Advertisement

A Critical Role of Basolateral Amygdala–to–Nucleus Accumbens Projection in Sleep Regulation of Reward Seeking

Published:November 08, 2019DOI:https://doi.org/10.1016/j.biopsych.2019.10.027

      Abstract

      Background

      Sleep impacts reward-motivated behaviors partly by retuning the brain reward circuits. The nucleus accumbens (NAc) is a reward processing hub sensitive to acute sleep deprivation. Glutamatergic transmission carrying reward-associated signals converges in the NAc and regulates various aspects of reward-motivated behaviors. The basolateral amygdala projection (BLAp) innervates broad regions of the NAc and critically regulates reward seeking.

      Methods

      Using slice electrophysiology, we measured how acute sleep deprivation alters transmission at BLAp-NAc synapses in male C57BL/6 mice. Moreover, using SSFO (stabilized step function opsin) and DREADDs (designer receptors exclusively activated by designer drugs) (Gi) to amplify and reduce transmission, respectively, we tested behavioral consequences following bidirectional manipulations of BLAp-NAc transmission.

      Results

      Acute sleep deprivation increased sucrose self-administration in mice and altered the BLAp-NAc transmission in a topographically specific manner. It selectively reduced glutamate release at the rostral BLAp (rBLAp) onto ventral and lateral NAc (vlNAc) synapses, but spared caudal BLAp onto medial NAc synapses. Furthermore, experimentally facilitating glutamate release at rBLAp-vlNAc synapses suppressed sucrose reward seeking. Conversely, mimicking sleep deprivation–induced reduction of rBLAp-vlNAc transmission increased sucrose reward seeking. Finally, facilitating rBLAp-vlNAc transmission per se did not promote either approach motivation or aversion.

