Advertisement

Translating Molecular and Neuroendocrine Findings in Posttraumatic Stress Disorder and Resilience to Novel Therapies

      Abstract

      Many biological systems are altered in association with posttraumatic stress disorder (PTSD) and resilience. However, there are only few approved pharmacological treatments for PTSD, and no approved medications to enhance resilience. This article provides a critical review of select neurobiological findings in PTSD and resilience, and also of pharmacologic approaches that have emerged from this work. The medications summarized involve engagement with targets in the adrenergic, hypothalamic-pituitary-adrenal axis, and neuropeptide Y systems. Other highlighted approaches involve the use of ketamine and 3,4-methylenedioxymethamphetamine–assisted psychotherapy, which recently surfaced as promising strategies for PTSD, though the neurobiological mechanisms underlying their actions, including for promoting resilience, are not yet fully understood. The former approaches fall within the broad concept of “rational pharmacotherapy,” in that they attempt to directly target dysregulated systems known to be associated with posttraumatic symptoms. To the extent that use of ketamine and 3,4-methylenedioxymethamphetamine promotes symptom improvement and resilience in PTSD, this provides an opportunity for reverse translation and identification of relevant targets and mechanisms of action through careful study of biological changes resulting from these interventions. Promoting resilience in trauma-exposed individuals may involve more than pharmacologically manipulating dysregulated molecules and pathways associated with developing and sustaining PTSD symptom severity, but also producing a substantial change in mental state that increases the ability to engage with traumatic material in psychotherapy. Neurobiological examination in the context of treatment studies may yield novel targets and promote a greater understanding of mechanisms of recovery from trauma.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Friedman M.J.
        Toward rational pharmacotherapy for posttraumatic stress disorder: An interim report.
        Am J Psychiatry. 1988; 145: 281-285
        • Friedman M.J.
        Toward rational pharmacotherapy for posttraumatic stress disorder: Reprise.
        Am J Psychiatry. 2013; 170: 944-946
        • Feder A.
        • Nestler E.J.
        • Charney D.S.
        Psychobiology and molecular genetics of resilience.
        Nat Rev Neurosci. 2009; 10: 446-457
        • Horn S.R.
        • Feder A.
        Understanding resilience and preventing and treating PTSD.
        Harv Rev Psychiatry. 2018; 26: 158-174
        • Neylan T.C.
        • Schadt E.E.
        • Yehuda R.
        Biomarkers for combat-related PTSD: Focus on molecular networks from high-dimensional data.
        Eur J Psychotraumatol. 2014; 5: 23938
        • Russo S.J.
        • Murrough J.W.
        • Han M.-H.
        • Charney D.S.
        • Nestler E.J.
        Neurobiology of resilience.
        Nat Neurosci. 2012; 15: 1475
        • Krystal J.H.
        • Davis L.L.
        • Neylan T.C.
        • Raskind M.A.
        • Schnurr P.P.
        • Stein M.B.
        • et al.
        It is time to address the crisis in the pharmacotherapy of posttraumatic stress disorder: A consensus statement of the PTSD Psychopharmacology Working Group.
        Biol Psychiatry. 2017; 82: e51-e59
        • Southwick S.M.
        • Bonanno G.A.
        • Masten A.S.
        • Panter-Brick C.
        • Yehuda R.
        Resilience definitions, theory, and challenges: Interdisciplinary perspectives.
        Eur J Psychotraumatol. 2014; 5: 25338
        • Harney P.A.
        Resilience processes in context: Contributions and implications of Bronfenbrenner's person-process-context model.
        J Aggress Maltreat Trauma. 2007; 14: 73-87
        • Management of Posttraumatic Stress Disorder Work Group
        VA/DOD Clinical Practice Guideline for the Management of Posttraumatic Stress Disorder and Acute Stress Disorder.
        Department of Veterans Affairs/Department of Defense, Washington, DC2017
      1. ISTSS Guidelines Committee. Posttraumatic Stress Disorder Prevention and Treatment Guidelines: Methodology and Recommendations. Available at: http://www.istss.org/getattachment/Treating-Trauma/New-ISTSS-Prevention-and-Treatment-Guidelines/ISTSS_PreventionTreatmentGuidelines_FNL.pdf.aspx. Accessed December 23, 2018.

        • Malejko K.
        • Abler B.
        • Plener P.L.
        • Straub J.
        Neural correlates of psychotherapeutic treatment of post-traumatic stress disorder: A systematic literature review.
        Front Psychiatry. 2017; 8: 85
        • VanElzakker M.B.
        • Dahlgren M.K.
        • Davis F.C.
        • Dubois S.
        • Shin L.M.
        From Pavlov to PTSD: The extinction of conditioned fear in rodents, humans, and anxiety disorders.
        Neurobiol Learn Mem. 2014; 113: 3-18
        • Abdallah C.G.
        • Averill C.L.
        • Ramage A.E.
        • Averill L.A.
        • Alkin E.
        • Nemati S.
        • et al.
        Reduced salience and enhanced central executive connectivity following PTSD treatment.
        Chronic Stress. 2019; 3 (2470547019838971)
        • Yehuda R.
        • Hoge C.W.
        The meaning of evidence-based treatments for veterans with posttraumatic stress disorder.
        JAMA Psychiatry. 2016; 73: 433-434
        • Steenkamp M.M.
