Advertisement

The Negative Affect of Protracted Opioid Abstinence: Progress and Perspectives From Rodent Models

  • Author Footnotes
    1 LW and JB contributed equally to this work.
    Lola Welsch
    Footnotes
    1 LW and JB contributed equally to this work.
    Affiliations
    Douglas Mental Health Institute, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
    Search for articles by this author
  • Author Footnotes
    1 LW and JB contributed equally to this work.
    Julie Bailly
    Footnotes
    1 LW and JB contributed equally to this work.
    Affiliations
    Douglas Mental Health Institute, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
    Search for articles by this author
  • Emmanuel Darcq
    Affiliations
    Douglas Mental Health Institute, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
    Search for articles by this author
  • Brigitte Lina Kieffer
    Correspondence
    Address correspondence to Brigitte L. Kieffer, Ph.D., Douglas Hospital Research Center, Perry Pavilion Room E-3317.1, 6875 Boulevard LaSalle, Montréal, PQ, Canada H4H 1R3.
    Affiliations
    Douglas Mental Health Institute, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
    Search for articles by this author
  • Author Footnotes
    1 LW and JB contributed equally to this work.

      Abstract

      Opioid use disorder (OUD) is characterized by the development of a negative emotional state that develops after a history of long-term exposure to opioids. OUD represents a true challenge for treatment and relapse prevention. Human research has amply documented emotional disruption in individuals with an opioid substance use disorder, at both behavioral and brain activity levels; however, brain mechanisms underlying this particular facet of OUD are only partially understood. Animal research has been instrumental in elucidating genes and circuits that adapt to long-term opioid use or are modified by acute withdrawal, but research on long-term consequences of opioid exposure and their relevance to the negative affect of OUD remains scarce. In this article, we review the literature with a focus on two questions: 1) Do we have behavioral models in rodents, and what do they tell us? and 2) What do we know about the neuronal populations involved? Behavioral rodent models have successfully recapitulated behavioral signs of the OUD-related negative affect, and several neurotransmitter systems were identified (i.e., serotonin, dynorphin, corticotropin-releasing factor, oxytocin). Circuit mechanisms driving the negative mood of prolonged abstinence likely involve the 5 main reward–aversion brain centers (i.e., nucleus accumbens, bed nucleus of the stria terminalis, amygdala, habenula, and raphe nucleus), all of which express mu opioid receptors and directly respond to opioids. Future work will identify the nature of these mu opioid receptor–expressing neurons throughout reward–aversion networks, characterize their adapted phenotype in opioid abstinent animals, and hopefully position these primary events in the broader picture of mu opioid receptor–associated brain aversion networks.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Compton W.M.
        • Jones C.M.
        • Baldwin G.T.
        Relationship between nonmedical prescription-opioid use and heroin use.
        N Engl J Med. 2016; 374: 154-163
        • Voon P.
        • Karamouzian M.
        • Kerr T.
        Chronic pain and opioid misuse: A review of reviews.
        Subst Abuse Treat Prev Policy. 2017; 12: 36
        • Marshall B.
        • Bland M.K.
        • Hulla R.
        • Gatchel R.J.
        Considerations in addressing the opioid epidemic and chronic pain within the USA.
        Pain Manag. 2019; 9: 131-138
        • Volkow N.D.
        • Koroshetz W.J.
        The role of neurologists in tackling the opioid epidemic.
        Nat Rev Neurol. 2019; 15: 301-305
        • Koob G.F.
        • Volkow N.D.
        Neurobiology of addiction: A neurocircuitry analysis.
        Lancet Psychiatry. 2016; 3: 760-773
        • Schuckit M.A.
        Treatment of opioid-use disorders.
        N Engl J Med. 2016; 375: 357-368
        • Lalanne L.
        • Lutz P.E.
        • Trojak B.
        • Lang J.P.
        • Kieffer B.L.
        • Bacon E.
        Medications between psychiatric and addictive disorders.
        Prog Neuropsychopharmacol Biol Psychiatry. 2016; 65: 215-223
        • Vorspan F.
        • Mehtelli W.
        • Dupuy G.
        • Bloch V.
        • Lepine J.P.
        Anxiety and substance use disorders: Co-occurrence and clinical issues.
