Advertisement

Early Adversity and the Neotenous Human Brain

  • Nim Tottenham
    Correspondence
    Address correspondence to Nim Tottenham, Ph.D., Columbia University, Department of Psychology, 1190 Amsterdam Avenue, MC 5501, New York, NY 10027.
    Affiliations
    Department of Psychology, Columbia University, New York, New York
    Search for articles by this author

      Abstract

      Human brain development is optimized to learn from environmental cues. The protracted development of the cortex and its connections with subcortical targets has been argued to permit more opportunity for acquiring complex behaviors. This review uses the example of amygdala-medial prefrontal cortex circuitry development to illustrate a principle of human development—namely, that the extension of the brain’s developmental timeline allows for the (species-expected) collaboration between child and parent in co-construction of the human brain. The neurobiology underlying affective learning capitalizes on this protracted timeline to develop a rich affective repertoire in adulthood. Humans are afforded this luxuriously slow development in part by the extended period of caregiving provided by parents, and parents aid in scaffolding the process of maturation during childhood. Just as adequate caregiving is a potent effector of brain development, so is adverse caregiving, which is the largest environmental risk factor for adult mental illness. There are large individual differences in neurobiological outcomes following caregiving adversity, indicating that these pathways are probabilistic, rather than deterministic, and prolonged plasticity in human brain development may also allow for subsequent amelioration by positive experiences. The extant research indicates that the development of mental health cannot be considered without consideration of children in the context of their families.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kernberg O.F.
        Early ego integration and object relations.
        Ann N Y Acad Sci. 1972; 193: 233-247
        • Hofer M.A.
        Early relationships as regulators of infant physiology and behavior.
        Acta Pediatr. 1994; 83: 9-18
        • Gewirtz J.L.
        • Baer D.M.
        • Roth C.H.
        A note on the similar effects of low social availability of an adult and brief social deprivation on young children's behavior.
        Child Dev. 1958; 29: 149-152
        • Bowlby J.
        Attachment and loss: Retrospect and prospect.
        Am J Orthopsychiatry. 1982; 52: 664-678
        • Bowen M.
        The use of family theory in clinical practice.
        Compr Psychiatry. 1966; 75: 345-374
        • Baumrind D.
        Effects of authoritative parental control on child behavior.
        Child Dev. 1966; 37: 887-907
        • McLaughlin K.A.
        • Sheridan MA
        • Lambert H.K.
        Childhood adversity and neural development: Deprivation and threat as distinct dimensions of early experience.
        Neurosci Biobehav Rev. 2014; 47: 578-591
        • Teicher M.H.
        • Samson J.A.
        • Anderson C.M.
        • Ohashi K.
        The effects of childhood maltreatment on brain structure, function and connectivity.
        Nat Rev Neurosci. 2016; 17: 652-666
        • Tottenham N.
        • Sheridan MA
        A review of adversity, the amygdala and the hippocampus: A consideration of developmental timing.
        Front Hum Neurosci. 2010; 3: 68
        • Bufill E.
        • Agusti J.
        • Blesa R.
        Human neoteny revisited: The case of synaptic plasticity.
        Am J Hum Biol. 2011; 23: 729-739
        • Petanjek Z.
        • Judas M.
        • Simic G.
        • Rasin M.R.
        • Uylings H.B.
        • Rakic P.
        • et al.
        Extraordinary neoteny of synaptic spines in the human prefrontal cortex.
        Proc Natl Acad Sci U S A. 2011; 108: 13281-13286
        • Somel M.
        • Franz H.
        • Yan Z.
        • Lorenc A.
        • Guo S.
        • Giger T.
        • et al.
        Transcriptional neoteny in the human brain.
        Proc Natl Acad Sci U S A. 2009; 106: 5743-5748
        • Bjorklund D.F.
        The role of immaturity in human development.
        Psychol Bull. 1997; 122: 153-169
        • Werker J.F.
        • Hensch T.K.
        Critical periods in speech perception: New directions.
        Annu Rev Psychol. 2015; 66: 173-196
        • Nelson 3rd, C.A.
        • Zeanah C.H.
        • Fox N.A.
        How early experience shapes human development: The case of psychosocial deprivation.
        Neural Plast 2019. 2019; (1676285)
        • Masten A.S.
        • Cicchetti D.
        Developmental cascades.
        Dev Psychopathol. 2010; 22: 491-495
        • Tottenham N.
        • Gabard-Durnam L.J.
        The developing amygdala: A student of the world and a teacher of the cortex.
        Curr Opin Psychol. 2017; 17: 55-60
        • Bertolino A.
        • Saunders R.C.
        • Mattay V.S.
        • Bachevalier J.
        • Frank J.A.
        • Weinberger D.R.
        Altered development of prefrontal neurons in rhesus monkeys with neonatal mesial temporo-limbic lesions: A proton magnetic resonance spectroscopic imaging study.
        Cereb Cortex. 1997; 7: 740-748
        • Quirk G.J.
        • Beer J.S.
        Prefrontal involvement in the regulation of emotion: Convergence of rat and human studies.
        Curr Opin Neurobiol. 2006; 16: 723-727
        • Alexander W.H.
        • Brown J.W.
        Medial prefrontal cortex as an action-outcome predictor.