        True evidence-based care for posttraumatic stress disorder in military personnel and veterans.
        JAMA Psychiatry. 2016; 73: 431-432
        • National Institute of Clinical Excellence
        Post-traumatic Stress Disorder.
        NICE, London2018
        • Lee D.J.
        • Schnitzlein C.W.
        • Wolf J.P.
        • Vythilingam M.
        • Rasmusson A.M.
        • Hoge C.W.
        Psychotherapy versus pharmacotherapy for posttraumatic stress disorder: Systemic review and meta-analyses to determine first-line treatments.
        Depress Anxiety. 2016; 33: 792-806
        • Pittman R.
        • Orr S.
        Twenty-four hour urinary cortisol and catecholamine excretion in combat-related posttraumatic stress disorder.
        Biol Psychiatry. 1990; 27: 245-247
        • Pitman R.K.
        • Orr S.P.
        • Forgue D.F.
        • de Jong J.B.
        • Claiborn J.M.
        Psychophysiologic assessment of posttraumatic stress disorder imagery in Vietnam combat veterans.
        Arch Gen Psychiatry. 1987; 44: 970-975
        • Barkay G.
        • Freedman N.
        • Lester H.
        • Louzoun Y.
        • Sapoznikov D.
        • Luckenbaugh D.
        • et al.
        Brain activation and heart rate during script-driven traumatic imagery in PTSD: Preliminary findings.
        Psychiatry Res Neuroimaging. 2012; 204: 155-160
        • Krystal J.H.
        • Neumeister A.
        Noradrenergic and serotonergic mechanisms in the neurobiology of posttraumatic stress disorder and resilience.
        Brain Res. 2009; 1293: 13-23
        • Southwick S.M.
        • Krystal J.H.
        • Morgan C.A.
        • Johnson D.
        • Nagy L.M.
        • Nicolaou A.
        • et al.
        Abnormal noradrenergic function in posttraumatic stress disorder.
        Arch Gen Psychiatry. 1993; 50: 266-274
        • Hendrickson R.C.
        • Raskind M.A.
        Noradrenergic dysregulation in the pathophysiology of PTSD.
        Exp Neurol. 2016; 284: 181-195
        • Davis L.
        • Ward C.
        • Rasmusson A.
        • Newell J.M.
        • Frazier E.
        • Southwick S.M.
        A placebo-controlled trial of guanfacine for the treatment of posttraumatic stress disorder in veterans.
        Psychopharmacol Bull. 2008; 41: 8-18
        • Neylan T.C.
        • Lenoci M.
        • Samuelson K.W.
        • Metzler T.J.
        • Henn-Haase C.
        • Hierholzer R.W.
        • et al.
        No improvement of posttraumatic stress disorder symptoms with guanfacine treatment.
        Am J Psychiatry. 2006; 163: 2186-2188
        • Berardis D.D.
        • Marini S.
        • Serroni N.
        • Iasevoli F.
        • Tomasetti C.
        • de Bartolomeis A.
        • et al.
        Targeting the noradrenergic system in posttraumatic stress disorder: A systematic review and meta-analysis of prazosin trials.
        Curr Drug Targets. 2015; 16: 1094-1106
        • Singh B.
        • Hughes A.J.
        • Mehta G.
        • Erwin P.J.
        • Parsaik A.K.
        Efficacy of prazosin in posttraumatic stress disorder: A systematic review and meta-analysis.
        Prim Care Companion CNS Disord. 2016; 18: 16r01943
        • Harpaz-Rotem I.
        • Rosenheck R.A.
        Tracing the flow of knowledge: Geographic variability in the diffusion of prazosin use for the treatment of posttraumatic stress disorder nationally in the Department of Veterans Affairs.
        Arch Gen Psychiatry. 2009; 66: 417-421
        • Raskind M.A.
        • Peskind E.R.
        • Chow B.
        • Harris C.
        • Davis-Karim A.
        • Holmes H.A.
        • et al.
        Trial of prazosin for post-traumatic stress disorder in military veterans.
        N Engl J Med. 2018; 378: 507-517
        • Argolo F.C.
        • Cavalcanti-Ribeiro P.
        • Netto L.R.
        • Quarantini L.C.
        Prevention of posttraumatic stress disorder with propranolol: A meta-analytic review.
        J Psychosom Res. 2015; 79: 89-93
        • Rodriguez-Romaguera J.
        • Sotres-Bayon F.
        • Mueller D.
        • Quirk G.J.
        Systemic propranolol acts centrally to reduce conditioned fear in rats without impairing extinction.
        Biol Psychiatry. 2009; 65: 887-892
        • Friedman M.J.
        • Bernardy N.C.
        Considering future pharmacotherapy for PTSD.
        Neurosci Lett. 2017; 649: 181-185
        • Brunet A.
        • Saumier D.
        • Liu A.
        • Streiner D.L.
        • Tremblay J.
        • Pitman R.K.
        Reduction of PTSD symptoms with pre-reactivation propranolol therapy: A randomized controlled trial.
        Am J Psychiatry. 2018; 175: 427-433
        • Tuerk P.W.
        • Wangelin B.C.
        • Powers M.B.
        • Smits J.A.
        • Acierno R.
        • Myers U.S.
        • et al.
        Augmenting treatment efficiency in exposure therapy for PTSD: A randomized double-blind placebo-controlled trial of yohimbine HCl.
