reduced prefrontal and limbic gray matter volume in childhood general and internalizing psychopathology.
        Clin Psychol Sci. 2017; 5: 1001-1013
        • Shanmugan S.
        • Wolf D.H.
        • Calkins M.E.
        • Moore T.M.
        • Ruparel K.
        • Hopson R.D.
        • et al.
        Common and dissociable mechanisms of executive system dysfunction across psychiatric disorders in youth.
        Am J Psychiatry. 2016; 173: 517-526
        • Kaczkurkin A.N.
        • Moore T.M.
        • Calkins M.E.
        • Ciric R.
        • Detre J.A.
        • Elliott M.A.
        • et al.
        Common and dissociable regional cerebral blood flow differences associate with dimensions of psychopathology across categorical diagnoses.
        Mol Psychiatry. 2018; 23: 1981-1989
        • Riem M.M.E.
        • van Hoof M.J.
        • Garrett A.S.
        • Rombouts S.A.R.B.
        • van der Wee N.J.A.
        • van IJzendoorn M.H.
        • Vermeiren R.R.J.M.
        General psychopathology factor and unresolved-disorganized attachment uniquely correlated to white matter integrity using diffusion tensor imaging.
        Behav Brain Res. 2019; 359: 1-8
        • Kaufmann T.
        • Alnaes D.
        • Doan N.T.
        • Brandt C.L.
        • Andreassen O.A.
        • Westlye L.T.
        Delayed stabilization and individualization in connectome development are related to psychiatric disorders.
        Nat Neurosci. 2017; 20: 513-515
        • McIntosh A.R.
        • Lobaugh N.J.
        Partial least squares analysis of neuroimaging data: Applications and advances.
        Neuroimage. 2004; 23: S250-S263
        • Krishnan A.
        • Williams L.J.
        • McIntosh A.R.
        • Abdi H.
        Partial least squares (PLS) methods for neuroimaging: A tutorial and review.
        Neuroimage. 2011; 56: 455-475
        • Sui J.
        • Adali T.
        • Yu Q.
        • Chen J.
        • Calhoun V.D.
        A review of multivariate methods for multimodal fusion of brain imaging data.
        J Neurosci Methods. 2012; 204: 68-81
        • Wang H.T.
        • Smallwood J.
        • Mourao-Miranda J.
        • Xia C.H.
        • Satterthwaite T.D.
        • Bassett D.S.
        • Bzdok D.
        Finding the needle in high-dimensional haystack: A tutorial on canonical correlation analysis..
        [stat.ML]. 2018; (arXiv:1812.02598)
        • Sui J.
        • He H.
        • Pearlson G.D.
        • Adali T.
        • Kiehl K.A.
        • Yu Q.
        • et al.
        Three-way (N-way) fusion of brain imaging data based on mCCA+jICA and its application to discriminating schizophrenia.
        Neuroimage. 2013; 66: 119-132
        • Moser D.A.
        • Doucet G.E.
        • Lee W.H.
        • Rasgon A.
        • Krinsky H.
        • Leibu E.
        • et al.
        Multivariate associations among behavioral, clinical, and multimodal imaging phenotypes in patients with psychosis.
        JAMA Psychiatry. 2018; 75: 386-395
        • Marquand A.F.
        • Haak K.V.
        • Beckmann C.F.
        Functional corticostriatal connection topographies predict goal-directed behaviour in humans.
        Nat Hum Behav. 2017; 1: 1-9
        • Vatansever D.
        • Bzdok D.
        • Wang H.T.
        • Mollo G.
        • Sormaz M.
        • Murphy C.
        • et al.
        Varieties of semantic cognition revealed through simultaneous decomposition of intrinsic brain connectivity and behaviour.
        Neuroimage. 2017; 158: 1-11
        • Tsvetanov K.A.
        • Henson R.N.A.
        • Tyler L.K.
        • Razi A.
        • Geerligs L.
        • Ham T.E.
