Advertisement
Archival Report| Volume 87, ISSUE 10, P916-925, May 15, 2020

Anticipatory Threat Responding: Associations With Anxiety, Development, and Brain Structure

Published:November 15, 2019DOI:https://doi.org/10.1016/j.biopsych.2019.11.006

      Abstract

      Background

      While translational theories link neurodevelopmental changes in threat learning to pathological anxiety, findings from studies in patients inconsistently support these theories. This inconsistency may reflect difficulties in studying large patient samples with wide age ranges using consistent methods. A dearth of imaging data in patients further limits translational advances. We address these gaps through a psychophysiology and structural brain imaging study in a large sample of patients across the lifespan.

      Methods

      A total of 351 participants (8–50 years of age; 209 female subjects; 195 healthy participants and 156 medication-free, treatment-seeking patients with anxiety) completed a differential threat conditioning and extinction paradigm that has been validated in pediatric and adult populations. Skin conductance response indexed psychophysiological response to conditioned (CS+, CS−) and unconditioned threat stimuli. Structural magnetic resonance imaging data were available for 250 participants. Analyses tested anxiety and age associations with psychophysiological response in addition to associations between psychophysiology and brain structure.

      Results

      Regardless of age, patients and healthy comparison subjects demonstrated comparable differential threat conditioning and extinction. The magnitude of skin conductance response to both conditioned stimulus types differentiated patients from comparison subjects and covaried with dorsal prefrontal cortical thickness; structure–response associations were moderated by anxiety and age in several regions. Unconditioned responding was unrelated to anxiety and brain structure.