      Conclusions

      Sleep acts on rBLAp-vINAc transmission gain control to regulate established reward seeking but does not convey approach motivation or aversion on its own.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Gujar N.
        • Yoo S.S.
        • Hu P.
        • Walker M.P.
        Sleep deprivation amplifies reactivity of brain reward networks, biasing the appraisal of positive emotional experiences.
        J Neurosci. 2011; 31: 4466-4474
        • McKenna B.S.
        • Dickinson D.L.
        • Orff H.J.
        • Drummond S.P.
        The effects of one night of sleep deprivation on known-risk and ambiguous-risk decisions.
        J Sleep Res. 2007; 16: 245-252
        • Telzer E.H.
        • Fuligni A.J.
        • Lieberman M.D.
        • Galvan A.
        The effects of poor quality sleep on brain function and risk taking in adolescence.
        Neuroimage. 2013; 71: 275-283
        • Venkatraman V.
        • Chuah Y.M.
        • Huettel S.A.
        • Chee M.W.
        Sleep deprivation elevates expectation of gains and attenuates response to losses following risky decisions.
        Sleep. 2007; 30: 603-609
        • Venkatraman V.
        • Huettel S.A.
        • Chuah L.Y.
        • Payne J.W.
        • Chee M.W.
        Sleep deprivation biases the neural mechanisms underlying economic preferences.
        J Neurosci. 2011; 31: 3712-3718
        • Greer S.M.
        • Goldstein A.N.
        • Walker M.P.
        The impact of sleep deprivation on food desire in the human brain.
        Nat Commun. 2013; 4: 2259
        • Brower K.J.
        • Aldrich M.S.
        • Hall J.M.
        Polysomnographic and subjective sleep predictors of alcoholic relapse.
        Alcohol Clin Exp Res. 1998; 22: 1864-1871
        • Killgore W.D.
        • Balkin T.J.
        • Wesensten N.J.
        Impaired decision making following 49 h of sleep deprivation.
        J Sleep Res. 2006; 15: 7-13
        • Puhl M.D.
        • Boisvert M.
        • Guan Z.
        • Fang J.
        • Grigson P.S.
        A novel model of chronic sleep restriction reveals an increase in the perceived incentive reward value of cocaine in high drug-taking rats.
        Pharmacol Biochem Behav. 2013; 109: 8-15
        • Puhl M.D.
        • Fang J.
        • Grigson P.S.
        Acute sleep deprivation increases the rate and efficiency of cocaine self-administration, but not the perceived value of cocaine reward in rats.
        Pharmacol Biochem Behav. 2009; 94: 262-270
        • Steiner S.S.
        • Ellman S.J.
        Relation between REM sleep and intracranial self-stimulation.
        Science. 1972; 177: 1122-1124
        • Liu Z.
        • Wang Y.
        • Cai L.
        • Li Y.
        • Chen B.
        • Dong Y.
        • et al.
        Prefrontal cortex to accumbens projections in sleep regulation of reward.
        J Neurosci. 2016; 36: 7897-7910
        • Hamidovic A.
        • de Wit H.
        Sleep deprivation increases cigarette smoking.
        Pharmacol Biochem Behav. 2009; 93: 263-269
        • Short N.A.
        • Mathes B.M.
        • Gibby B.
        • Oglesby M.E.
        • Zvolensky M.J.
        • Schmidt N.B.
        Insomnia symptoms as a risk factor for cessation failure following smoking treatment.
        Addict Res Theory. 2017; 25: 17-23
        • Sardi N.F.
        • Tobaldini G.
        • Morais R.N.
        • Fischer L.
        Nucleus accumbens mediates the pronociceptive effect of sleep deprivation: The role of adenosine A2A and dopamine D2 receptors.
        Pain. 2018; 159: 75-84
        • Lena I.
        • Parrot S.
        • Deschaux O.
        • Muffat-Joly S.
        • Sauvinet V.
        • Renaud B.
        • et al.
        Variations in extracellular levels of dopamine, noradrenaline, glutamate, and aspartate across the sleep–wake cycle in the medial prefrontal cortex and nucleus accumbens of freely moving rats.
        J Neurosci Res. 2005; 81: 891-899
        • Mullin B.C.
        • Phillips M.L.
        • Siegle G.J.
        • Buysse D.J.
        • Forbes E.E.
        • Franzen P.L.
        Sleep deprivation amplifies striatal activation to monetary reward.
