Advertisement

Multidimensional Predictors of Susceptibility and Resilience to Social Defeat Stress

      Abstract

      Background

      Previous studies identified several separate risk factors for stress-induced disorders. However, an integrative model of susceptibility versus resilience to stress including measures from brain-body domains is likely to yield a range of multiple phenotypic information to promote successful adaptation to stress.

      Methods

      We used computational and molecular approaches to test whether 1) integrative brain-body behavioral, immunological, and structural domains characterized and predicted susceptibility or resilience to social defeat stress (SDS) in mice and 2) administration of acetyl-L-carnitine promoted resilience at the SDS paradigm.

      Results

      Our findings identified multidimensional brain-body predictors of susceptibility versus resilience to SDS. The copresence of anxiety, decreased hippocampal volume, and elevated systemic interleukin-6 characterized a susceptible phenotype that developed behavioral and neurobiological deficits after exposure to SDS. The susceptible phenotype showed social withdrawal and impaired transcriptomic-wide changes in the ventral dentate gyrus after SDS. At the individual level, a computational approach predicted whether a given animal developed SDS-induced social withdrawal, or remained resilient, based on the integrative in vivo measures of anxiety and immune system function. Finally, we provide initial evidence that administration of acetyl-L-carnitine promoted behavioral resilience at the SDS paradigm.