      Conclusions

      Rather than impaired threat learning, pathological anxiety involves heightened skin conductance response to potential but not immediately present threats; this anxiety-related potentiation of anticipatory responding also relates to variation in brain structure. These findings inform theoretical considerations by highlighting anticipatory response to potential threat in anxiety.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Barlow D.H.
        Anxiety and Its Disorders: The Nature and Treatment of Anxiety and Panic.
        The Guilford Press, New York2002
        • Casey B.J.
        • Glatt C.E.
        • Lee F.S.
        Treating the developing versus developed brain: Translating preclinical mouse and human studies.
        Neuron. 2015; 86: 1358-1368
        • Duits P.
        • Cath D.C.
        • Lissek S.
        • Hox J.J.
        • Hamm A.O.
        • Engelhard I.M.
        • et al.
        Updated meta-analysis of classical fear conditioning in the anxiety disorders.
        Depress Anxiety. 2015; 32: 239-253
        • Mineka S.
        • Oehlberg K.
        The relevance of recent developments in classical conditioning to understanding the etiology and maintenance of anxiety disorders.
        Acta Psychol (Amst). 2008; 127: 567-580
        • Waters A.M.
        • Craske M.G.
        Towards a cognitive-learning formulation of youth anxiety: A narrative review of theory and evidence and implications for treatment.
        Clin Psychol Rev. 2016; 50: 50-66
        • Dvir M.
        • Horovitz O.
        • Aderka I.M.
        • Shechner T.
        Fear conditioning and extinction in anxious and non-anxious youth: A meta-analysis.
        Behav Res Ther. 2019; 120: 103431
        • Lissek S.
        • Powers A.S.
        • McClure E.B.
        • Phelps E.A.
        • Woldehawariat G.
        • Grillon C.
        • et al.
        Classical fear conditioning in the anxiety disorders: A meta-analysis.
        Behav Res Ther. 2005; 43: 1391-1424
        • LeDoux J.E.
        Emotion circuits in the brain.
        Annu Rev Neurosci. 2000; 23: 155-184
        • Fanselow M.S.
        The role of learning in threat imminence and defensive behaviors.
        Curr Opin Behav Sci. 2018; 24: 44-49
        • Adolphs R.
        The Biology of Fear.
        Curr Biol. 2013; 23: R79-R93
        • Lonsdorf T.B.
        • Menz M.M.
        • Andreatta M.
        • Fullana M.A.
        • Golkar A.
        • Haaker J.
        • et al.
        Don't fear 'fear conditioning': Methodological considerations for the design and analysis of studies on human fear acquisition, extinction, and return of fear.
        Neurosci Biobehav Rev. 2017; 77: 247-285
        • American Psychiatric Association
        Diagnostic and Statistical Manual of Mental Disorders.
        5th ed. American Psychiatric Association, Arlington, VA2013
        • Rosen J.B.
        • Schulkin J.
        From normal fear to pathological anxiety.
        Psychol Rev. 1998; 105: 325-350
        • Corchs F.
        • Schiller D.
        Threat-related disorders as persistent motivational states of defense.
        Curr Opin Behav Sci. 2019; 26: 62-68
        • Beesdo K.
        • Knappe S.
        • Pine D.S.
        Anxiety and anxiety disorders in children and adolescents: Developmental issues and implications for DSM-V.
        Psychiatr Clin North Am. 2009; 32: 483-524
        • Kessler R.C.
        • Avenevoli S.
        • McLaughlin K.A.
        • Green J.G.
        • Lakoma M.D.
        • Petukhova M.
        • et al.
        Lifetime co-morbidity of DSM-IV disorders in the US National Comorbidity Survey Replication Adolescent Supplement (NCS-A).
        Psychol Med. 2012; 42: 1997-2010
        • Pattwell S.S.
        • Duhoux S.
        • Hartley C.A.
        • Johnson D.C.
        • Jing D.
        • Elliott M.D.
        • et al.
        Altered fear learning across development in both mouse and human.
        Proc Natl Acad Sci U S A. 2012; 109: 16318-16323
        • Lau J.Y.
        • Britton J.C.
        • Nelson E.E.
        • Angold A.
        • Ernst M.
        • Goldwin M.
        • et al.
        Distinct neural signatures of threat learning in adolescents and adults.
        Proc Natl Acad Sci U S A. 2011; 108: 4500-4505
        • Milad M.R.
        • Quirk G.J.
        Fear extinction as a model for translational neuroscience: Ten years of progress.
        Annu Rev Psychol. 2012; 63: 129-151
        • Craske M.G.
        • Treanor M.
        • Conway C.C.
        • Zbozinek T.
        • Vervliet B.
        Maximizing exposure therapy: An inhibitory learning approach.
        Behav Res Ther. 2014; 58: 10-23
        • Powers M.B.
        • de Kleine R.A.
        • Smits J.A.J.
        Core mechanisms of cognitive behavioral therapy for anxiety and depression: A review.