        Psychol Med. 2013; 43: 2215-2225
        • Kelley A.E.
        • Berridge K.C.
        The neuroscience of natural rewards: Relevance to addictive drugs.
        J Neurosci. 2002; 22: 3306-3311
        • Demos K.E.
        • Sweet L.H.
        • Hart C.N.
        • McCaffery J.M.
        • Williams S.E.
        • Mailloux K.A.
        • et al.
        The effects of experimental manipulation of sleep duration on neural response to food cues.
        Sleep. 2017; 40
        • St-Onge M.P.
        • McReynolds A.
        • Trivedi Z.B.
        • Roberts A.L.
        • Sy M.
        • Hirsch J.
        Sleep restriction leads to increased activation of brain regions sensitive to food stimuli.
        Am J Clin Nutr. 2012; 95: 818-824
        • Volkow N.D.
        • Tomasi D.
        • Wang G.J.
        • Telang F.
        • Fowler J.S.
        • Logan J.
        • et al.
        Evidence that sleep deprivation downregulates dopamine D2R in ventral striatum in the human brain.
        J Neurosci. 2012; 32: 6711-6717
        • Al-Hasani R.
        • McCall J.G.
        • Shin G.
        • Gomez A.M.
        • Schmitz G.P.
        • Bernardi J.M.
        • et al.
        Distinct subpopulations of nucleus accumbens dynorphin neurons drive aversion and reward.
        Neuron. 2015; 87: 1063-1077
        • Yang H.
        • de Jong J.W.
        • Tak Y.
        • Peck J.
        • Bateup H.S.
        • Lammel S.
        Nucleus accumbens subnuclei regulate motivated behavior via direct inhibition and disinhibition of VTA dopamine subpopulations.
        Neuron. 2018; 97: 434-449 e434
        • Bossert J.M.
        • Poles G.C.
        • Wihbey K.A.
        • Koya E.
        • Shaham Y.
        Differential effects of blockade of dopamine D1-family receptors in nucleus accumbens core or shell on reinstatement of heroin seeking induced by contextual and discrete cues.
        J Neurosci. 2007; 27: 12655-12663
        • Kelley A.E.
        Ventral striatal control of appetitive motivation: Role in ingestive behavior and reward-related learning.
        Neurosci Biobehav Rev. 2004; 27: 765-776
        • Stuber G.D.
        • Sparta D.R.
        • Stamatakis A.M.
        • van Leeuwen W.A.
        • Hardjoprajitno J.E.
        • Cho S.
        • et al.
        Excitatory transmission from the amygdala to nucleus accumbens facilitates reward seeking.
        Nature. 2011; 475: 377-380
        • Britt J.P.
        • Benaliouad F.
        • McDevitt R.A.
        • Stuber G.D.
        • Wise R.A.
        • Bonci A.
        Synaptic and behavioral profile of multiple glutamatergic inputs to the nucleus accumbens.
        Neuron. 2012; 76: 790-803
        • Lintas A.
        • Chi N.
        • Lauzon N.M.
        • Bishop S.F.
        • Sun N.
        • Tan H.
        • et al.
        Inputs from the basolateral amygdala to the nucleus accumbens shell control opiate reward magnitude via differential dopamine D1 or D2 receptor transmission.
        Eur J Neurosci. 2012; 35: 279-290
        • Ambroggi F.
        • Ishikawa A.
        • Fields H.L.
        • Nicola S.M.
        Basolateral amygdala neurons facilitate reward-seeking behavior by exciting nucleus accumbens neurons.
        Neuron. 2008; 59: 648-661
        • Beyeler A.
        • Chang C.J.
        • Silvestre M.
        • Leveque C.
        • Namburi P.
        • Wildes C.P.
        • et al.
        Organization of Valence-encoding and projection-defined neurons in the basolateral amygdala.
        Cell Rep. 2018; 22: 905-918
        • Beyeler A.
        • Namburi P.
        • Glober G.F.
        • Simonnet C.
        • Calhoon G.G.
        • Conyers G.F.
        • et al.
        Divergent routing of positive and negative information from the amygdala during memory retrieval.
        Neuron. 2016; 90: 348-361
        • Goto Y.
        • Grace A.A.
        Limbic and cortical information processing in the nucleus accumbens.
        Trends Neurosci. 2008; 31: 552-558
        • Sesack S.R.
        • Grace A.A.
        Cortico-basal ganglia reward network: Microcircuitry.
        Neuropsychopharmacology. 2010; 35: 27-47
        • Sah P.