        Cogn Behav Ther. 2018; 47: 351-371
        • Yehuda R.
        • LeDoux J.
        Response variation following trauma: A translational neuroscience approach to understanding PTSD.
        Neuron. 2007; 56: 19-32
        • Yehuda R.
        Neuroendocrinology of PTSD.
        in: Nemeroff C.B. Marmar C.R. Post-traumatic Stress Disorder. Oxford, New York2018: 353-374
        • Yehuda R.
        • Halligan S.L.
        • Grossman R.
        • Golier J.A.
        • Wong C.
        The cortisol and glucocorticoid receptor response to low dose dexamethasone administration in aging combat veterans and holocaust survivors with and without posttraumatic stress disorder.
        Biol Psychiatry. 2002; 52: 393-403
        • Duval F.
        • Crocq M.-A.
        • Guillon M.-S.
        • Mokrani M.-C.
        • Monreal J.
        • Bailey P.
        • et al.
        Increased adrenocorticotropin suppression following dexamethasone administration in sexually abused adolescents with posttraumatic stress disorder.
        Psychoneuroendocrinology. 2004; 29: 1281-1289
        • Yehuda R.
        • Southwick S.M.
        • Krystal J.H.
        • Bremner D.
        • Charney D.S.
        • Mason J.W.
        Enhanced suppression of cortisol following dexamethasone administration in posttraumatic stress disorder.
        Am J Psychiatry. 1993; 150: 83-86
        • Yehuda R.
        • Hoge C.W.
        • McFarlane A.C.
        • Vermetten E.
        • Lanius R.A.
        • Nievergelt C.M.
        • et al.
        Post-traumatic stress disorder.
        Nat Rev Dis Primers. 2015; 1: 15057
        • Daskalakis N.P.
        • McGill M.A.
        • Lehrner A.
        • Yehuda R.
        Endocrine aspects of PTSD: Hypothalamic-pituitary-adrenal (HPA) axis and beyond.
        in: Martin C.R. Preedy V.R. Patel V.B. Comprehensive Guide to Post-Traumatic Stress Disorders. Springer International, Cham, Switzerland2016: 245-260
        • Yehuda R.
        • Golier J.
        Is there a rationale for cortisol-based treatments for PTSD?.
        Exp Rev Neurother. 2009; 9: 1113-1115
        • Schwabe L.
        • Joëls M.
        • Roozendaal B.
        • Wolf O.T.
        • Oitzl M.S.
        Stress effects on memory: An update and integration.
        Neurosci Biobehav Rev. 2012; 36: 1740-1749
        • de Quervain D.
        • Schwabe L.
        • Roozendaal B.
        Stress, glucocorticoids and memory: Implications for treating fear-related disorders.
        Nat Rev Neurosci. 2017; 18: 7-19
        • Yehuda R.
        Post-traumatic stress disorder.
        N Engl J Med. 2002; 346: 108-114
        • Golier J.A.
        • Yehuda R.
        • Baker D.
        A randomized clinical trial of a glucocorticoid receptor antagonist in PTSD.
        Psychoneuroendocrinology. 2017; 83: 87
        • Dunlop B.W.
        • Binder E.B.
        • Iosifescu D.
        • Mathew S.J.
        • Neylan T.C.
        • Pape J.C.
        • et al.
        Corticotropin-releasing factor receptor 1 antagonism is ineffective for women with posttraumatic stress disorder.
        Biol Psychiatry. 2017; 82: 866-874
        • Schelling G.
        • Stoll C.
        • Kapfhammer H.-P.
        • Rothenhäusler H.-B.
        • Krauseneck T.
        • Durst K.
        • et al.
        The effect of stress doses of hydrocortisone during septic shock on posttraumatic stress disorder and health-related quality of life in survivors.
        Crit Care Med. 1999; 27: 2678-2683
        • Schelling G.
        • Roozendaal B.
        • Krauseneck T.
        • Schmoelz M.
        • De Quervain D.
        • Briegel J.
        Efficacy of hydrocortisone in preventing posttraumatic stress disorder following critical illness and major surgery.
        Ann N Y Acad Sci. 2006; 1071: 46-53
        • Zohar J.
        • Yahalom H.
        • Kozlovsky N.
        • Cwikel-Hamzany S.
        • Matar M.A.
        • Kaplan Z.
        • et al.
        High dose hydrocortisone immediately after trauma may alter the trajectory of PTSD: Interplay between clinical and animal studies.
        Eur Neuropsychopharmacol. 2011; 21: 796-809
        • Delahanty D.L.
        • Gabert-Quillen C.
        • Ostrowski S.A.
        • Nugent N.R.
        • Fischer B.
        • Morris A.
        • et al.
        The efficacy of initial hydrocortisone administration at preventing posttraumatic distress in adult trauma patients: A randomized trial.
        CNS Spectr. 2013; 18: 103-111
        • Amos T.
        • Stein D.J.
        • Ipser J.C.
        Pharmacological interventions for preventing post-traumatic stress disorder (PTSD).
        Cochrane Database Syst Rev. 2014; 7: CD006239
        • Yehuda R.
        • Bierer L.
        • Pratchett L.
        • Malowney M.
        Glucocorticoid augmentation of prolonged exposure therapy: Rationale and case report.
        Eur J Psychotraumatol. 2010; 1: 5643
        • Yehuda R.