        Curr Psychiatry Rep. 2015; 17: 4
        • George O.
        • Koob G.F.
        Individual differences in the neuropsychopathology of addiction.
        Dialogues Clin Neurosci. 2017; 19: 217-229
        • Cadet J.L.
        • Bisagno V.
        • Milroy C.M.
        Neuropathology of substance use disorders.
        Acta Neuropathol. 2014; 127: 91-107
        • Buttner A.
        Review: The neuropathology of drug abuse.
        Neuropathol Appl Neurobiol. 2011; 37: 118-134
        • Lucas C.E.
        The impact of street drugs on trauma care.
        J Trauma. 2005; 59 (discussion S67–75): S57-S60
        • Escriba P.V.
        • Sastre M.
        • Garcia-Sevilla J.A.
        Increased density of guanine nucleotide-binding proteins in the postmortem brains of heroin addicts.
        Arch Gen Psychiatry. 1994; 51: 494-501
        • Hashimoto E.
        • Frolich L.
        • Ozawa H.
        • Saito T.
        • Shichinohe S.
        • Takahata N.
        • et al.
        Alteration of glutamyltranspeptidase binding proteins in postmortem brains of heroin addicts.
        Alcohol Clin Exp Res. 1996; 20: 301A-304A
        • Buttner A.
        • Mall G.
        • Penning R.
        • Weis S.
        The neuropathology of heroin abuse.
        Forensic Sci Int. 2000; 113: 435-442
        • Gruber S.A.
        • Silveri M.M.
        • Yurgelun-Todd D.A.
        Neuropsychological consequences of opiate use.
        Neuropsychol Rev. 2007; 17: 299-315
        • Ghitza U.E.
        Overlapping mechanisms of stress-induced relapse to opioid use disorder and chronic pain: Clinical implications.
        Front Psychiatry. 2016; 7: 80
        • Shurman J.
        • Koob G.F.
        • Gutstein H.B.
        Opioids, pain, the brain, and hyperkatifeia: A framework for the rational use of opioids for pain.
        Pain Med. 2010; 11: 1092-1098
        • Chakravorty S.
        • Vandrey R.G.
        • He S.
        • Stein M.D.
        Sleep management among patients with substance use disorders.
        Med Clin North Am. 2018; 102: 733-743
        • Blum J.
        • Gerber H.
        • Gerhard U.
        • Schmid O.
        • Petitjean S.
        • Riecher-Rossler A.
        • et al.
        Acute effects of heroin on emotions in heroin-dependent patients.
        Am J Addict. 2013; 22: 598-604
        • Zhou Y.
        • Zhu H.
        • Jin X.
        • Li X.
        • Zhang M.
        • Zhang F.
        • et al.
        Biased attention towards negative schematic expression in abstinent heroin abusers.
        J Behav Ther Exp Psychiatry. 2012; 43: 705-710
        • Gerra G.
        • Somaini L.
        • Manfredini M.
        • Raggi M.A.
        • Saracino M.A.
        • Amore M.
        • et al.
        Dysregulated responses to emotions among abstinent heroin users: Correlation with childhood neglect and addiction severity.
        Prog Neuropsychopharmacol Biol Psychiatry. 2014; 48: 220-228
        • Moningka H.
        • Lichenstein S.
        • Worhunsky P.D.
        • DeVito E.E.
        • Scheinost D.
        • Yip S.W.
        Can neuroimaging help combat the opioid epidemic? A systematic review of clinical and pharmacological challenge fMRI studies with recommendations for future research.
        Neuropsychopharmacology. 2019; 44: 259-273
        • Stewart J.L.
        • May A.C.
        • Aupperle R.L.
        • Bodurka J.
        Forging neuroimaging targets for recovery in opioid use disorder.
        Front Psychiatry. 2019; 10: 117
        • Ieong H.F.
        • Yuan Z.
        Resting-state neuroimaging and neuropsychological findings in opioid use disorder during abstinence: A review.
        Front Hum Neurosci. 2017; 11: 169
        • Zhai T.
        • Shao Y.
        • Chen G.
        • Ye E.
        • Ma L.
        • Wang L.
        • et al.
        Nature of functional links in valuation networks differentiates impulsive behaviors between abstinent heroin-dependent subjects and nondrug-using subjects.