      Conclusions

      The current findings of multidimensional brain-body predictors of susceptibility versus resilience to stress provide a starting point for in vivo models of mechanisms predisposing apparently healthy individuals to develop the neurobiological and behavioral deficits resulting from stress exposure. This framework can lead to novel therapeutic strategies to promote resilience in susceptible phenotypes.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • McEwen B.S.
        • Bowles N.P.
        • Gray J.D.
        • Hill M.N.
        • Hunter R.G.
        • Karatsoreos I.N.
        • et al.
        Mechanisms of stress in the brain.
        Nat Neurosci. 2015; 18: 1353-1363
        • Pfau M.L.
        • Russo S.J.
        Peripheral and central mechanisms of stress resilience.
        Neurobiol Stress. 2015; 1: 66-79
        • Russo S.J.
        • Murrough J.W.
        • Han M.H.
        • Charney D.S.
        • Nestler E.J.
        Neurobiology of resilience.
        Nat Neurosci. 2012; 15: 1475-1484
        • Nestler E.J.
        Epigenetic mechanisms of depression.
        JAMA Psychiatry. 2014; 71: 454-456
        • McEwen B.S.
        • Gray J.
        • Nasca C.
        Recognizing resilience: Learning from the effects of stress on the brain.
        Neurobiol Stress. 2015; 1: 1-11
        • Krishnan V.
        • Han M.H.
        • Graham D.L.
        • Berton O.
        • Renthal W.
        • Russo S.J.
        • et al.
        Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions.
        Cell. 2007; 131: 391-404
        • Hodes G.E.
        • Pfau M.L.
        • Leboeuf M.
        • Golden S.A.
        • Christoffel D.J.
        • Bregman D.
        • et al.
        Individual differences in the peripheral immune system promote resilience versus susceptibility to social stress.
        Proc Natl Acad Sci U S A. 2014; 111: 16136-16141
        • Nasca C.
        • Bigio B.
        • Zelli D.
        • Nicoletti F.
        • McEwen B.S.
        Mind the gap: Glucocorticoids modulate hippocampal glutamate tone underlying individual differences in stress susceptibility.
        Mol Psychiatry. 2015; 20: 755-763
        • Miller M.M.
        • Morrison J.H.
        • McEwen B.S.
        Basal anxiety-like behavior predicts differences in dendritic morphology in the medial prefrontal cortex in two strains of rats.
        Behav Brain Res. 2012; 229: 280-288
        • Nasca C.
        • Bigio B.
        • Zelli D.
        • de Angelis P.
        • Lau T.
        • Okamoto M.
        • et al.
        Role of the astroglial glutamate exchanger xCT in ventral hippocampus in resilience to stress.
        Neuron. 2017; 96: 402-413.e5
        • Russo S.J.
        • Nestler E.J.
        The brain reward circuitry in mood disorders.
        Nat Rev Neurosci. 2013; 14: 609-625
        • Larrieu T.
        • Cherix A.
        • Duque A.
        • Rodrigues J.
        • Lei H.
        • Gruetter R.
        • et al.
        Hierarchical status predicts behavioral vulnerability and nucleus accumbens metabolic profile following chronic social defeat stress.
        Curr Biol. 2017; 27: 2202-2210.e4
        • Hodes G.E.
        • Menard C.
        • Russo S.J.
        Integrating interleukin-6 into depression diagnosis and treatment.
        Neurobiol Stress. 2016; 4: 15-22
        • Sandi C.
        • Loscertales M.
        • Guaza C.
        Experience-dependent facilitating effect of corticosterone on spatial memory formation in the water maze.
        Eur J Neurosci. 1997; 9: 637-642
        • Sandi C.
        • Cordero M.I.
        • Ugolini A.
        • Varea E.
        • Caberlotto L.
        • Large C.H.
        Chronic stress-induced alterations in amygdala responsiveness and behavior--modulation by trait anxiety and corticotropin-releasing factor systems.
        Eur J Neurosci. 2008; 28: 1836-1848
        • Nemeroff C.B.
        Paradise Lost: The neurobiological and clinical consequences of child abuse and neglect.
        Neuron. 2016; 89: 892-909
        • Watson K.
        • Nasca C.
        • Aasly L.
        • McEwen B.
        • Rasgon N.
        Insulin resistance, an unmasked culprit in depressive disorders: Promises for interventions.
        Neuropharmacology. 2017; 136: 327-334
        • Bagot R.C.
        • Cates H.M.
        • Purushothaman I.
        • Vialou V.
        • Heller E.A.
        • Yieh L.
        • et al.
        Ketamine and imipramine reverse transcriptional signatures of susceptibility and induce resilience-specific gene expression profiles.
        Biol Psychiatry. 2017; 81: 285-295
        • Mastrodonato A.
        • Martinez R.
        • Pavlova I.P.
        • LaGamma C.T.
        • Brachman R.A.
        • Robison A.J.
        • et al.
        Ventral CA3 activation mediates prophylactic ketamine efficacy against stress-induced depressive-like behavior.
        Biol Psychiatry. 2018; 84: 846-856
        • Nasca C.
        • Xenos D.
        • Barone Y.
        • Caruso A.
        • Scaccianoce S.
        • Matrisciano F.
        • et al.
        L-acetylcarnitine causes rapid antidepressant effects through the epigenetic induction of mGlu2 receptors.
        Proc Natl Acad Sci U S A. 2013; 110: 4804-4809
        • Lau T.
        • Bigio B.
        • Zelli D.
        • McEwen B.S.
        • Nasca C.
        Stress-induced structural plasticity of medial amygdala stellate neurons and rapid prevention by a candidate antidepressant.
        Mol Psychiatry. 2017; 22: 227-234
        • Bigio B.
        • Mathe A.A.
        • Sousa V.C.
        • Zelli D.
        • Svenningsson P.
        • McEwen B.S.
        • et al.
        Epigenetics and energetics in ventral hippocampus mediate rapid antidepressant action: Implications for treatment resistance.