        • Rowe J.B.
        Extrinsic and intrinsic brain network connectivity maintains cognition across the lifespan despite accelerated decay of regional brain activation.
        J Neurosci. 2016; 36: 3115-3126
        • Wang H.T.
        • Bzdok D.
        • Margulies D.
        • Craddock C.
        • Milham M.
        • Jefferies E.
        • Smallwood J.
        Patterns of thought: Population variation in the associations between large-scale network organisation and self-reported experiences at rest.
        Neuroimage. 2018; 176: 518-527
        • Wang H.T.
        • Poerio G.
        • Murphy C.
        • Bzdok D.
        • Jefferies E.
        • Smallwood J.
        Dimensions of experience: Exploring the heterogeneity of the wandering mind.
        Psychol Sci. 2018; 29: 56-71
        • Supekar K.
        • Cai W.
        • Krishnadas R.
        • Palaniyappan L.
        • Menon V.
        Dysregulated brain dynamics in a triple-network saliency model of schizophrenia and its relation to psychosis.
        Biol Psychiatry. 2019; 85: 60-69
        • Drysdale A.T.
        • Grosenick L.
        • Downar J.
        • Dunlop K.
        • Mansouri F.
        • Meng Y.
        • et al.
        Resting-state connectivity biomarkers define neurophysiological subtypes of depression.
        Nat Med. 2017; 23: 28-38
        • Lin H.Y.
        • Cocchi L.
        • Zalesky A.
        • Lv J.
        • Perry A.
        • Tseng W.Y.I.
        • et al.
        Brain-behavior patterns define a dimensional biotype in medication-naïve adults with attention-deficit hyperactivity disorder.
        Psychol Med. 2018; 48: 2399-2408
        • Stout D.M.
        • Buchsbaum M.S.
        • Spadoni A.D.
        • Risbrough V.B.
        • Strigo I.A.
        • Matthews S.C.
        • Simmons A.N.
        Multimodal canonical correlation reveals converging neural circuitry across trauma-related disorders of affect and cognition.
        Neurobiol Stress. 2018; 9: 241-250
        • Avants B.B.
        • Libon D.J.
        • Rascovsky K.
        • Boller A.
        • McMillan C.T.
        • Massimo L.
        • et al.
        Sparse canonical correlation analysis relates network-level atrophy to multivariate cognitive measures in a neurodegenerative population.
        Neuroimage. 2014; 84: 698-711
        • Kebets V.
        • Holmes A.J.
        • Orban C.
        • Tang S.
        • Li J.
        • Sun N.
        • et al.
        Somatosensory-motor dysconnectivity spans multiple transdiagnostic dimensions of psychopathology.
        Biol Psychiatry. 2019; 86: 779-791
        • Rodrigue A.L.
        • McDowell J.E.
        • Tandon N.
        • Keshavan M.S.
        • Tamminga C.A.
        • Pearlson G.D.
        • et al.
        Multivariate relationships between cognition and brain anatomy across the psychosis spectrum.
        Biol Psychiatry Cogn Neurosci Neuroimaging. 2018; 3: 992-1002
        • Smith S.M.
        • Nichols T.E.
        • Vidaurre D.
        • Winkler A.M.
        • Behrens T.E.J.
        • Glasser M.F.
        • et al.
        A positive-negative mode of population covariation links brain connectivity, demographics and behavior.
        Nat Neurosci. 2015; 18: 1565-1567
        • Mihalik A.
        • Ferreira F.S.
        • Rosa M.J.
        • Moutoussis M.
        • Ziegler G.
        • Monteiro J.M.
        • et al.
        Brain-behaviour modes of covariation in healthy and clinically depressed young people.
        Sci Rep. 2019; 9: 11536
        • Parkhomenko E.
        • Tritchler D.
        • Beyene J.
        Sparse canonical correlation analysis with application to genomic data integration.
        Stat Appl Genet Mol Biol. 2009; 8: 1-34
        • Witten D.M.