        • Faber E.S.
        • Lopez De Armentia M.
        • Power J.
        The amygdaloid complex: Anatomy and physiology.
        Physiol Rev. 2003; 83: 803-834
        • Shinonaga Y.
        • Takada M.
        • Mizuno N.
        Topographic organization of collateral projections from the basolateral amygdaloid nucleus to both the prefrontal cortex and nucleus accumbens in the rat.
        Neuroscience. 1994; 58: 389-397
        • Wright C.I.
        • Beijer A.V.
        • Groenewegen H.J.
        Basal amygdaloid complex afferents to the rat nucleus accumbens are compartmentally organized.
        J Neurosci. 1996; 16: 1877-1893
        • Krueger J.M.
        • Obal F.
        A neuronal group theory of sleep function.
        J Sleep Res. 1993; 2: 63-69
        • Winters B.D.
        • Huang Y.H.
        • Dong Y.
        • Krueger J.M.
        Sleep loss alters synaptic and intrinsic neuronal properties in mouse prefrontal cortex.
        Brain Res. 2011; 1420: 1-7
        • Chen B.
        • Wang Y.
        • Liu X.
        • Liu Z.
        • Dong Y.
        • Huang Y.H.
        Sleep regulates incubation of cocaine craving.
        J Neurosci. 2015; 35: 13300-13310
        • Cirelli C.
        • Tononi G.
        Sleep Deprivation: Basic Science, Physiology and Behavior.
        CRC Press, Boca Raton, FL2004
        • Colavito V.
        • Fabene P.F.
        • Grassi-Zucconi G.
        • Pifferi F.
        • Lamberty Y.
        • Bentivoglio M.
        • et al.
        Experimental sleep deprivation as a tool to test memory deficits in rodents.
        Front Syst Neurosci. 2013; 7: 106
        • Huang Y.H.
        • Lin Y.
        • Mu P.
        • Lee B.R.
        • Brown T.E.
        • Wayman G.
        • et al.
        In vivo cocaine experience generates silent synapses.
        Neuron. 2009; 63: 40-47
        • Huang Y.H.
        • Ishikawa M.
        • Lee B.R.
        • Nakanishi N.
        • Schluter O.M.
        • Dong Y.
        Searching for presynaptic NMDA receptors in the nucleus accumbens.
        J Neurosci. 2011; 31: 18453-18463
        • Ghasemi A.
        • Zahediasl S.
        Normality tests for statistical analysis: A guide for non-statisticians.
        Int J Endocrinol Metab. 2012; 10: 486-489
        • Kopp C.
        • Longordo F.
        • Nicholson J.R.
        • Luthi A.
        Insufficient sleep reversibly alters bidirectional synaptic plasticity and NMDA receptor function.
        J Neurosci. 2006; 26: 12456-12465
        • Palchykova S.
        • Winsky-Sommerer R.
        • Meerlo P.
        • Durr R.
        • Tobler I.
        Sleep deprivation impairs object recognition in mice.
        Neurobiol Learn Mem. 2006; 85: 263-271
        • Fenzl T.
        • Romanowski C.P.
        • Flachskamm C.
        • Honsberg K.
        • Boll E.
        • Hoehne A.
        • et al.
        Fully automated sleep deprivation in mice as a tool in sleep research.
        J Neurosci Methods. 2007; 166: 229-235
        • Morairty S.R.
        • Dittrich L.
        • Pasumarthi R.K.
        • Valladao D.
        • Heiss J.E.
        • Gerashchenko D.
        • et al.
        A role for cortical nNOS/NK1 neurons in coupling homeostatic sleep drive to EEG slow wave activity.
        Proc Natl Acad Sci U S A. 2013; 110: 20272-20277
        • Di Ciano P.
        • Everitt B.J.
        Direct interactions between the basolateral amygdala and nucleus accumbens core underlie cocaine-seeking behavior by rats.
        J Neurosci. 2004; 24: 7167-7173
        • Kantak K.M.
        • Black Y.
        • Valencia E.
        • Green-Jordan K.
        • Eichenbaum H.B.
        Dissociable effects of lidocaine inactivation of the rostral and caudal basolateral amygdala on the maintenance and reinstatement of cocaine-seeking behavior in rats.
        J Neurosci. 2002; 22: 1126-1136
        • Suska A.
        • Lee B.R.
        • Huang Y.H.
        • Dong Y.
        • Schluter O.M.
        Selective presynaptic enhancement of the prefrontal cortex to nucleus accumbens pathway by cocaine.
        Proc Natl Acad Sci U S A. 2013; 110: 713-718
        • Clements J.D.
        • Silver R.A.