        Proc Natl Acad Sci U S A. 2016; 113: 7906-7911
        • Russo S.J.
        • Charney D.S.
        Next generation antidepressants.
        Proc Natl Acad Sci U S A. 2013; 110: 4441-4442
        • Flight M.H.
        Antidepressant epigenetic action.
        Nat Rev Neurosci. 2013; 14: 226-227
        • Wang W.
        • Lu Y.
        • Xue Z.
        • Li C.
        • Wang C.
        • Zhao X.
        • et al.
        Rapid-acting antidepressant-like effects of acetyl-l-carnitine mediated by PI3K/AKT/BDNF/VGF signaling pathway in mice.
        Neuroscience. 2015; 285: 281-291
        • Cuccurazzu B.
        • Bortolotto V.
        • Valente M.M.
        • Ubezio F.
        • Koverech A.
        • Canonico P.L.
        • et al.
        Upregulation of mGlu2 receptors via NF-kappaB p65 acetylation is involved in the Proneurogenic and antidepressant effects of acetyl-L-carnitine.
        Neuropsychopharmacology. 2013; 38: 2220-2230
        • Pettegrew J.W.
        • Levine J.
        • McClure R.J.
        Acetyl-L-carnitine physical-chemical, metabolic, and therapeutic properties: Relevance for its mode of action in Alzheimer's disease and geriatric depression.
        Mol Psychiatry. 2000; 5: 616-632
        • Hodes G.E.
        • Pfau M.L.
        • Purushothaman I.
        • Ahn H.F.
        • Golden S.A.
        • Christoffel D.J.
        • et al.
        Sex differences in nucleus accumbens transcriptome profiles associated with susceptibility versus resilience to subchronic variable stress.
        J Neurosci. 2015; 35: 16362-16376
        • Golden S.A.
        • Covington 3rd, H.E.
        • Berton O.
        • Russo S.J.
        A standardized protocol for repeated social defeat stress in mice.
        Nat Protoc. 2011; 6: 1183-1191
        • Chakravarty M.M.
        • Steadman P.
        • van Eede M.C.
        • Calcott R.D.
        • Gu V.
        • Shaw P.
        • et al.
        Performing label-fusion-based segmentation using multiple automatically generated templates.
        Hum Brain Mapp. 2013; 34: 2635-2654
        • Pena C.J.
        • Kronman H.G.
        • Walker D.M.
        • Cates H.M.
        • Bagot R.C.
        • Purushothaman I.
        • et al.
        Early life stress confers lifelong stress susceptibility in mice via ventral tegmental area OTX2.
        Science. 2017; 356: 1185-1188
        • Thomas P.D.
        • Campbell M.J.
        • Kejariwal A.
        • Mi H.
        • Karlak B.
        • Daverman R.
        • et al.
        PANTHER: A library of protein families and subfamilies indexed by function.
        Genome Res. 2003; 13: 2129-2141
        • Fabregat A.
        • Jupe S.
        • Matthews L.
        • Sidiropoulos K.
        • Gillespie M.
        • Garapati P.
        • et al.
        The Reactome Pathway Knowledgebase.
        Nucleic Acids Res. 2018; 46: D649-D655
        • Nasca C.
        • Zelli D.
        • Bigio B.
        • Piccinin S.
        • Scaccianoce S.
        • Nistico R.
        • et al.
        Stress dynamically regulates behavior and glutamatergic gene expression in hippocampus by opening a window of epigenetic plasticity.
        Proc Natl Acad Sci U S A. 2015; 112: 14960-14965
        • McEwen B.S.
        Stress and hippocampal plasticity.
        Annu Rev Neurosci. 1999; 22: 105-122
        • McEwen B.S.
        • Gray J.D.
        • Nasca C.
        60 years of neuroendocrinology: Redefining neuroendocrinology: Stress, sex and cognitive and emotional regulation.
        J Endocrinol. 2015; 226: T67-T83
        • Musicco C.
        • Capelli V.
        • Pesce V.
        • Timperio A.M.
        • Calvani M.
        • Mosconi L.
        • et al.
        Rat liver mitochondrial proteome: Changes associated with aging and acetyl-L-carnitine treatment.
        J Proteomics. 2011; 74: 2536-2547
        • Rasgon N.L.
        • McEwen B.S.
        Insulin resistance-a missing link no more.
        Mol Psychiatry. 2016; 21: 1648-1652
        • Freund J.
        • Brandmaier A.M.
        • Lewejohann L.
        • Kirste I.
        • Kritzler M.
        • Kruger A.
        • et al.
        Emergence of individuality in genetically identical mice.
        Science. 2013; 340: 756-759
        • Fraga M.F.
        • Ballestar E.
        • Paz M.F.
        • Ropero S.
        • Setien F.
        • Ballestar M.L.
        • et al.
        Epigenetic differences arise during the lifetime of monozygotic twins.
        Proc Natl Acad Sci U S A. 2005; 102: 10604-10609
        • Weaver I.C.G.
        • Cervoni N.
        • Champagne F.A.
        • D'Alessio A.C.
        • Sharma S.
        • Seckl J.R.
        • et al.
        Epigenetic programming by maternal behavior.
        Nat Neurosci. 2004; 7: 847-854
      1. Nasca C, Biglio B, Lee SF, Young PS, Kautz M, Cochran A, et al. (2017): Acetyl-L-carnitine deficiency in patients with major depressive disorder: Potential influence of childhood trauma [abstract]. Presented at the ACNP 56th Annual Meeting, ACNP Mini-Panel, December 4–7, Palm Springs, California.

        • Nasca C.
        • Watson-Lin K.
        • Bigio B.
        • Robakis T.K.
        • Myoraku A.
        • Wroolie T.E.
        • et al.
        Childhood trauma and insulin resistance in patients suffering from depressive disorders.
        Exp Neurol. 2019; 315: 15-20
        • Teicher M.H.
        • Anderson C.M.
        • Polcari A.
        Childhood maltreatment is associated with reduced volume in the hippocampal subfields CA3, dentate gyrus, and subiculum.
        Proc Natl Acad Sci U S A. 2012; 109: E563-E572
        • Post R.M.
        Myriad of implications of acetyl-l-carnitine deficits in depression.
        Proc Natl Acad Sci U S A. 2018; 115: 8475-8477