        Neuroimage. 2015; 115: 76-84
        • Liu J.
        • Liang J.
        • Qin W.
        • Tian J.
        • Yuan K.
        • Bai L.
        • et al.
        Dysfunctional connectivity patterns in chronic heroin users: An fMRI study.
        Neurosci Lett. 2009; 460: 72-77
        • Xie C.
        • Shao Y.
        • Fu L.
        • Goveas J.
        • Ye E.
        • Li W.
        • et al.
        Identification of hyperactive intrinsic amygdala network connectivity associated with impulsivity in abstinent heroin addicts.
        Behav Brain Res. 2011; 216: 639-646
        • Yuan K.
        • Qin W.
        • Dong M.
        • Liu J.
        • Liu P.
        • Zhang Y.
        • et al.
        Combining spatial and temporal information to explore resting-state networks changes in abstinent heroin-dependent individuals.
        Neurosci Lett. 2010; 475: 20-24
        • Wang L.
        • Zou F.
        • Zhai T.
        • Lei Y.
        • Tan S.
        • Jin X.
        • et al.
        Abnormal gray matter volume and resting-state functional connectivity in former heroin-dependent individuals abstinent for multiple years.
        Addict Biol. 2016; 21: 646-656
        • Zou F.
        • Wu X.
        • Zhai T.
        • Lei Y.
        • Shao Y.
        • Jin X.
        • et al.
        Abnormal resting-state functional connectivity of the nucleus accumbens in multi-year abstinent heroin addicts.
        J Neurosci Res. 2015; 93: 1693-1702
        • Darcq E.
        • Kieffer B.L.
        Opioid receptors: Drivers to addiction?.
        Nat Rev Neurosci. 2018; 19: 499-514
        • Charbogne P.
        • Kieffer B.L.
        • Befort K.
        15 years of genetic approaches in vivo for addiction research: Opioid receptor and peptide gene knockout in mouse models of drug abuse.
        Neuropharmacology. 2014; 76 Pt B: 204-217
        • Fields H.L.
        • Margolis E.B.
        Understanding opioid reward.
        Trends Neurosci. 2015; 38: 217-225
        • Matthes H.W.
        • Maldonado R.
        • Simonin F.
        • Valverde O.
        • Slowe S.
        • Kitchen I.
        • et al.
        Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the mu-opioid-receptor gene.
        Nature. 1996; 383: 819-823
        • Williams J.T.
        • Ingram S.L.
        • Henderson G.
        • Chavkin C.
        • von Zastrow M.
        • Schulz S.
        • et al.
        Regulation of mu-opioid receptors: Desensitization, phosphorylation, internalization, and tolerance.
        Pharmacol Rev. 2013; 65: 223-254
        • Cahill C.M.
        • Walwyn W.
        • Taylor A.M.W.
        • Pradhan A.A.A.
        • Evans C.J.
        Allostatic mechanisms of opioid tolerance beyond desensitization and downregulation.
        Trends Pharmacol Sci. 2016; 37: 963-976
        • Evans C.J.
        • Cahill C.M.
        Neurobiology of opioid dependence in creating addiction vulnerability.
        F1000Res. 2016; 5
        • Kosten T.R.
        • Baxter L.E.
        Review article: Effective management of opioid withdrawal symptoms: A gateway to opioid dependence treatment.
        Am J Addict. 2019; 28: 55-62
        • Wesson D.R.
        • Ling W.
        The Clinical Opiate Withdrawal Scale (COWS).
        J Psychoactive Drugs. 2003; 35: 253-259
        • Bechara A.
        • Nader K.
        • van der Kooy D.
        Neurobiology of withdrawal motivation: Evidence for two separate aversive effects produced in morphine-naive versus morphine-dependent rats by both naloxone and spontaneous withdrawal.
        Behav Neurosci. 1995; 109: 91-105
        • Liu J.
        • Schulteis G.
        Brain reward deficits accompany naloxone-precipitated withdrawal from acute opioid dependence.
        Pharmacol Biochem Behav. 2004; 79: 101-108
        • Rothwell P.E.
        • Thomas M.J.
        • Gewirtz J.C.
        Distinct profiles of anxiety and dysphoria during spontaneous withdrawal from acute morphine exposure.