        • Bierer L.M.
        • Pratchett L.C.
        • Lehrner A.
        • Koch E.C.
        • Van Manen J.A.
        • et al.
        Cortisol augmentation of a psychological treatment for warfighters with posttraumatic stress disorder: Randomized trial showing improved treatment retention and outcome.
        Psychoneuroendocrinology. 2015; 51: 589-597
        • Surís A.
        • North C.
        • Adinoff B.
        • Powell C.M.
        • Greene R.
        Effects of exogenous glucocorticoid on combat-related PTSD symptoms.
        Ann Clin Psychiatry. 2010; 22: 274-279
        • Maples-Keller J.L.
        • Jovanovic T.
        • Dunlop B.W.
        • Rauch S.
        • Yasinski C.
        • Michopoulos V.
        • et al.
        When translational neuroscience fails in the clinic: Dexamethasone prior to virtual reality exposure therapy increases drop-out rates.
        J Anxiety Disord. 2019; 61: 89-97
        • Schmeltzer S.N.
        • Herman J.P.
        • Sah R.
        Neuropeptide Y (NPY) and posttraumatic stress disorder (PTSD): A translational update.
        Exp Neurol. 2016; 284: 196-210
        • Morgan III, C.A.
        • Wang S.
        • Southwick S.M.
        • Rasmusson A.
        • Hazlett G.
        • Hauger R.L.
        • et al.
        Plasma neuropeptide-Y concentrations in humans exposed to military survival training.
        Biol Psychiatry. 2000; 47: 902-909
        • Rasmusson A.M.
        • Hauger R.L.
        • Morgan III, C.A.
        • Bremner J.D.
        • Charney D.S.
        • Southwick S.M.
        Low baseline and yohimbine-stimulated plasma neuropeptide Y (NPY) levels in combat-related PTSD.
        Biol Psychiatry. 2000; 47: 526-539
        • Yehuda R.
        • Brand S.
        • Yang R.-K.
        Plasma neuropeptide Y concentrations in combat exposed veterans: Relationship to trauma exposure, recovery from PTSD, and coping.
        Biol Psychiatry. 2006; 59: 660-663
        • Sah R.
        • Ekhator N.N.
        • Strawn J.R.
        • Sallee F.R.
        • Baker D.G.
        • Horn P.S.
        • et al.
        Low cerebrospinal fluid neuropeptide Y concentrations in posttraumatic stress disorder.
        Biol Psychiatry. 2009; 66: 705-707
        • Zhou Z.
        • Zhu G.
        • Hariri A.R.
        • Enoch M.-A.
        • Scott D.
        • Sinha R.
        • et al.
        Genetic variation in human NPY expression affects stress response and emotion.
        Nature. 2008; 452: 997-1001
        • Sayed S.
        • Van Dam N.T.
        • Horn S.R.
        • Kautz M.M.
        • Parides M.
        • Costi S.
        • et al.
        A randomized dose-ranging study of neuropeptide Y in patients with posttraumatic stress disorder.
        Int J Neuropsychopharmacol. 2017; 21: 3-11
        • Liu Y.
        • Lin D.
        • Wu B.
        • Zhou W.
        Ketamine abuse potential and use disorder.
        Brain Res Bull. 2016; 126: 68-73
        • Berman R.M.
        • Cappiello A.
        • Anand A.
        • Oren D.A.
        • Heninger G.R.
        • Charney D.S.
        • et al.
        Antidepressant effects of ketamine in depressed patients.
        Biol Psychiatry. 2000; 47: 351-354
        • Zarate C.A.
        • Singh J.B.
        • Carlson P.J.
        • Brutsche N.E.
        • Ameli R.
        • Luckenbaugh D.A.
        • et al.
        A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression.
        Arch Gen Psychiatry. 2006; 63: 856-864
        • Murrough J.W.
        • Iosifescu D.V.
        • Chang L.C.
        • Al Jurdi R.K.
        • Green C.E.
        • Perez A.M.
        • et al.
        Antidepressant efficacy of ketamine in treatment-resistant major depression: A two-site randomized controlled trial.
        Am J Psychiatry. 2013; 170: 1134-1142
        • Daly E.J.
        • Singh J.B.
        • Fedgchin M.
        • Cooper K.
        • Lim P.
        • Shelton R.C.
        • et al.
        Efficacy and safety of intranasal esketamine adjunctive to oral antidepressant therapy in treatment-resistant depression: A randomized clinical trial.
        JAMA Psychiatry. 2018; 75: 139-148
        • Murrough J.W.
        • Perez A.M.
        • Pillemer S.
        • Stern J.
        • Parides M.K.
        • aan het Rot M.
        • et al.
        Rapid and longer-term antidepressant effects of repeated ketamine infusions in treatment-resistant major depression.
        Biol Psychiatry. 2013; 74: 250-256
        • Abdallah C.G.
        • Sanacora G.
        • Duman R.S.
        • Krystal J.H.
        The neurobiology of depression, ketamine and rapid-acting antidepressants: Is it glutamate inhibition or activation?.
        Pharmacol Ther. 2018; 190: 148-158
        • Bermudo-Soriano C.R.
        • Perez-Rodriguez M.M.
        • Vaquero-Lorenzo C.
        • Baca-Garcia E.
        New perspectives in glutamate and anxiety.
        Pharmacol Biochem Behav. 2012; 100: 752-774
        • Abdallah C.G.