        • Tibshirani R.
        • Hastie T.
        A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis.
        Biostatistics. 2009; 10: 515-534
        • Long Z.
        • Wang Y.
        • Liu X.
        • Yao L.
        Two-step paretial least square regression classifiers in brain-state decoding using functional magnetic resonance imaging.
        PLoS One. 2019; 14: 1-16
        • Vounou M.
        • Nichols T.E.
        • Montana G.
        Discovering genetic associations with high-dimensional neuroimaging phenotypes: A sparse reduced-rank regression approach.
        Neuroimage. 2010; 53: 1147-1159
        • Xia C.H.
        • Ma Z.
        • Ciric R.
        • Gu S.
        • Betzel R.F.
        • Kaczkurkin A.N.
        • et al.
        Linked dimensions of psychopathology and connectivity in functional brain networks.
        Nat Commun. 2018; 9: 1-14
        • Doshi-Velez F.
        • Ge Y.
        • Kohane I.
        Comorbidity clusters in autism spectrum disorders: An electronic health record time-series analysis.
        Pediatrics. 2013; 133: e54-e63
        • Geisler D.
        • Walton E.
        • Naylor M.
        • Roessner V.
        • Lim K.O.
        • Charles Schulz S.
        • et al.
        Brain structure and function correlates of cognitive subtypes in schizophrenia.
        Psychiatry Res. 2015; 234: 74-83
        • Rhebergen D.
        • Lamers F.
        • Spijker J.
        • De Graaf R.
        • Beekman A.T.F.
        • Penninx B.W.J.H.
        Course trajectories of unipolar depressive disorders identified by latent class growth analysis.
        Psychol Med. 2012; 42: 1383-1396
        • van Loo H.M.
        • Cai T.
        • Gruber M.J.
        • Li J.
        • De Jonge P.
        • Petukhova M.
        • et al.
        Major depressive disorder subtypes to predict long-term course.
        Depress Anxiety. 2014; 31: 765-777
        • Veatch O.J.
        • Veenstra-Vanderweele J.
        • Potter M.
        • Pericak-Vance M.A.
        • Haines J.L.
        Genetically meaningful phenotypic subgroups in autism spectrum disorders.
        Genes Brain Behav. 2014; 13: 276-285
        • Bell M.D.
        • Corbera S.
        • Johannesen J.K.
        • Fiszdon J.M.
        • Wexler B.E.
        Social cognitive impairments and negative symptoms in schizophrenia: Are there subtypes with distinct functional correlates?.
        Schizophr Bull. 2013; 39: 186-196
        • Fair D.A.
        • Bathula D.
        • Nikolas M.A.
        • Nigg J.T.
        Distinct neuropsychological subgroups in typically developing youth inform heterogeneity in children with ADHD.
        Proc Natl Acad Sci U S A. 2012; 109: 6769-6774
        • Lamers F.
        • de Jonge P.
        • Nolen W.A.
        • Smit J.H.
        • Zitman F.G.
        • Beekman A.T.F.
        • Penninx B.W.J.H.
        Identifying depressive subtypes in a large cohort study.
        J Clin Psychiatry. 2010; 71: 1582-1589
        • Van Dam N.T.
        • O’Connor D.
        • Marcelle E.T.
        • Ho E.J.
        • Cameron Craddock R.
        • Tobe R.H.
        • et al.
        Data-driven phenotypic categorization for neurobiological analyses: Beyond DSM-5 labels.
        Biol Psychiatry. 2017; 81: 484-494
        • Van Hulst B.M.
        • De Zeeuw P.
        • Durston S.
        Distinct neuropsychological profiles within ADHD: A latent class analysis of cognitive control, reward sensitivity and timing.
        Psychol Med. 2015; 45: 735-745
        • Nenadic I.
        • Gaser C.
        • Sauer H.
        Heterogeneity of brain structural variation and the structural imaging endophenotypes in schizophrenia.