        Neuropsychopharmacology. 2009; 34: 2285-2295
        • Rothwell P.E.
        • Thomas M.J.
        • Gewirtz J.C.
        Protracted manifestations of acute dependence after a single morphine exposure.
        Psychopharmacology (Berl). 2012; 219: 991-998
        • Reiner D.J.
        • Fredriksson I.
        • Lofaro O.M.
        • Bossert J.M.
        • Shaham Y.
        Relapse to opioid seeking in rat models: Behavior, pharmacology and circuits.
        Neuropsychopharmacology. 2019; 44: 465-477
        • Anraku T.
        • Ikegaya Y.
        • Matsuki N.
        • Nishiyama N.
        Withdrawal from chronic morphine administration causes prolonged enhancement of immobility in rat forced swimming test.
        Psychopharmacology (Berl). 2001; 157: 217-220
        • Zhang D.
        • Zhou X.
        • Wang X.
        • Xiang X.
        • Chen H.
        • Hao W.
        Morphine withdrawal decreases responding reinforced by sucrose self-administration in progressive ratio.
        Addict Biol. 2007; 12: 152-157
        • Blatchford K.E.
        • Diamond K.
        • Westbrook R.F.
        • McNally G.P.
        Increased vulnerability to stress following opiate exposures: Behavioral and autonomic correlates.
        Behav Neurosci. 2005; 119: 1034-1041
        • Zanos P.
        • Georgiou P.
        • Wright S.R.
        • Hourani S.M.
        • Kitchen I.
        • Winsky-Sommerer R.
        • et al.
        The oxytocin analogue carbetocin prevents emotional impairment and stress-induced reinstatement of opioid-seeking in morphine-abstinent mice.
        Neuropsychopharmacology. 2014; 39: 855-865
        • Hodgson S.R.
        • Hofford R.S.
        • Wellman P.J.
        • Eitan S.
        Different affective response to opioid withdrawal in adolescent and adult mice.
        Life Sci. 2009; 84: 52-60
        • Harris G.C.
        • Aston-Jones G.
        Altered motivation and learning following opiate withdrawal: evidence for prolonged dysregulation of reward processing.
        Neuropsychopharmacology. 2003; 28: 865-871
        • Harris G.C.
        • Aston-Jones G.
        Enhanced morphine preference following prolonged abstinence: Association with increased Fos expression in the extended amygdala.
        Neuropsychopharmacology. 2003; 28: 292-299
        • Goeldner C.
        • Lutz P.E.
        • Darcq E.
        • Halter T.
        • Clesse D.
        • Ouagazzal A.M.
        • et al.
        Impaired emotional-like behavior and serotonergic function during protracted abstinence from chronic morphine.
        Biol Psychiatry. 2011; 69: 236-244
        • Lutz P.E.
        • Ayranci G.
        • Chu-Sin-Chung P.
        • Matifas A.
        • Koebel P.
        • Filliol D.
        • et al.
        Distinct mu, delta, and kappa opioid receptor mechanisms underlie low sociability and depressive-like behaviors during heroin abstinence.
        Neuropsychopharmacology. 2014; 39: 2694-2705
        • Becker J.A.J.
        • Kieffer B.L.
        • Le Merrer J.
        Differential behavioral and molecular alterations upon protracted abstinence from cocaine versus morphine, nicotine, THC and alcohol.
        Addict Biol. 2017; 22: 1205-1217
        • Ma H.
        • Wang N.
        • Wang X.
        • Jia M.
        • Li Y.
        • Cui C.
        Wnt7a in mouse insular cortex contributes to anxiety-like behavior during protracted abstinence from morphine.
        Neuroscience. 2018; 394: 164-176
        • Zorrilla E.P.
        • Logrip M.L.
        • Koob G.F.
        Corticotropin releasing factor: A key role in the neurobiology of addiction.
        Front Neuroendocrinol. 2014; 35: 234-244
        • Grieder T.E.
        • Herman M.A.
        • Contet C.
        • Tan L.A.
        • Vargas-Perez H.
        • Cohen A.
        • et al.
        VTA CRF neurons mediate the aversive effects of nicotine withdrawal and promote intake escalation.
        Nat Neurosci. 2014; 17: 1751-1758
        • de Guglielmo G.