        Psychiatr Clin North Am. 2017; 40: 611-623
        • Pittig A.
        • van den Berg L.
        • Vervliet B.
        The key role of extinction learning in anxiety disorders: Behavioral strategies to enhance exposure-based treatments.
        Curr Opin Psychiatry. 2016; 29: 39-47
        • Barry T.J.
        • Yeung S.P.
        • Lau J.Y.F.
        Meta-analysis of the influence of age on symptom change following cognitive-behavioural treatment for anxiety disorders.
        J Adolescence. 2018; 68: 232-241
        • Baker K.D.
        • Den M.L.
        • Graham B.M.
        • Richardson R.
        A window of vulnerability: Impaired fear extinction in adolescence.
        Neurobiol Learn Mem. 2014; 113: 90-100
        • Shechner T.
        • Hong M.
        • Britton J.C.
        • Pine D.S.
        • Fox N.A.
        Fear conditioning and extinction across development: Evidence from human studies and animal models.
        Biol Psychol. 2014; 100: 1-12
        • Ryan K.M.
        • Zimmer-Gembeck M.J.
        • Neumann D.L.
        • Waters A.M.
        The need for standards in the design of differential fear conditioning and extinction experiments in youth: A systematic review and recommendations for research on anxiety.
        Behav Res Ther. 2019; 112: 42-62
        • Ney L.J.
        • Wade M.
        • Reynolds A.
        • Zuj D.V.
        • Dymond S.
        • Matthews A.
        • et al.
        Critical evaluation of current data analysis strategies for psychophysiological measures of fear conditioning and extinction in humans.
        Int J Psychophysiol. 2018; 134: 95-107
        • Rescorla R.A.
        Pavlovian conditioning: It's not what you think it is.
        Am Psychol. 1988; 43: 151-160
        • Silva B.A.
        • Gross C.T.
        • Graff J.
        The neural circuits of innate fear: Detection, integration, action, and memorization.
        Learn Mem. 2016; 23: 544-555
        • Rescorla R.A.
        • Wagner A.R.
        A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement.
        in: Black A.H. Prokasy W.F. Classical Conditioning II. Appleton-Century-Crofts, New York1972: 64-99
        • Goodman A.M.
        • Harnett N.G.
        • Knight D.C.
        Pavlovian conditioned diminution of the neurobehavioral response to threat.
        Neurosci Biobehav Rev. 2018; 84: 218-224
        • Britton J.C.
        • Grillon C.
        • Lissek S.
        • Norcross M.A.
        • Szuhany K.L.
        • Chen G.
        • et al.
        Response to learned threat: An fMRI study in adolescent and adult anxiety.
        Am J Psychiatry. 2013; 170: 1195-1204
        • Fullana M.A.
        • Harrison B.J.
        • Soriano-Mas C.
        • Vervliet B.
        • Cardoner N.
        • Avila-Parcet A.
        • et al.
        Neural signatures of human fear conditioning: An updated and extended meta-analysis of fMRI studies.
        Mol Psychiatry. 2016; 21: 500-508
        • Fullana M.A.
        • Albajes-Eizagirre A.
        • Soriano-Mas C.
        • Vervliet B.
        • Cardoner N.
        • Benet O.
        • et al.
        Fear extinction in the human brain: A meta-analysis of fMRI studies in healthy participants.
        Neurosci Biobehav Rev. 2018; 88: 16-25
        • Marin M.F.
        • Zsido R.G.
        • Song H.
        • Lasko N.B.
        • Killgore W.D.S.
        • Rauch S.L.
        • et al.
        Skin conductance responses and neural activations during fear conditioning and extinction recall across anxiety disorders.
        JAMA Psychiatry. 2017; 74: 622-631
        • Cacciaglia R.
        • Pohlack S.T.
        • Flor H.
        • Nees F.
        Dissociable roles for hippocampal and amygdalar volume in human fear conditioning.
        Brain Struct Funct. 2015; 220: 2575-2586
        • Hartley C.A.
        • Fischl B.
        • Phelps E.A.
        Brain structure correlates of individual differences in the acquisition and inhibition of conditioned fear.
        Cereb Cortex. 2011; 21: 1954-1962
        • Milad M.R.
        • Quinn B.T.
        • Pitman R.K.
        • Orr S.P.
        • Fischl B.
        • Rauch S.L.
        Thickness of ventromedial prefrontal cortex in humans is correlated with extinction memory.
        Proc Natl Acad Sci U S A. 2005; 102: 10706-10711
        • Pohlack S.T.
        • Nees F.
        • Liebscher C.
        • Cacciaglia R.
        • Diener S.J.
        • Ridder S.
        • et al.
        Hippocampal but not amygdalar volume affects contextual fear conditioning in humans.
        Hum Brain Mapp. 2012; 33: 478-488
        • Winkelmann T.
        • Grimm O.
        • Pohlack S.T.
        • Nees F.
        • Cacciaglia R.
        • Dinu-Biringer R.
        • et al.
        Brain morphology correlates of interindividual differences in conditioned fear acquisition and extinction learning.