        Neuropsychobiology. 2012; 66: 44-49
        • Karalunas S.L.
        • Fair D.
        • Musser E.D.
        • Aykes K.
        • Iyer S.P.
        • Nigg J.T.
        Subtyping attention-deficit/hyperactivity disorder using temperament dimensions: Toward biologically based nosologic criteria.
        JAMA Psychiatry. 2014; 71: 1015-1024
        • Georgiades S.
        • Szatmari P.
        • Boyle M.
        • Hanna S.
        • Duku E.
        • Zwaigenbaum L.
        • et al.
        Investigating phenotypic heterogeneity in children with autism spectrum disorder: A factor mixture modeling approach.
        J Child Psychol Psychiatry. 2013; 54: 206-215
        • Wiggins L.D.
        • Tian L.H.
        • Levy S.E.
        • Rice C.
        • Lee L.C.
        • Schieve L.
        • et al.
        Homogeneous subgroups of young children with autism improve phenotypic characterization in the study to explore early development.
        J Autism Dev Disord. 2017; 47: 3634-3645
        • Grisanzio K.A.
        • Goldstein-Piekarski A.N.
        • Wang M.Y.
        • Ahmed A.P.R.
        • Samara Z.
        • Williams L.M.
        Transdiagnostic symptom clusters and associations with brain, behavior, and daily function in mood, anxiety, and trauma disorders.
        JAMA Psychiatry. 2018; 75: 201-209
        • Kleinman A.
        • Caetano S.C.
        • Brentani H.
        • Rocca C.C.D.A.
        • Dos Santos B.
        • Andrade E.R.
        • et al.
        Attention-based classification pattern, a research domain criteria framework, in youths with bipolar disorder and attention-deficit/hyperactivity disorder.
        Aust N Z J Psychiatry. 2015; 49: 255-265
        • Lamers F.
        • Burstein M.
        • He J.P.
        • Avenevoli S.
        • Angst J.
        • Merikangas K.R.
        Structure of major depressive disorder in adolescents and adults in the US general population.
        Br J Psychiatry. 2012; 201: 143-150
        • Lewandowski K.E.
        • Sperry S.H.
        • Cohen B.M.
        • Öngür D.
        Cognitive variability in psychotic disorders: A cross-diagnostic cluster analysis.
        Psychol Med. 2014; 44: 3239-3248
        • Milaneshi Y.
        • Lamers F.
        • Peyrot W.
        • Abdellaoui A.
        • Willemsen G.
        • Hottenga J.J.
        • et al.
        Polygenic dissection of major depression clinical heterogeneity.
        Mol Psychiatry. 2016; 21: 516-522
        • Mostert J.C.
        • Hoogman M.
        • Onnink A.M.H.
        • van Rooij D.
        • von Rhein D.
        • van Hulzen K.J.E.
        • et al.
        Similar subgroups based on cognitive performance parse heterogeneity in adults with ADHD and healthy controls.
        J Atten Disord. 2018; 22: 281-292
        • Olino T.M.
        • Klein D.N.
        • Lewinsohn P.M.
        • Rohde P.
        • Seeley J.R.
        Latent trajectory classes of depressive and anxiety disorders from adolescence to adulthood: Descriptions of classes and associations with risk factors.
        Compr Psychiatry. 2010; 51: 224-235
        • Varol E.
        • Sotiras A.
        • Davatzikos C.
        HYDRA: Revealing heterogeneity of imaging and genetic patterns through a multiple max-margin discriminative analysis framework.
        Neuroimage. 2017; 145: 346-364
        • Gupta C.N.
        • Castro E.
        • Rachkonda S.
        • van Erp T.G.M.
        • Potkin S.
        • Ford J.M.
        • et al.
        Biclustered independent component analysis for complex biomarker and subtype identification from structural magnetic resonance images in schizophrenia.
        Front Psychiatry. 2017; 8: 1-10
        • Rahaman M.A.