        • Roache J.D.
        • Averill L.A.
        • Young-McCaughan S.
        • Martini B.
        • Gueorguieva R.
        • et al.
        Repeated ketamine infusions for antidepressant-resistant PTSD: Methods of a multicenter, randomized, placebo-controlled clinical trial.
        Contemp Clin Trials. 2019; 81: 11-18
        • Feder A.
        • Parides M.K.
        • Murrough J.W.
        • Perez A.M.
        • Morgan J.E.
        • Saxena S.
        • et al.
        Efficacy of intravenous ketamine for treatment of chronic posttraumatic stress disorder: A randomized clinical trial.
        JAMA Psychiatry. 2014; 71: 681-688
        • Krystal J.H.
        • Abdallah C.G.
        • Averill L.A.
        • Kelmendi B.
        • Harpaz-Rotem I.
        • Sanacora G.
        • et al.
        Synaptic loss and the pathophysiology of PTSD: Implications for ketamine as a prototype novel therapeutic.
        Curr Psychiatry Rep. 2017; 19: 74
        • Abdallah C.G.
        • Averill L.A.
        • Collins K.A.
        • Geha P.
        • Schwartz J.
        • Averill C.
        • et al.
        Ketamine treatment and global brain connectivity in major depression.
        Neuropsychopharmacology. 2017; 42: 1210-1219
        • Abdallah C.G.
        • Dutta A.
        • Averill C.L.
        • McKie S.
        • Akiki T.J.
        • Averill L.A.
        • et al.
        Ketamine, but not the NMDAR antagonist lanicemine, increases prefrontal global connectivity in depressed patients.
        Chronic Stress. 2018; 2 (2470547018796102)
        • Clausen A.N.
        • Francisco A.J.
        • Thelen J.
        • Bruce J.
        • Martin L.E.
        • McDowd J.
        • et al.
        PTSD and cognitive symptoms relate to inhibition-related prefrontal activation and functional connectivity.
        Depress Anxiety. 2017; 34: 427-436
        • Stevens J.S.
        • Jovanovic T.
        • Fani N.
        • Ely T.D.
        • Glover E.M.
        • Bradley B.
        • et al.
        Disrupted amygdala-prefrontal functional connectivity in civilian women with posttraumatic stress disorder.
        J Psychiatr Res. 2013; 47: 1469-1478
        • Young K.A.
        • Thompson P.M.
        • Cruz D.A.
        • Williamson D.E.
        • Selemon L.D.
        BA11 FKBP5 expression levels correlate with dendritic spine density in postmortem PTSD and controls.
        Neurobiol Stress. 2015; 2: 67-72
        • Duman R.S.
        Neurobiology of stress, depression, and rapid acting antidepressants: Remodeling synaptic connections.
        Depress Anxiety. 2014; 31: 291-296
        • Castrén E.
        • Antila H.
        Neuronal plasticity and neurotrophic factors in drug responses.
        Mol Psychiatry. 2017; 22: 1085-1095
        • Ly C.
        • Greb A.C.
        • Cameron L.P.
        • Wong J.M.
        • Barragan E.V.
        • Wilson P.C.
        • et al.
        Psychedelics promote structural and functional neural plasticity.
        Cell Rep. 2018; 23: 3170-3182
        • Carhart-Harris R.L.
        • Goodwin G.M.
        The therapeutic potential of psychedelic drugs: Past, present, and future.
        Neuropsychopharmacology. 2017; 42: 2105-2113
        • Branchi I.
        The double edged sword of neural plasticity: Increasing serotonin levels leads to both greater vulnerability to depression and improved capacity to recover.
        Psychoneuroendocrinology. 2011; 36: 339-351
        • Nabel E.M.
        • Morishita H.
        Regulating critical period plasticity: Insight from the visual system to fear circuitry for therapeutic interventions.
        Front Psychiatry. 2013; 4: 146
        • Sessa B.
        The ecstatic history of MDMA: From raving highs to saving lives.
        in: Breaking Convention Book of Proceedings from the 2013 Conference. Strange Attractor Press, London2015: 87-94
        • Hysek C.M.
        • Schmid Y.
        • Simmler L.D.
        • Domes G.
        • Heinrichs M.
        • Eisenegger C.
        • et al.
        MDMA enhances emotional empathy and prosocial behavior.
        Soc Cogn Affect Neurosci. 2013; 9: 1645-1652
        • Wagner M.T.
        • Mithoefer M.C.
        • Mithoefer A.T.
        • MacAulay R.K.
        • Jerome L.
        • Yazar-Klosinski B.
        • et al.
        Therapeutic effect of increased openness: Investigating mechanism of action in MDMA-assisted psychotherapy.
        J Psychopharmacol. 2017; 31: 967-974
        • Grinspoon L.
        • Bakalar J.B.
        Can drugs be used to enhance the psychotherapeutic process?.
        Am J Psychother. 1986; 40: 393-404
        • Stolaroff M.J.
        The Secret Chief Revealed.
        Multidisciplinary Association for Psychedelic Studies, Sarasota, FL2004
        • Liechti M.E.
        • Vollenweider F.X.
        Which neuroreceptors mediate the subjective effects of MDMA in humans? A summary of mechanistic studies.
        Hum Psychopharmacol. 2001; 16: 589-598
        • Bershad A.K.