        Brain Struct Funct. 2016; 221: 1927-1937
        • Gold A.L.
        • Steuber E.R.
        • White L.K.
        • Pacheco J.
        • Sachs J.F.
        • Pagliaccio D.
        • et al.
        Cortical thickness and subcortical gray matter volume in pediatric anxiety disorders.
        Neuropsychopharmacology. 2017; 42: 2423-2433
        • Lau J.Y.
        • Lissek S.
        • Nelson E.E.
        • Lee Y.
        • Roberson-Nay R.
        • Poeth K.
        • et al.
        Fear conditioning in adolescents with anxiety disorders: Results from a novel experimental paradigm.
        J Am Acad Child Adolesc Psychiatry. 2008; 47: 94-102
        • Milad M.R.
        • Quirk G.J.
        • Pitman R.K.
        • Orr S.P.
        • Fischl B.
        • Rauch S.L.
        A role for the human dorsal anterior cingulate cortex in fear expression.
        Biol Psychiatry. 2007; 62: 1191-1194
        • Shechner T.
        • Britton J.C.
        • Ronkin E.G.
        • Jarcho J.M.
        • Mash J.A.
        • Michalska K.J.
        • et al.
        Fear conditioning and extinction in anxious and nonanxious youth and adults: Examining a novel developmentally appropriate fear-conditioning task.
        Depress Anxiety. 2015; 32: 277-288
        • Birmaher B.
        • Khetarpal S.
        • Brent D.
        • Cully M.
        • Balach L.
        • Kaufman J.
        • et al.
        The Screen For Child Anxiety Related Emotional Disorders (SCARED): Scale construction and psychometric characteristics.
        J Am Acad Child Adolesc Psychiatry. 1997; 36: 545-553
        • Spielberger C.D.
        Manual for the State-Trait Anxiety Inventory (Form Y) Self-Evaluation Questionnaire.
        Consulting Psychologists Press, Palo Alto, CA1983
        • Michalska K.J.
        • Machlin L.
        • Moroney E.
        • Lowet D.S.
        • Hettema J.M.
        • Roberson-Nay R.
        • et al.
        Anxiety symptoms and children's eye gaze during fear learning.
        J Child Psychol Psychiatry. 2017; 58: 1276-1286
        • Den M.L.
        • Graham B.M.
        • Newall C.
        • Richardson R.
        Teens that fear screams: A comparison of fear conditioning, extinction, and reinstatement in adolescents and adults.
        Dev Psychobiol. 2015; 57: 818-832
        • Tottenham N.
        • Tanaka J.W.
        • Leon A.C.
        • McCarry T.
        • Nurse M.
        • Hare T.A.
        • et al.
        The NimStim set of facial expressions: Judgments from untrained research participants.
        Psychiatry Res. 2009; 168: 242-249
        • Marin M.F.
        • Barbey F.
        • Rosenbaum B.L.
        • Hammoud M.Z.
        • Orr S.P.
        • Milad M.R.
        Absence of conditioned responding in humans: A bad measure or individual differences?.
        Psychophysiology. 2019; e13350
        • Winkler A.M.
        • Ridgway G.R.
        • Webster M.A.
        • Smith S.M.
        • Nichols T.E.
        Permutation inference for the general linear model.
        Neuroimage. 2014; 92: 381-397
        • Smith S.M.
        • Nichols T.E.
        Threshold-free cluster enhancement: Addressing problems of smoothing, threshold dependence and localisation in cluster inference.
        Neuroimage. 2009; 44: 83-98
        • Gold A.L.
        • Brotman M.A.
        • Adleman N.E.
        • Lever S.N.
        • Steuber E.R.
        • Fromm S.J.
        • et al.
        Comparing brain morphometry across multiple childhood psychiatric disorders.
        J Am Acad Child Adolesc Psychiatry. 2016; 55 (e3): 1027-1037
        • Tanovic E.
        • Gee D.G.
        • Joormann J.
        Intolerance of uncertainty: Neural and psychophysiological correlates of the perception of uncertainty as threatening.
        Clin Psychol Rev. 2018; 60: 87-99
        • Grupe D.W.
        • Nitschke J.B.
        Uncertainty and anticipation in anxiety: An integrated neurobiological and psychological perspective.
        Nat Rev Neurosci. 2013; 14: 488-501
        • Lissek S.
        • Kaczkurkin A.N.
        • Rabin S.
        • Geraci M.
        • Pine D.S.
        • Grillon C.
        Generalized anxiety disorder is associated with overgeneralization of classically conditioned fear.
        Biol Psychiatry. 2014; 75: 909-915
        • Orr S.P.
        • Metzger L.J.
        • Lasko N.B.
        • Macklin M.L.
        • Peri T.
        • Pitman R.K.
        De novo conditioning in trauma-exposed individuals with and without posttraumatic stress disorder.
        J Abnorm Psychol. 2000; 109: 290-298
        • Lissek S.
        • Pine D.S.
        • Grillon C.
        The strong situation: A potential impediment to studying the psychobiology and pharmacology of anxiety disorders.
        Biol Psychol. 2006; 72: 265-270
        • Loewenstein G.F.
        • Weber E.U.
        • Hsee C.K.
        • Welch N.
        Risk as feelings.