        Unveiling synaptic plasticity: A new graphical and analytical approach.
        Trends Neurosci. 2000; 23: 105-113
        • Saviane C.
        • Silver R.A.
        Estimation of quantal parameters with multiple-probability fluctuation analysis.
        Methods Mol Biol. 2007; 403: 303-317
        • Silver R.A.
        Estimation of nonuniform quantal parameters with multiple-probability fluctuation analysis: Theory, application and limitations.
        J Neurosci Methods. 2003; 130: 127-141
        • Yizhar O.
        • Fenno L.E.
        • Prigge M.
        • Schneider F.
        • Davidson T.J.
        • O'Shea D.J.
        • et al.
        Neocortical excitation/inhibition balance in information processing and social dysfunction.
        Nature. 2011; 477: 171-178
        • Medic G.
        • Wille M.
        • Hemels M.E.
        Short- and long-term health consequences of sleep disruption.
        Nat Sci Sleep. 2017; 9: 151-161
        • Finan P.H.
        • Quartana P.J.
        • Smith M.T.
        The effects of sleep continuity disruption on positive mood and sleep architecture in healthy adults.
        Sleep. 2015; 38: 1735-1742
        • Logan R.W.
        • Hasler B.P.
        • Forbes E.E.
        • Franzen P.L.
        • Torregrossa M.M.
        • Huang Y.H.
        • et al.
        Impact of sleep and circadian rhythms on addiction vulnerability in adolescents.
        Biol Psychiatry. 2018; 83: 987-996
        • Meerlo P.
        • Havekes R.
        • Steiger A.
        Chronically restricted or disrupted sleep as a causal factor in the development of depression.
        Curr Top Behav Neurosci. 2015; 25: 459-481
        • Tempesta D.
        • De Gennaro L.
        • Natale V.
        • Ferrara M.
        Emotional memory processing is influenced by sleep quality.
        Sleep Med. 2015; 16: 862-870
        • Tkachenko O.
        • Olson E.A.
        • Weber M.
        • Preer L.A.
        • Gogel H.
        • Killgore W.D.
        Sleep difficulties are associated with increased symptoms of psychopathology.
        Exp Brain Res. 2014; 232: 1567-1574
        • Anderson K.N.
        • Bradley A.J.
        Sleep disturbance in mental health problems and neurodegenerative disease.
        Nat Sci Sleep. 2013; 5: 61-75
        • Krystal A.D.
        Psychiatric disorders and sleep.
        Neurol Clin. 2012; 30: 1389-1413
        • Li Z.
        • Chen Z.
        • Fan G.
        • Li A.
        • Yuan J.
        • Xu T.
        Cell-type-specific afferent innervation of the nucleus accumbens core and shell.
        Front Neuroanat. 2018; 12: 84
        • Scudder S.L.
        • Baimel C.
        • Macdonald E.E.
        • Carter A.G.
        Hippocampal-evoked feedforward inhibition in the nucleus accumbens.
        J Neurosci. 2018; 38: 9091-9104
        • Yu J.
        • Yan Y.
        • Li K.L.
        • Wang Y.
        • Huang Y.H.
        • Urban N.N.
        • et al.
        Nucleus accumbens feedforward inhibition circuit promotes cocaine self-administration.
        Proc Natl Acad Sci U S A. 2017; 114: E8750-E8759
        • Lobo M.K.
        • Covington 3rd, H.E.
        • Chaudhury D.
        • Friedman A.K.
        • Sun H.
        • Damez-Werno D.
        • et al.
        Cell type-specific loss of BDNF signaling mimics optogenetic control of cocaine reward.
        Science. 2010; 330: 385-390
        • Lobo M.K.
        • Nestler E.J.
        The striatal balancing act in drug addiction: Distinct roles of direct and indirect pathway medium spiny neurons.
        Front Neuroanat. 2011; 5: 41
        • Yawata S.
        • Yamaguchi T.
        • Danjo T.
        • Hikida T.
        • Nakanishi S.
        Pathway-specific control of reward learning and its flexibility via selective dopamine receptors in the nucleus accumbens.
        Proc Natl Acad Sci U S A. 2012; 109: 12764-12769
        • Natsubori A.
        • Tsutsui-Kimura I.
        • Nishida H.
        • Bouchekioua Y.
        • Sekiya H.
        • Uchigashima M.
        • et al.
        Ventrolateral striatal medium spiny neurons positively regulate food-incentive, goal-directed behavior independently of D1 and D2 selectivity.