        • Weafer J.J.
        • Kirkpatrick M.G.
        • Wardle M.C.
        • Miller M.A.
        • de Wit H.
        Oxytocin receptor gene variation predicts subjective responses to MDMA.
        Soc Neurosci. 2016; 11: 592-599
        • Sessa B.
        • Nutt D.J.
        MDMA, politics and medical research: Have we thrown the baby out with the bathwater?.
        J Psychopharmacol. 2007; 21: 787-791
        • Heifets B.D.
        • Malenka R.C.
        MDMA as a probe and treatment for social behaviors.
        Cell. 2016; 166: 269-272
        • Mithoefer M.C.
        • Wagner M.T.
        • Mithoefer A.T.
        • Jerome L.
        • Doblin R.
        The safety and efficacy of ±3, 4-methylenedioxymethamphetamine-assisted psychotherapy in subjects with chronic, treatment-resistant posttraumatic stress disorder: The first randomized controlled pilot study.
        J Psychopharmacol. 2011; 25: 439-452
        • Mithoefer M.C.
        • Wagner M.T.
        • Mithoefer A.T.
        • Jerome L.
        • Martin S.F.
        • Yazar-Klosinski B.
        • et al.
        Durability of improvement in post-traumatic stress disorder symptoms and absence of harmful effects or drug dependency after 3, 4-methylenedioxymethamphetamine-assisted psychotherapy: A prospective long-term follow-up study.
        J Psychopharmacol. 2013; 27: 28-39
        • Mithoefer M.C.
        • Feduccia A.A.
        • Jerome L.
        • Mithoefer A.
        • Wagner M.
        • Walsh Z.
        • et al.
        MDMA-assisted psychotherapy for treatment of PTSD: Study design and rationale for phase 3 trials based on pooled analysis of six phase 2 randomized controlled trials [published online ahead of print May 7].
        Psychopharmacology. 2019;
        • Parrott A.C.
        MDMA is certainly damaging after 25 years of empirical research: A reply and refutation of Doblin et al.(2014).
        Hum Psychopharmacol. 2014; 29: 109-119
        • Murphy P.N.
        • Bruno R.
        • Ryland I.
        • Wareing M.
        • Fisk J.E.
        • Montgomery C.
        • et al.
        The effects of ‘ecstasy’ (MDMA) on visuospatial memory performance: Findings from a systematic review with meta-analyses.
        Hum Psychopharmacol. 2012; 27: 113-138
        • Doblin R.
        • Greer G.
        • Holland J.
        • Jerome L.
        • Mithoefer M.C.
        • Sessa B.
        A reconsideration and response to Parrott AC (2013): Human psychobiology of MDMA or ‘Ecstasy’: An overview of 25 years of empirical research.
        Hum Psychopharmacol. 2014; 29: 105-108
        • Ricaurte G.A.
        • Yuan J.
        • Hatzidimitriou G.
        • Cord B.J.
        • McCann U.D.
        Retraction. Science. 2003; 301: 1479
        • Multidisciplinary Association for Psychedelic Studies
        MDMA Investigational Brochure.
        MAPS, Santa Cruz, CA2017
        • Nardou R.
        • Lewis E.M.
        • Rothhaas R.
        • Xu R.
        • Yang A.
        • Boyden E.
        • et al.
        Oxytocin-dependent reopening of a social reward learning critical period with MDMA.
        Nature. 2019; 569: 116-120
        • Feduccia A.A.
        • Mithoefer M.C.
        MDMA-assisted psychotherapy for PTSD: Are memory reconsolidation and fear extinction underlying mechanisms?.
        Prog Neuropsychopharmacol Biol Psychiatry. 2018; 84: 221-228
        • Mithoefer M.C.
        • Grob C.S.
        • Brewerton T.D.
        Novel psychopharmacological therapies for psychiatric disorders: Psilocybin and MDMA.
        Lancet Psychiatry. 2016; 3: 481-488
        • Murrough J.W.
        • Charney D.S.
        Corticotropin-releasing factor type 1 receptor antagonists for stress-related disorders: Time to call it quits?.
        Biol Psychiatry. 2017; 82: 858-860
        • Somvanshi P.R.
        • Mellon S.H.
        • Flory J.D.
        • Abu-Amara D.
        • Consortium P.S.B.
        • Wolkowitz O.M.
        • et al.
        Mechanistic inferences on metabolic dysfunction in PTSD from an integrated model and multi-omic analysis: Role of glucocorticoid receptor sensitivity.
        Am J Physiol Endocrinol Metab. 2019; ([published online ahead of print Jul 19])
        • Ratanatharathorn A.
        • Boks M.P.
        • Maihofer A.X.
        • Aiello A.E.
        • Amstadter A.B.
        • Ashley-Koch A.E.
        • et al.
        Epigenome-wide association of Ptsd from heterogeneous cohorts with a common multi-site analysis pipeline.
        Am J Med Genet B Neuropsychiatr Genet. 2017; 174: 619-630
        • Rauch S.A.
        • Simon N.M.
        • Kim H.M.
        • Acierno R.
        • King A.P.
        • Norman S.B.
        • et al.
        Integrating biological treatment mechanisms into randomized clinical trials: Design of PROGrESS (PROlonGed ExpoSure and Sertraline Trial).
        Contemp Clin Trials. 2018; 64: 128-138
        • Mushtaq D.