        • Kallupi M.
        • Pomrenze M.B.
        • Crawford E.
        • Simpson S.
        • Schweitzer P.
        • et al.
        Inactivation of a CRF-dependent amygdalofugal pathway reverses addiction-like behaviors in alcohol-dependent rats.
        Nat Commun. 2019; 10: 1238
        • Blatchford K.E.
        • Choi E.A.
        • McNally G.P.
        Altered responsivity to central administrations of corticotropin-releasing factor in rats with a history of opiate exposures.
        Behav Neurosci. 2006; 120: 1169-1174
        • Zanos P.
        • Georgiou P.
        • Gonzalez L.R.
        • Hourani S.
        • Chen Y.
        • Kitchen I.
        • et al.
        Emotional impairment and persistent upregulation of mGlu5 receptor following morphine abstinence: Implications of an mGlu5-MOPr Interaction.
        Int J Neuropsychopharmacol. 2016; 19
        • Harris G.C.
        • Aston-Jones G.
        Augmented accumbal serotonin levels decrease the preference for a morphine associated environment during withdrawal.
        Neuropsychopharmacology. 2001; 24: 75-85
        • Lalanne L.
        • Ayranci G.
        • Filliol D.
        • Gaveriaux-Ruff C.
        • Befort K.
        • Kieffer B.L.
        • et al.
        Kappa opioid receptor antagonism and chronic antidepressant treatment have beneficial activities on social interactions and grooming deficits during heroin abstinence.
        Addict Biol. 2017; 22: 1010-1021
        • Yohn C.N.
        • Gergues M.M.
        • Samuels B.A.
        The role of 5-HT receptors in depression.
        Mol Brain. 2017; 10: 28
        • Dayan P.
        • Huys Q.J.
        Serotonin in affective control.
        Annu Rev Neurosci. 2009; 32: 95-126
        • Chavkin C.
        • Koob G.F.
        Dynorphin, dysphoria, and dependence: The stress of addiction.
        Neuropsychopharmacology. 2016; 41: 373-374
        • Bruchas M.R.
        • Land B.B.
        • Chavkin C.
        The dynorphin/kappa opioid system as a modulator of stress-induced and pro-addictive behaviors.
        Brain Res. 2010; 1314: 44-55
        • Zhang G.
        • Wu X.
        • Zhang Y.M.
        • Liu H.
        • Jiang Q.
        • Pang G.
        • et al.
        Activation of serotonin 5-HT(2C) receptor suppresses behavioral sensitization and naloxone-precipitated withdrawal symptoms in morphine-dependent mice.
        Neuropharmacology. 2016; 101: 246-254
        • Wu X.
        • Pang G.
        • Zhang Y.M.
        • Li G.
        • Xu S.
        • Dong L.
        • et al.
        Activation of serotonin 5-HT(2C) receptor suppresses behavioral sensitization and naloxone-precipitated withdrawal symptoms in heroin-treated mice.
        Neurosci Lett. 2015; 607: 23-28
        • Blackwood C.A.
        • Hoerle R.
        • Leary M.
        • Schroeder J.
        • Job M.O.
        • McCoy M.T.
        • et al.
        Molecular adaptations in the rat dorsal striatum and hippocampus following abstinence-induced incubation of drug seeking after escalated oxycodone self-administration.
        Mol Neurobiol. 2019; 56: 3603-3615
        • Befort K.
        • Filliol D.
        • Ghate A.
        • Darcq E.
        • Matifas A.
        • Muller J.
        • et al.
        Mu-opioid receptor activation induces transcriptional plasticity in the central extended amygdala.
        Eur J Neurosci. 2008; 27: 2973-2984
        • Le Merrer J.
        • Befort K.
        • Gardon O.
        • Filliol D.
        • Darcq E.
        • Dembele D.
        • et al.
        Protracted abstinence from distinct drugs of abuse shows regulation of a common gene network.
        Addict Biol. 2012; 17: 1-12
        • Erbs E.
        • Faget L.
        • Scherrer G.
        • Matifas A.
        • Filliol D.
        • Vonesch J.L.
        • et al.
        A mu-delta opioid receptor brain atlas reveals neuronal co-occurrence in subcortical networks.