        Psychol Bull. 2001; 127: 267-286
        • Aupperle R.L.
        • Allard C.B.
        • Grimes E.M.
        • Simmons A.N.
        • Flagan T.
        • Behrooznia M.
        • et al.
        Dorsolateral prefrontal cortex activation during emotional anticipation and neuropsychological performance in posttraumatic stress disorder.
        Arch Gen Psychiatry. 2012; 69: 360-371
        • Geng H.
        • Wang Y.
        • Gu R.
        • Luo Y.J.
        • Xu P.
        • Huang Y.
        • et al.
        Altered brain activation and connectivity during anticipation of uncertain threat in trait anxiety.
        Hum Brain Mapp. 2018; 39: 3898-3914
        • Vytal K.E.
        • Overstreet C.
        • Charney D.R.
        • Robinson O.J.
        • Grillon C.
        Sustained anxiety increases amygdala-dorsomedial prefrontal coupling: A mechanism for maintaining an anxious state in healthy adults.
        J Psychiatry Neurosci. 2014; 39: 321-329
        • Mayberg H.S.
        • Liotti M.
        • Brannan S.K.
        • McGinnis S.
        • Mahurin R.K.
        • Jerabek P.A.
        • et al.
        Reciprocal limbic-cortical function and negative mood: Converging PET findings in depression and normal sadness.
        Am J Psychiatry. 1999; 156: 675-682
        • Ochsner K.N.
        • Gross J.J.
        The cognitive control of emotion.
        Trends Cogn Sci. 2005; 9: 242-249
        • Kroes M.C.W.
        • Dunsmoor J.E.
        • Hakimi M.
        • Oosterwaal S.
        • collaboration N.P.
        • Meager M.R.
        • et al.
        Patients with dorsolateral prefrontal cortex lesions are capable of discriminatory threat learning but appear impaired in cognitive regulation of subjective fear.
        Social Cognitive and Affective Neuroscience. 2019; 14: 601-612
        • Holt D.J.
        • Coombs G.
        • Zeidan M.A.
        • Goff D.C.
        • Milad M.R.
        Failure of neural responses to safety cues in schizophrenia.
        Arch Gen Psychiatry. 2012; 69: 893-903
        • Todd T.P.
        • Fournier D.I.
        • Bucci D.J.
        Retrosplenial cortex and its role in cue-specific learning and memory.
        Neurosci Biobehav Rev. 2019; 107: 713-728
        • Wang X.
        • Cheng B.
        • Luo Q.
        • Qiu L.
        • Wang S.
        Gray matter structural alterations in social anxiety disorder: A voxel-based meta-analysis.
        Front Psychiatry. 2018; 9: 449
        • Tukel R.
        • Aydin K.
        • Yuksel C.
        • Ertekin E.
        • Koyuncu A.
        • Tas C.
        Gray matter abnormalities in patients with social anxiety disorder: A voxel-based morphometry study.
        Psychiatry Res. 2015; 234: 106-112
        • Abend R.
        • Rosenfelder A.
        • Shamai D.
        • Pine D.S.
        • Tavor I.
        • Assaf Y.
        • et al.
        Brain structure changes induced by attention bias modification training.
        Biol Psychol. 2019; 146: 107736
        • Klumpp H.
        • Fitzgerald J.M.
        Neuroimaging predictors and mechanisms of treatment response in social anxiety disorder: An overview of the amygdala.
        Curr Psychiatry Rep. 2018; 20: 89
        • Balderston N.L.
        • Schultz D.H.
        • Hopkins L.
        • Helmstetter F.J.
        Functionally distinct amygdala subregions identified using DTI and high-resolution fMRI.
        Soc Cogn Affect Neurosci. 2015; 10: 1615-1622
        • Pessoa L.
        Emotion and cognition and the amygdala: From "what is it?" to "what's to be done?".
        Neuropsychologia. 2010; 48: 3416-3429
        • Tabbert K.
        • Stark R.
        • Kirsch P.
        • Vaitl D.
        Hemodynamic responses of the amygdala, the orbitofrontal cortex and the visual cortex during a fear conditioning paradigm.
        Int J Psychophysiol. 2005; 57: 15-23
        • Lithari C.
        • Moratti S.
        • Weisz N.
        Limbic areas are functionally decoupled and visual cortex takes a more central role during fear conditioning in humans.
        Sci Rep. 2016; 6: 29220
        • Morey R.A.
        • Dunsmoor J.E.
        • Haswell C.
        • Brown V.M.
        • Vora A.
        • Weiner J.
        • et al.
        Fear learning circuitry is biased toward generalization of fear associations in posttraumatic stress disorder.
        Transl Psychiatry. 2015; 5e700
        • Gogtay N.
        • Giedd J.N.
        • Lusk L.
        • Hayashi K.M.
        • Greenstein D.
        • Vaituzis A.C.
        • et al.
        Dynamic mapping of human cortical development during childhood through early adulthood.
        Proc Natl Acad Sci U S A. 2004; 101: 8174-8179
        • Gogtay N.
        • Nugent 3rd, T.F.
        • Herman D.H.
        • Ordonez A.
        • Greenstein D.
        • Hayashi K.M.
        • et al.
        Dynamic mapping of normal human hippocampal development.