        • Ali A.
        • Margoob M.A.
        • Murtaza I.
        • Andrade C.
        Association between serotonin transporter gene promoter-region polymorphism and 4-and 12-week treatment response to sertraline in posttraumatic stress disorder.
        J Affect Disord. 2012; 136: 955-962
        • Guo W.
        • Machado-Vieira R.
        • Mathew S.
        • Murrough J.W.
        • Charney D.S.
        • Gruenbaum M.
        • et al.
        Exploratory genome-wide association analysis of response to ketamine and a polygenic analysis of response to scopolamine in depression.
        Transl Psychiatry. 2018; 8: 280
        • Galatzer-Levy I.R.
        • Bryant R.A.
        636,120 Ways to have posttraumatic stress disorder.
        Perspect Psychol Sci. 2013; 8: 651-662
        • McFarlane A.C.
        • Lawrence-Wood E.
        • Van Hooff M.
        • Malhi G.S.
        • Yehuda R.
        The need to take a staging approach to the biological mechanisms of PTSD and its treatment.
        Curr Psychiatry Rep. 2017; 19: 10
        • MacNamara A.
        • Rabinak C.A.
        • Kennedy A.E.
        • Fitzgerald D.A.
        • Liberzon I.
        • Stein M.B.
        • et al.
        Emotion regulatory brain function and SSRI treatment in PTSD: Neural correlates and predictors of change.
        Neuropsychopharmacology. 2016; 41: 611-618
        • Stahl S.M.
        Stahl's Essential Psychopharmacology: Neuroscientific Basis and Practical Applications.
        Cambridge University Press, New York2013
      2. Tonix Pharmaceuticals Holding Corp. Tonmya for PTSD. Available at: https://www.tonixpharma.com/pipeline/tonmya-for-ptsd. Accessed December 23, 2018.

        • Davidson J.R.
        • Weisler R.H.
        • Butterfield M.I.
        • Casat C.D.
        • Connor K.M.
        • Barnett S.
        • et al.
        Mirtazapine vs. placebo in posttraumatic stress disorder: A pilot trial.
        Biol Psychiatry. 2003; 53: 188-191
        • Alderman C.P.
        • Condon J.T.
        • Gilbert A.L.
        An open-label study of mirtazapine as treatment for combat-related PTSD.
        Ann Pharmacother. 2009; 43: 1220-1226
        • Averill L.A.
        • Purohit P.
        • Averill C.L.
        • Boesl M.A.
        • Krystal J.H.
        • Abdallah C.G.
        Glutamate dysregulation and glutamatergic therapeutics for PTSD: Evidence from human studies.
        Neurosci Lett. 2017; 649: 147-155
        • Hidalgo R.
        • Hertzberg M.
        • Mellman T.
        • Petty F.
        • Tucker P.
        • Weisler R.
        • et al.
        Nefazodone in post-traumatic stress disorder: Results from six open-label trials.
        Int Clin Psychopharmacol. 1999; 14: 61-68
        • Difede J.
        • Cukor J.
        • Wyka K.
        • Olden M.
        • Hoffman H.
        • Lee F.S.
        • et al.
        D-cycloserine augmentation of exposure therapy for post-traumatic stress disorder: A pilot randomized clinical trial.
        Neuropsychopharmacology. 2014; 39: 1052-1058
        • de Kleine R.A.
        • Hendriks G.-J.
        • Kusters W.J.
        • Broekman T.G.
        • van Minnen A.
        A randomized placebo-controlled trial of D-cycloserine to enhance exposure therapy for posttraumatic stress disorder.
        Biol Psychiatry. 2012; 71: 962-968
        • Rothbaum B.O.
        • Price M.
        • Jovanovic T.
        • Norrholm S.D.
        • Gerardi M.
        • Dunlop B.
        • et al.
        A randomized, double-blind evaluation of D-cycloserine or alprazolam combined with virtual reality exposure therapy for posttraumatic stress disorder in Iraq and Afghanistan War veterans.
        Am J Psychiatry. 2014; 171: 640-648
        • Nagele P.
        • Duma A.
        • Kopec M.
        • Gebara M.A.
        • Parsoei A.
        • Walker M.
        • et al.
        Nitrous oxide for treatment-resistant major depression: A proof-of-concept trial.
        Biol Psychiatry. 2015; 78: 10-18
        • Grant P.
        • Song J.Y.
        • Swedo S.E.
        Review of the use of the glutamate antagonist riluzole in psychiatric disorders and a description of recent use in childhood obsessive-compulsive disorder.
        J Chil Adolesc Psychopharmacol. 2010; 20: 309-315
        • Locci A.
        • Pinna G.
        Neurosteroid biosynthesis down-regulation and changes in GABAA receptor subunit composition: A biomarker axis in stress-induced cognitive and emotional impairment.
        Br J Pharmacol. 2017; 174: 3226-3241
        • Davidson J.R.
        • Brady K.
        • Mellman T.A.
        • Stein M.B.
        • Pollack M.H.
        The efficacy and tolerability of tiagabine in adult patients with post-traumatic stress disorder.
        J Clin Psychopharmacol. 2007; 27: 85-88
        • Connor K.M.
        • Davidson J.R.
        • Weisler R.H.
        • Zhang W.
        • Abraham K.
        Tiagabine for posttraumatic stress disorder: Effects of open-label and double-blind discontinuation treatment.