        • Turner J.A.
        • Gupta C.N.
        • Rachakonda S.
        • Chen J.
        • Liu J.Y.
        • et al.
        N-BiC: A method for multi-component and symptom biclustering of structural MRI data: Application to schizophrenia.
        IEEE Trans Biomed Eng. 2020; 67: 110-121
        • Arnedo J.
        • Mamah D.
        • Baranger D.A.
        • Harms M.P.
        • Barch D.M.
        • Svrakic D.M.
        • et al.
        Decomposition of brain diffusion imaging data uncovers latent schizophrenias with distinct patterns of white matter anisotropy.
        Neuroimage. 2015; 120: 43-54
        • Segman R.H.
        • Shefi N.
        • Goltser-Dubner T.
        • Friedman N.
        • Kaminski N.
        • Shalev A.Y.
        Peripheral blood mononuclear cell gene expression profiles identify emergent post-traumatic stress disorder among trauma survivors.
        Mol Psychiatry. 2005; 10: 500-513
        • Cha K.
        • Hwang T.
        • Oh K.
        • Yi G.S.
        Discovering transnosological molecular basis of human brain diseases using biclustering analysis of integrated gene expression data.
        BMC Med Inform Decis Mak. 2015; 15: 1-8
        • Rangan A.V.
        • McGrouther C.C.
        • Kelsoe J.
        • Schork N.
        • Stahl E.
        • Zhu Q.
        • et al.
        A loop-counting method for covariate-corrected low-rank biclustering of gene-expression and genome-wide association study data.
        PLoS Comput Biol. 2018; 14e1006105
        • Dong A.
        • Toledo J.B.
        • Honnorat N.
        • Doshi J.
        • Varol E.
        • Sotiras A.
        • et al.
        Heterogeneity of neuroanatomical patterns in prodromal Alzheimer’s disease: Links to cognition, progression and biomarkers.
        Brain. 2017; 140: 735-747
        • Dong A.
        • Honnorat N.
        • Gaonkar B.
        • Davatzikos C.
        CHIMERA: Clustering of heterogeneous disease effects via distribution matching of imaging patterns.
        IEEE Trans Med Imaging. 2016; 35: 612-621
        • Tokuda T.
        • Yoshimoto J.
        • Shimizu Y.
        • Okada G.
        • Takamura M.
        • Okamoto Y.
        • et al.
        Identification of depression subtypes and relevant brain regions using a data-driven approach.
        Sci Rep. 2018; 8: 1-13
        • Brodersen K.H.
        • Deserno L.
        • Schlagenhauf F.
        • Lin Z.
        • Penny W.D.
        • Buhmann J.M.
        • Stephan K.E.
        Dissecting psychiatric spectrum disorders by generative embedding.
        Neuroimage Clin. 2014; 4: 98-111
        • Clementz B.A.
        • Sweeney J.A.
        • Hamm J.P.
        • Ivleva E.I.
        • Ethridge L.E.
        • Pearlson G.D.
        • et al.
        Identification of distinct psychosis biotypes using brain-based biomarkers.
        Am J Psychiatry. 2016; 173: 373-384
        • Sun H.
        • Lui S.
        • Yao L.
        • Deng W.
        • Xiao Y.
        • Zhang W.
        • et al.
        Two patterns of white matter abnormalities in medication-naive patients with first-episode schizophrenia revealed by diffusion tensor imaging and cluster analysis.
        JAMA Psychiatry. 2015; 72: 678-686
        • Viviano J.D.
        • Buchanan R.W.
        • Calarco N.
        • Gold J.M.
        • Foussias G.
        • Bhagwat N.
        • et al.
        Resting-state connectivity biomarkers of cognitive performance and social function in individuals with schizophrenia spectrum disorder and healthy control subjects.
        Biol Psychiatry. 2018; 84: 665-674
        • Hawco C.
        • Buchanan R.W.