        J Neurosci. 2017; 37: 2723-2733
        • Koo J.W.
        • Lobo M.K.
        • Chaudhury D.
        • Labonte B.
        • Friedman A.
        • Heller E.
        • et al.
        Loss of BDNF signaling in D1R-expressing NAc neurons enhances morphine reward by reducing GABA inhibition.
        Neuropsychopharmacology. 2014; 39: 2646-2653
        • Cole S.L.
        • Robinson M.J.F.
        • Berridge K.C.
        Optogenetic self-stimulation in the nucleus accumbens: D1 reward versus D2 ambivalence.
        PLoS One. 2018; 13e0207694
        • Mallet N.
        • Le Moine C.
        • Charpier S.
        • Gonon F.
        Feedforward inhibition of projection neurons by fast-spiking GABA interneurons in the rat striatum in vivo.
        J Neurosci. 2005; 25: 3857-3869
        • Wright W.J.
        • Schluter O.M.
        • Dong Y.
        A feedforward inhibitory circuit mediated by CB1-expressing fast-spiking interneurons in the nucleus accumbens.
        Neuropsychopharmacology. 2017; 42: 1146-1156
        • Koos T.
        • Tepper J.M.
        Inhibitory control of neostriatal projection neurons by GABAergic interneurons.
        Nat Neurosci. 1999; 2: 467-472
        • Chen X.
        • Liu Z.
        • Ma C.
        • Ma L.
        • Liu X.
        Parvalbumin interneurons determine emotional valence through modulating accumbal output pathways.
        Front Behav Neurosci. 2019; 13: 110
        • Qi J.
        • Zhang S.
        • Wang H.L.
        • Barker D.J.
        • Miranda-Barrientos J.
        • Morales M.
        VTA glutamatergic inputs to nucleus accumbens drive aversion by acting on GABAergic interneurons.
        Nat Neurosci. 2016; 19: 725-733
        • Brundege J.M.
        • Williams J.T.
        Differential modulation of nucleus accumbens synapses.
        J Neurophysiol. 2002; 88: 142-151
        • Brundege J.M.
        • Williams J.T.
        Increase in adenosine sensitivity in the nucleus accumbens following chronic morphine treatment.
        J Neurophysiol. 2002; 87: 1369-1375
        • Hines D.J.
        • Schmitt L.I.
        • Hines R.M.
        • Moss S.J.
        • Haydon P.G.
        Antidepressant effects of sleep deprivation require astrocyte-dependent adenosine mediated signaling.
        Transl Psychiatry. 2013; 3: e212
        • Beurrier C.
        • Malenka R.C.
        Enhanced inhibition of synaptic transmission by dopamine in the nucleus accumbens during behavioral sensitization to cocaine.
        J Neurosci. 2002; 22: 5817-5822
        • Harvey J.
        • Lacey M.G.
        Endogenous and exogenous dopamine depress EPSCs in rat nucleus accumbens in vitro via D1 receptors activation.
        J Physiol. 1996; 492: 143-154
        • Harvey J.
        • Lacey M.G.
        A postsynaptic interaction between dopamine D1 and NMDA receptors promotes presynaptic inhibition in the rat nucleus accumbens via adenosine release.
        J Neurosci. 1997; 17: 5271-5280
        • Nestler E.J.
        • Carlezon Jr., W.A.
        The mesolimbic dopamine reward circuit in depression.
        Biol Psychiatry. 2006; 59: 1151-1159
        • Nicola S.M.
        • Malenka R.C.
        Modulation of synaptic transmission by dopamine and norepinephrine in ventral but not dorsal striatum.
        J Neurophysiol. 1998; 79: 1768-1776
        • Pennartz C.M.
        • Dolleman-Van der Weel M.J.
        • Kitai S.T.
        • Lopes da Silva F.H.
        Presynaptic dopamine D1 receptors attenuate excitatory and inhibitory limbic inputs to the shell region of the rat nucleus accumbens studied in vitro.
        J Neurophysiol. 1992; 67: 1325-1334
        • Spanagel R.
        • Weiss F.
        The dopamine hypothesis of reward: Past and current status.
        Trends Neurosci. 1999; 22: 521-527
        • Tritsch N.X.
        • Sabatini B.L.
        Dopaminergic modulation of synaptic transmission in cortex and striatum.
        Neuron. 2012; 76: 33-50
        • Wang W.
        • Dever D.
        • Lowe J.
        • Storey G.P.
        • Bhansali A.
        • Eck E.K.
        • et al.
        Regulation of prefrontal excitatory neurotransmission by dopamine in the nucleus accumbens core.