        Psychopharmacology. 2006; 184: 21-25
        • Rasmusson A.M.
        • Marx C.E.
        • Jain S.
        • Farfel G.M.
        • Tsai J.
        • Sun X.
        • et al.
        A randomized controlled trial of ganaxolone in posttraumatic stress disorder.
        Psychopharmacology. 2017; 234: 2245-2257
        • Yehuda R.
        • Brand S.
        • Golier J.
        • Yang R.K.
        Clinical correlates of DHEA associated with post-traumatic stress disorder.
        Acta Psychiatr Scand. 2006; 114: 187-193
        • Boothby L.A.
        • Doering P.L.
        Acamprosate for the treatment of alcohol dependence.
        Clin Ther. 2005; 27: 695-714
        • Witkiewitz K.
        • Saville K.
        • Hamreus K.
        Acamprosate for treatment of alcohol dependence: Mechanisms, efficacy, and clinical utility.
        Ther Clin Risk Manage. 2012; 8: 45-53
        • Horrigan J.P.
        Guanfacine for PTSD nightmares.
        J Am Acad Child Adolesc Psychiatry. 1996; 35: 975-976
        • Harmon R.J.
        • Riggs P.D.
        Clonidine for posttraumatic stress disorder in preschool children.
        J Am Acad Child Adolesc Psychiatry. 1996; 35: 1247-1249
        • Connor D.F.
        • Grasso D.J.
        • Slivinsky M.D.
        • Pearson G.S.
        • Banga A.
        An open-label study of guanfacine extended release for traumatic stress related symptoms in children and adolescents.
        J Chil Adolesc Psychopharmacol. 2013; 23: 244-251
        • Graham D.P.
        • Nielsen D.A.
        • Kosten T.R.
        • Davis L.L.
        • Hamner M.B.
        • Makotkine I.
        • et al.
        Examining the utility of using genotype and functional biology in a clinical pharmacology trial: Pilot testing dopamine β-hydroxylase, norepinephrine, and PTSD.
        Psychiatr Genet. 2014; 24: 181-182
        • Golier J.A.
        • Caramanica K.
        • DeMaria R.
        • Yehuda R.
        A pilot study of mifepristone in combat-related PTSD.
        Depress Res Treat 2012. 2012; : 393251
        • Golier J.A.
        • Caramanica K.
        • Michaelides A.C.
        • Makotkine I.
        • Schmeidler J.
        • Harvey P.D.
        • et al.
        A randomized, double-blind, placebo-controlled, crossover trial of mifepristone in Gulf War veterans with chronic multisymptom illness.
        Psychoneuroendocrinology. 2016; 64: 22-30
        • Bitencourt R.M.
        • Takahashi R.N.
        Cannabidiol as a Therapeutic alternative for post-traumatic stress disorder: From bench research to confirmation in human trials.
        Front Neurosci. 2018; 12: 502
        • Pietrzak R.H.
        • Naganawa M.
        • Huang Y.
        • Corsi-Travali S.
        • Zheng M.-Q.
        • Stein M.B.
        • et al.
        Association of in vivo κ-opioid receptor availability and the transdiagnostic dimensional expression of trauma-related psychopathology.
        JAMA Psychiatry. 2014; 71: 1262-1270
        • Lake E.P.
        • Mitchell B.G.
        • Shorter D.I.
        • Kosten T.
        • Domingo C.B.
        • Walder A.M.
        Buprenorphine for the treatment of posttraumatic stress disorder.
        Am J Addict. 2019; 28: 86-91
        • Zoellner L.A.
        • Telch M.
        • Foa E.B.
        • Farach F.J.
        • McLean C.P.
        • Gallop R.
        • et al.
        Enhancing extinction learning in posttraumatic stress disorder with brief daily imaginal exposure and methylene blue: A randomized controlled trial.
        J Clin Psychiatry. 2017; 78: e782-e789
        • Lee R.J.
        • Coccaro E.F.
        • Cremers H.
        • McCarron R.
        • Lu S.-F.
        • Brownstein M.
        • et al.
        A novel V1a receptor antagonist blocks vasopressin-induced changes in the CNS response to emotional stimuli: An fMRI study.
        Front Syst Neurosci. 2013; 7: 100
        • Donadon M.F.
        • Martin-Santos R.
        • Osório FdL.
        The associations between oxytocin and trauma in humans: A systematic review.
        Front Pharmacol. 2018; 9: 154
        • Mathew S.J.
        • Vythilingam M.
        • Murrough J.W.
        • Zarate Jr., C.A.
        • Feder A.
        • Luckenbaugh D.A.
        • et al.
        A selective neurokinin-1 receptor antagonist in chronic PTSD: A randomized, double-blind, placebo-controlled, proof-of-concept trial.
        Eur Neuropsychopharmacol. 2011; 21: 221-229
        • Garakani A.
        • Murrough J.W.
        • Iosifescu D.V.
        Advances in psychopharmacology for anxiety disorders.
        Focus. 2014; 12: 152-162
        • Surís A.
        • Smith J.
        • Powell C.
        • North C.S.
        Interfering with the reconsolidation of traumatic memory: Sirolimus as a novel agent for treating veterans with posttraumatic stress disorder.
        Ann Clin Psychiatry. 2013; 25: 33-40

      CHORUS Manuscript

      View Open Manuscript