        Brain Struct Funct. 2015; 220: 677-702
        • Ehrlich A.T.
        • Semache M.
        • Gross F.
        • Da Fonte D.F.
        • Runtz L.
        • Colley C.
        • et al.
        Biased signaling of the mu opioid receptor revealed in native neurons.
        iScience. 2019; 14: 47-57
        • Corder G.
        • Castro D.C.
        • Bruchas M.R.
        • Scherrer G.
        Endogenous and exogenous opioids in pain.
        Annu Rev Neurosci. 2018; 41: 453-473
        • Le Merrer J.
        • Becker J.A.
        • Befort K.
        • Kieffer B.L.
        Reward processing by the opioid system in the brain.
        Physiol Rev. 2009; 89: 1379-1412
        • Lutz P.E.
        • Kieffer B.L.
        Opioid receptors: Distinct roles in mood disorders.
        Trends Neurosci. 2013; 36: 195-206
        • Hu H.
        Reward and aversion.
        Annu Rev Neurosci. 2016; 39: 297-324
        • Saunders B.T.
        • Richard J.M.
        • Janak P.H.
        Contemporary approaches to neural circuit manipulation and mapping: Focus on reward and addiction.
        Philos Trans R Soc Lond B Biol Sci. 2015; 370: 20140210
        • Cui Y.
        • Ostlund S.B.
        • James A.S.
        • Park C.S.
        • Ge W.
        • Roberts K.W.
        • et al.
        Targeted expression of mu-opioid receptors in a subset of striatal direct-pathway neurons restores opiate reward.
        Nat Neurosci. 2014; 17: 254-261
        • Charbogne P.
        • Gardon O.
        • Martin-Garcia E.
        • Keyworth H.L.
        • Matsui A.
        • Mechling A.E.
        • et al.
        Mu opioid receptors in gamma-aminobutyric acidergic forebrain neurons moderate motivation for heroin and palatable food.
        Biol Psychiatry. 2017; 81: 778-788
        • Ettenberg A.
        • Pettit H.O.
        • Bloom F.E.
        • Koob G.F.
        Heroin and cocaine intravenous self-administration in rats: Mediation by separate neural systems.
        Psychopharmacology (Berl). 1982; 78: 204-209
        • Hnasko T.S.
        • Sotak B.N.
        • Palmiter R.D.
        Morphine reward in dopamine-deficient mice.
        Nature. 2005; 438: 854-857
        • Laviolette S.R.
        • van der Kooy D.
        GABAA receptors signal bidirectional reward transmission from the ventral tegmental area to the tegmental pedunculopontine nucleus as a function of opiate state.
        Eur J Neurosci. 2004; 20: 2179-2187
        • Narayanan S.
        • Lam H.
        • Christian L.
        • Levine M.S.
        • Grandy D.
        • Rubinstein M.
        • et al.
        Endogenous opioids mediate basal hedonic tone independent of dopamine D-1 or D-2 receptor activation.
        Neuroscience. 2004; 124: 241-246
        • Gardon O.
        • Faget L.
        • Chu Sin Chung P.
        • Matifas A.
        • Massotte D.
        • Kieffer B.L.
        Expression of mu opioid receptor in dorsal diencephalic conduction system: New insights for the medial habenula.
        Neuroscience. 2014; 277: 595-609
        • Hikosaka O.
        The habenula: From stress evasion to value-based decision-making.
        Nat Rev Neurosci. 2010; 11: 503-513
        • Boulos L.J.
        • Darcq E.
        • Kieffer B.L.
        Translating the habenula-from rodents to humans.
        Biol Psychiatry. 2017; 81: 296-305
        • Kaye A.
        • Ross D.A.
        The habenula: Darkness, disappointment, and depression.
        Biol Psychiatry. 2017; 81: e27-e28
        • Mathis V.
        • Kenny P.J.
        From controlled to compulsive drug-taking: The role of the habenula in addiction.
        Neurosci Biobehav Rev. 2019; 106: 102-111
        • Lee H.W.
        • Yang S.H.
        • Kim J.Y.
        • Kim H.
        The role of the medial habenula cholinergic system in addiction and emotion-associated behaviors.
        Front Psychiatry. 2019; 10: 100
        • Browne C.A.
        • Hammack R.
        • Lucki I.