        J Physiol. 2012; 590: 3743-3769
        • Huston J.P.
        • Haas H.L.
        • Boix F.
        • Pfister M.
        • Decking U.
        • Schrader J.
        • et al.
        Extracellular adenosine levels in neostriatum and hippocampus during rest and activity periods of rats.
        Neuroscience. 1996; 73: 99-107
        • Porkka-Heiskanen T.
        • Strecker R.E.
        • McCarley R.W.
        Brain site-specificity of extracellular adenosine concentration changes during sleep deprivation and spontaneous sleep: An in vivo microdialysis study.
        Neuroscience. 2000; 99: 507-517
        • Jentsch J.D.
        • Taylor J.R.
        Impulsivity resulting from frontostriatal dysfunction in drug abuse: Implications for the control of behavior by reward-related stimuli.
        Psychopharmacology. 1999; 146: 373-390
        • Feil J.
        • Sheppard D.
        • Fitzgerald P.B.
        • Yucel M.
        • Lubman D.I.
        • Bradshaw J.L.
        Addiction, compulsive drug seeking, and the role of frontostriatal mechanisms in regulating inhibitory control.
        Neurosci Biobehav Rev. 2010; 35: 248-275
        • Ferenczi E.A.
        • Zalocusky K.A.
        • Liston C.
        • Grosenick L.
        • Warden M.R.
        • Amatya D.
        • et al.
        Prefrontal cortical regulation of brainwide circuit dynamics and reward-related behavior.
        Science. 2016; 351: aac9698
        • Peters J.
        • Kalivas P.W.
        • Quirk G.J.
        Extinction circuits for fear and addiction overlap in prefrontal cortex.
        Learn Mem. 2009; 16: 279-288
        • Barker J.M.
        • Taylor J.R.
        • Chandler L.J.
        A unifying model of the role of the infralimbic cortex in extinction and habits.
        Learn Mem. 2014; 21: 441-448
        • Gable P.A.
        • Harmon-Jones E.
        The effect of low versus high approach-motivated positive affect on memory for peripherally versus centrally presented information.
        Emotion. 2010; 10: 599-603
        • Gable P.A.
        • Harmon-Jones E.
        Approach-motivated positive affect reduces breadth of attention.
        Psychol Sci. 2008; 19: 476-482
        • Fredrickson B.L.
        • Branigan C.
        Positive emotions broaden the scope of attention and thought-action repertoires.
        Cogn Emot. 2005; 19: 313-332
        • Harmon-Jones E.
        • Gable P.A.
        Neural activity underlying the effect of approach-motivated positive affect on narrowed attention.
        Psychol Sci. 2009; 20: 406-409
        • Knutson B.
        • Peterson R.
        Neurally reconstructing expected utility.
        Games Econ Behav. 2005; 52: 11
        • Gable P.
        • Harmon-Jones E.
        Relative left frontal activation to appetitive stimuli: Considering the role of individual differences.
        Psychophysiology. 2008; 45: 275-278
        • Sorge R.E.
        • Pierre V.J.
        • Clarke P.B.
        Facilitation of intravenous nicotine self-administration in rats by a motivationally neutral sensory stimulus.
        Psychopharmacology (Berl). 2009; 207: 191-200
        • Paxinos G.
        • Franklin K.B.J.
        The Mouse Brain in Stereotaxic Coordinates. Houston.
        Gulf Professional Publishing, 2004

      Linked Article

      • Sleep Deprivation Dysregulates Brain Reward Circuitry: Implications for Psychiatric Disorders
        Biological PsychiatryVol. 87Issue 11
        • Preview
          There is ongoing debate among sleep researchers about the evolutionary advantages and reasons for sleep, but there is agreement that regular sleep approximating 8 hours per day in adults is needed for health and optimal brain functioning; however, there are a multitude of circumstances that curtail sleep, making acute sleep deprivation (SD) an experience of virtually everyone at some point in time. Inadequate sleep is so common in our society that its pervasive consequences—the disruption of circadian rhythms that regulate cardiovascular, immune, metabolic, and nervous systems—may be underestimated (1).
        • Full-Text
        • PDF