        Hippocampus. 2006; 16: 664-672
        • Shackman A.J.
        • Salomons T.V.
        • Slagter H.A.
        • Fox A.S.
        • Winter J.J.
        • Davidson R.J.
        The integration of negative affect, pain and cognitive control in the cingulate cortex.
        Nat Rev Neurosci. 2011; 12: 154-167
        • Craig A.D.
        How do you feel—now? The anterior insula and human awareness.
        Nat Rev Neurosci. 2009; 10: 59-70
        • Herry C.
        • Johansen J.P.
        Encoding of fear learning and memory in distributed neuronal circuits.
        Nat Neurosci. 2014; 17: 1644-1654
        • Vazquez-Rodriguez B.
        • Suarez L.E.
        • Markello R.D.
        • Shafiei G.
        • Paquola C.
        • Hagmann P.
        • et al.
        Gradients of structure-function tethering across neocortex.
        Proc Natl Acad Sci U S A. 2019; 116: 21219-21227
        • Tzovara A.
        • Korn C.W.
        • Bach D.R.
        Human Pavlovian fear conditioning conforms to probabilistic learning.
        PLoS Comput Biol. 2018; 14e1006243
        • Homan P.
        • Levy I.
        • Feltham E.
        • Gordon C.
        • Hu J.
        • Li J.
        • et al.
        Neural computations of threat in the aftermath of combat trauma [published correction appears in Nat Neurosci 2019;22:840–841].
        Nat Neurosci. 2019; 22: 470-476
        • Craske M.G.
        • Hermans D.
        • Vervliet B.
        State-of-the-art and future directions for extinction as a translational model for fear and anxiety [published correction appears in Philos Trans R Soc Lond B Biol Sci 2018;373].
        Philos Trans R Soc Lond B Biol Sci. 2018; 373
        • Michalska K.J.
        • Feldman J.
        • Ivie E.
        • Shechner T.
        • Sequeira S.
        • Averbeck B.B.
        • et al.
        Early-childhood social reticence predicts SCR-BOLD coupling during fear extinction recall in preadolescent youth.
        Dev Cogn Neurosci. 2019; 36: 100605
        • Fanselow M.S.
        • Pennington Z.T.
        The danger of LeDoux and Pine’s two-system framework for fear.
        Am J Psychiatry. 2017; 174: 1120-1121
        • LeDoux J.E.
        • Pine D.S.
        Using neuroscience to help understand fear and anxiety: A two-system framework.
        Am J Psychiatry. 2016; 173: 1083-1093
        • Panksepp J.
        • Fuchs T.
        • Iacobucci P.
        The basic neuroscience of emotional experiences in mammals: The case of subcortical FEAR circuitry and implications for clinical anxiety.
        Appl Anim Behav Sci. 2011; 129: 1-17
        • Hofmann S.G.
        • Hayes S.C.
        The future of intervention science: Process-based therapy.
        Clin Psychol Sci. 2019; 7: 37-50
        • Linhartova P.
        • Latalova A.
        • Kosa B.
        • Kasparek T.
        • Schmahl C.
        • Paret C.
        fMRI neurofeedback in emotion regulation: A literature review.
        Neuroimage. 2019; 193: 75-92
        • Abend R.
        • Jalon I.
        • Gurevitch G.
        • Sar-El R.
        • Shechner T.
        • Pine D.S.
        • et al.
        Modulation of fear extinction processes using transcranial electrical stimulation.
        Transl Psychiatry. 2016; 6: e913
        • Lonsdorf T.B.
        • Merz C.J.
        More than just noise: Inter-individual differences in fear acquisition, extinction and return of fear in humans—Biological, experiential, temperamental factors, and methodological pitfalls.
        Neurosci Biobehav Rev. 2017; 80: 703-728
        • Sjouwerman R.
        • Niehaus J.
        • Kuhn M.
        • Lonsdorf T.B.
        Don't startle me—Interference of startle probe presentations and intermittent ratings with fear acquisition.
        Psychophysiology. 2016; 53: 1889-1899
        • Asendorpf J.B.
        • Conner M.
        • De Fruyt F.
        • De Houwer J.
        • Denissen J.J.A.
        • Fiedler K.
        • et al.
        Recommendations for increasing replicability in psychology.
        Eur J Personality. 2013; 27: 108-119

      Linked Article

      • Aversive Stimulus Pairings Are an Unnecessary and Insufficient Cause of Pathological Anxiety
        Biological PsychiatryVol. 87Issue 10
        • Preview
          Why do some people develop psychopathology and others do not? This is a fundamental question in mental health research, with implications for etiological theories (what causes the disease) and clinical theories of psychopathology (what cures the disease). Laboratory-based individual differences research can be an important tool in this light: comparisons of patients and healthy volunteers in experimental protocols have the potential to reveal specific characteristics of the patient sample and hence shape etiological theories and clinical strategies.
        • Full-Text
        • PDF