        Dysregulation of the lateral habenula in major depressive disorder.
        Front Synaptic Neurosci. 2018; 10: 46
        • Kim U.
        • Chang S.Y.
        Dendritic morphology, local circuitry, and intrinsic electrophysiology of neurons in the rat medial and lateral habenular nuclei of the epithalamus.
        J Comp Neurol. 2005; 483: 236-250
        • Skoubis P.D.
        • Matthes H.W.
        • Walwyn W.M.
        • Kieffer B.L.
        • Maidment N.T.
        Naloxone fails to produce conditioned place aversion in mu-opioid receptor knock-out mice.
        Neuroscience. 2001; 106: 757-763
        • Boulos L.J.
        • Ben Hamida S.
        • Bailly J.
        • Maitra M.
        • Ehrlich A.T.
        • Gavériaux-Ruff C.
        • et al.
        Mu opioid receptors in the medial habenula contribute to naloxone aversion.
        Neuropsychopharmacology. 2019; ([published online ahead of print Apr 20])
        • Georges F.
        • Le Moine C.
        • Aston-Jones G.
        No effect of morphine on ventral tegmental dopamine neurons during withdrawal.
        J Neurosci. 2006; 26: 5720-5726
        • Kaufling J.
        • Aston-Jones G.
        Persistent adaptations in afferents to ventral tegmental dopamine neurons after opiate withdrawal.
        J Neurosci. 2015; 35: 10290-10303
        • Zhu Y.
        • Wienecke C.F.
        • Nachtrab G.
        • Chen X.
        A thalamic input to the nucleus accumbens mediates opiate dependence.
        Nature. 2016; 530: 219-222
        • Valentinova K.
        • Tchenio A.
        • Trusel M.
        • Clerke J.A.
        • Lalive A.L.
        • Tzanoulinou S.
        • et al.
        Morphine withdrawal recruits lateral habenula cytokine signaling to reduce synaptic excitation and sociability.
        Nat Neurosci. 2019; 22: 1053-1056
        • Belin-Rauscent A.
        • Fouyssac M.
        • Bonci A.
        • Belin D.
        How preclinical models evolved to resemble the diagnostic criteria of drug addiction.
        Biol Psychiatry. 2016; 79: 39-46
        • Mechling A.E.
        • Arefin T.
        • Lee H.L.
        • Bienert T.
        • Reisert M.
        • Ben Hamida S.
        • et al.
        Deletion of the mu opioid receptor gene in mice reshapes the reward-aversion connectome.
        Proc Natl Acad Sci U S A. 2016; 113: 11603-11608
        • Blum K.
        • Chen A.L.C.
        • Thanos P.K.
        • Febo M.
        • Demetrovics Z.
        • Dushaj K.
        • et al.
        Genetic addiction risk score (GARS), a predictor of vulnerability to opioid dependence.
        Front Biosci (Elite Ed). 2018; 10: 175-196
        • Donaldson K.
        • Demers L.
        • Taylor K.
        • Lopez J.
        • Chang S.
        Multi-variant genetic panel for genetic risk of opioid addiction.
        Ann Clin Lab Sci. 2017; 47: 452-456
        • Muriel J.
        • Margarit C.
        • Planelles B.
        • Serralta M.J.
        • Puga C.
        • Inda M.D.
        • et al.
        OPRM1 influence on and effectiveness of an individualized treatment plan for prescription opioid use disorder patients.
        Ann N Y Acad Sci. 2018; ([published online ahead of print May 20])
        • Diana M.
        • Raij T.
        • Melis M.
        • Nummenmaa A.
        • Leggio L.
        • Bonci A.
        Rehabilitating the addicted brain with transcranial magnetic stimulation.
        Nat Rev Neurosci. 2017; 18: 685-693
        • Harris G.C.
        • Aston-Jones G.
        Activation in extended amygdala corresponds to altered hedonic processing during protracted morphine withdrawal.
        Behav Brain Res. 2007; 176: 251-258
        • Lutz P.E.
        • Pradhan A.A.
        • Goeldner C.
        • Kieffer B.L.
        Sequential and opposing alterations of 5-HT(1A) receptor function during withdrawal from chronic morphine.
        Eur Neuropsychopharmacol. 2011; 21: 835-840