        • Calarco N.
        • Mulsant B.H.
        • Viviano J.D.
        • Dickie E.W.
        • et al.
        Separable and replicable neural strategies during social brain function in people with and without severe mental illness.
        Am J Psychiatry. 2019; 176: 521-530
        • Wee C.Y.
        • Tuan T.A.
        • Broekman B.F.P.
        • Ong M.Y.
        • Chong Y.S.
        • Kwek K.
        • et al.
        Neonatal neural networks predict children behavioral profiles later in life.
        Hum Brain Mapp. 2017; 38: 1362-1373
        • Costa Dias T.G.
        • Iyer S.P.
        • Carpenter S.D.
        • Cary R.P.
        • Wilson V.B.
        • Mitchel S.H.
        • et al.
        Characterizing heterogeneity in children with and without ADHD based on reward system connectivity.
        Dev Cogn Neurosci. 2015; 11: 155-174
        • Gates K.M.
        • Molenaar P.C.M.
        • Iyer S.P.
        • Nigg J.T.
        • Fair D.A.
        Organizing heterogeneous samples using community detection of GIMME-Derived resting state functional networks.
        PLoS One. 2014; 9: 1-11
        • Kaczkurkin A.N.
        • Sotiras A.
        • Baller E.B.
        • Barzilay R.
        • Calkins M.E.
        • Chand G.B.
        • et al.
        Neurostructural heterogeneity in youths with internalizing symptoms.
        Biol Psychiatry. 2020; 87: 473-482
        • Padilha V.A.
        • Campello R.J.G.B.
        A systematic comparative evaluation of biclustering techniques.
        BMC Bioinformatics. 2017; 18: 1-25
        • Yin L.
        • Chau C.K.L.
        • Sham P.C.
        • So H.C.
        Uncovering complex disease subtypes by integrating clinical data and imputed transcriptome from genome-wide association studies: Applications in psychiatry and cardiovascular.
        bioRxiv. 2019; https://doi.org/10.1101/595488
        • Yin L.
        • Cheung E.F.C.
        • Chen R.Y.L.
        • Wong E.H.M.
        • Sham P.C.
        • So H.C.
        Leveraging genome-wide association and clinical data in revealing schizophrenia subgroups.
        J Psychiatr Res. 2018; 106: 106-117
        • Sun J.
        • Bi J.
        • Kranzler H.R.
        Multi-view singular value decomposition for disease subtyping and genetic associations.
        BMC Genet. 2014; 15: 1-12
        • Stefanik L.
        • Erdman L.
        • Ameis S.H.
        • Foussias G.
        • Mulsant B.H.
        • Behdinan T.
        • et al.
        Brain-behavior participant similarity networks among youth and emerging adults with schizophrenia spectrum, autism spectrum, or bipolar disorder and matched controls.
        Neuropsychopharmacology. 2018; 43: 1180-1188
        • Wang B.
        • Mezlini A.
        • Demir F.
        • Fiume M.
        • Tu Z.
        • Brudno M.
        • et al.
        Similarity network fusion for aggregating data types on a genomic scale.
        Nat Methods. 2014; 11: 333-340
        • Feczko E.
        • Miranda-Dominguez O.
        • Marr M.
        • Graham A.M.
        • Nigg J.T.
        • Fair D.A.
        The heterogeneity problem: Approaches to identify psychiatric subtypes.
        Trends Cogn Sci. 2019; 23: 584-601
        • Holmes A.J.
        • Patrick L.M.
        The myth of optimality in clinical neuroscience.
        Trends Cogn Sci. 2018; 22: 241-257
        • Vong W.K.
        • Navarro D.J.
        • Perfors A.
        The helpfulness of category labels in semi-supervised learning depends on category structure.
        Psychon Bull Rev. 2016; 23: 230-238
        • Linn K.A.
        • Gaonkar B.
        • Doshi J.
        • Davatzikos C.
        • Shinohara R.T.
        Addressing confounding in predictive models with an application to neuroimaging.
        Int J Biostat. 2016; 12: 31-44
        • Li G.
        • Jung S.
        Incorporating covariates into integrated factor analysis of multi-view data.
        Biometrics. 2017; 73: 1433-1442
        • Nooner K.B.
        • Colcombe S.J.
        • Tobe R.H.
        • Mennes M.
        • Benedict M.M.
        • Moreno A.L.
        • et al.
        The NKI-Rockland sample: A model for accelerating the pace of discovery science in psychiatry.
        Front Neurosci. 2012; 6: 1-11
        • Satterthwaite T.D.
        • Connolly J.J.
        • Ruparel K.
        • Calkins M.E.
        • Jackson C.
        • Elliott M.A.
        • et al.
        The Philadelphia Neurodevelopmental Cohort: A publicly available resource for the study of normal and abnormal brain development in youth.
        Neuroimage. 2016; 124: 1115-1119
        • Jernigan T.L.
        • Brown T.T.
        • Hagler D.J.
        • Akshoomoff N.
        • Bartsch H.
        • Newman E.
        • et al.
        The Pediatric Imaging, Neurocognition, and Genetics (PING) Data Repository.
        Neuroimage. 2016; 124: 1149-1154
        • Ances B.
        • Bookheimer S.
        • Buckner R.
        • Salat D.
        • Smith S.
        • Terpstra M.
        • et al.
        Human Connectome Project-Lifespan studies.
        (Available at:)
        https://www.humanconnectome.org/lifespan-studies
        Date: 2018
        Date accessed: March 6, 2018
        • Alexander L.M.
        • Escalera J.
        • Ai L.
        • Andreotti C.
        • Febre K.
        • Mangone A.
        • et al.
        Data Descriptor: An open resource for transdiagnostic research in pediatric mental health and learning disorders.
        Sci Data. 2017; 4: 1-26
        • National Institutes of Health
        Adolescent Brain Cognitive Development Study (ABCD).
        (Available at:)
        https://addictionresearch.nih.gov/abcd-study
        Date: 2018
        Date accessed: March 6, 2018
        • Halkidi M.
        • Batistakis Y.
        • Vazirgiannis M.
        On clustering validation techniques.
        J Intell Inf Syst. 2001; 17: 107-145
        • Plesser H.E.
        Reproducibility vs. replicability: A brief history of a confused terminology.
        Front Neuroinform. 2018; 11: 1-4
        • Goodman S.N.
        • Fanelli D.
        • Ioannidis J.P.
        What does research reproducibility mean?.
        Sci Transl Med. 2016; 8: 341ps12
        • Dinga R.
        • Schmaal L.
        • Penninx B.W.J.H.
        • van Tol M.J.
        • Veltman D.J.
        • van Velzen L.
        • et al.
        Evaluating the evidence for biotypes of depression: Methodological replication and extension of Drysdale et al. (2017).
        Neuroimage Clin. 2019; 22: 101796
        • Chicco D.
        Ten quick tips for machine learning in computational biology.
        BioData Min. 2017; 10: 35
        • Nichols T.E.
        • Das S.
        • Eickhoff S.B.
        • Evans A.C.
        • Glatard T.
        • Hanke M.
        • et al.
        Best practices in data analysis and sharing in neuroimaging using MRI.
        Nat Neurosci. 2017; 20: 299-303
        • Miller S.A.
        Developmental Research Methods.
        5th ed. SAGE Publications, Thousand Oaks, CA2017
        • Koutsouleris N.
        • Kambeitz-Ilankovic L.
        • Ruhrmann S.
        • Rosen M.
        • Ruef A.
        • Dwyer D.B.
        • et al.
        Prediction models of functional outcomes for individuals in the clinical high-risk state for psychosis or with recent-onset depression: A multimodal, multisite machine learning analysis.
        JAMA Psychiatry. 2018; 75: 1156-1172