        Nat Neurosci. 2011; 14: 1338-1344
        • Joiner J.
        • Piva M.
        • Turrin C.
        • Chang S.W.C.
        Social learning through prediction error in the brain.
        NPJ Sci Learn. 2017; 2: 8
        • Hare T.A.
        • Tottenham N.
        • Galvan A.
        • Voss HU
        • Glover G.H.
        • Casey B.J.
        Biological substrates of emotional reactivity and regulation in adolescence during an emotional go-nogo task.
        Biol Psychiatry. 2008; 63: 927-934
        • Spinelli S.
        • Chefer S.
        • Suomi S.J.
        • Higley J.D.
        • Barr C.S.
        • Stein E.
        Early-life stress induces long-term morphologic changes in primate brain.
        Arch Gen Psychiatry. 2009; 66: 658-665
        • Bauer P.M.
        • Hanson J.L.
        • Pierson R.K.
        • Davidson R.J.
        • Pollak S.D.
        Cerebellar volume and cognitive functioning in children who experienced early deprivation.
        Biol Psychiatry. 2009; 66: 1100-1106
        • Tottenham N.
        • Galvan A.
        Stress and the adolescent brain: Amygdala-prefrontal cortex circuitry and ventral striatum as developmental targets.
        Neurosci Biobehav Rev. 2016; 70: 217-227
        • Koppensteiner P.
        • Aizawa S.
        • Yamada D.
        • Kabuta T.
        • Boehm S.
        • Wada K.
        • et al.
        Age-dependent sensitivity to glucocorticoids in the developing mouse basolateral nucleus of the amygdala.
        Psychoneuroendocrinology. 2014; 46: 64-77
        • Ehrlich D.E.
        • Ryan S.J.
        • Rainnie D.G.
        Postnatal development of electrophysiological properties of principal neurons in the rat basolateral amygdala.
        J Physiol. 2012; 590: 4819-4838
        • Achterberg M.
        • Bakermans-Kranenburg M.J.
        • van Ijzendoorn M.H.
        • van der Meulen M.
        • Tottenham N.
        • Crone E.A.
        Distinctive heritability patterns of subcortical-prefrontal cortex resting state connectivity in childhood: A twin study.
        NeuroImage. 2018; 175: 138-149
        • Cunningham M.G.
        • Bhattacharyya S.
        • Benes F.M.
        Amygdalo-cortical sprouting continues into early adulthood: Implications for the development of normal and abnormal function during adolescence.
        J Comp Neurol. 2002; 453: 116-130
        • Pattwell S.S.
        • Liston C.
        • Jing D.
        • Ninan I.
        • Yang R.R.
        • Witztum J.
        • et al.
        Dynamic changes in neural circuitry during adolescence are associated with persistent attenuation of fear memories.
        Nat Commun. 2016; 7: 11475
        • Bouwmeester H.
        • Wolterink G.
        • van Ree J.M.
        Neonatal development of projections from the basolateral amygdala to prefrontal, striatal, and thalamic structures in the rat.
        J Comp Neurol. 2002; 442: 239-249
        • Selleck R.A.
        • Zhang W.
        • Samberg H.D.
        • Padival M.
        • Rosenkranz J.A.
        Limited prefrontal cortical regulation over the basolateral amygdala in adolescent rats.
        Sci Rep. 2018; 8: 17171
        • Arruda-Carvalho M.
        • Wu W.
        • Cummings K.A.
        • Clem R.
        Optogenetic examination of prefrontal-amygdala synaptic development.
        J Neurosci. 2017; 37: 2976-2985
        • Koss W.A.
        • Belden C.E.
        • Hristov A.D.
        • Juraska J.M.
        Dendritic remodeling in the adolescent medial prefrontal cortex and the basolateral amygdala of male and female rats.
        Synapse. 2014; 68: 61-72
        • Ehrlich D.E.
        • Ryan S.J.
        • Hazra R.
        • Guo J.D.
        • Rainnie D.G.
        Cerebellar volume and cognitive functioning in children who experienced early deprivation.
        J Neurophysiol. 2013; 110: 926-941
        • Curley J.P.
        • Jordan E.R.
        • Swaney W.T.
        • Izraelit A.
        • Kammel S.
        • Champagne F.A.
        The meaning of weaning: Influence of the weaning period on behavioral development in mice.
        Dev Neurosci. 2009; 31: 318-331
        • Hefner K.
        • Holmes A.
        Ontogeny of fear-, anxiety- and depression-related behavior across adolescence in C57BL/6J mice.
        Behav Brain Res. 2007; 176: 210-215
        • Pattwell S.S.
        • Bath K.G.
        • Casey B.J.
        • Ninan I.
        • Lee F.S.
        Selective early-acquired fear memories undergo temporary suppression during adolescence.
        Proc Natl Acad Sci U S A. 2011; 108: 1182-1187
        • Lebel C.
        • Walker L.
        • Leemans A.
        • Phillips L.
        • Beaulieu C.
        Microstructural maturation of the human brain from childhood to adulthood.
        NeuroImage. 2008; 40: 1044-1055
        • Tromp D.P.
        • Grupe D.W.
        • Oathes D.J.
        • McFarlin D.R.
        • Hernandez P.J.
        • Kral T.R.
        • et al.
        Reduced structural connectivity of a major frontolimbic pathway in generalized anxiety disorder.
        Arch Gen Psychiatry. 2012; 69: 925-934
        • Gabard-Durnam L.J.
        • O'Muircheartaigh J.
        • Dirks H.
        • Dean 3rd, D.C.
        • Tottenham N.
        • Deoni S.
        Human amygdala functional network development: A cross-sectional study from 3 months to 5 years of age.
        Dev Cogn Neurosci. 2018; 34: 63-74
        • Salzwedel A.P.
        • Stephens R.L.
        • Goldman B.D.
        • Lin W.
        • Gilmore J.H.
        • Gao W.
        Development of amygdala functional connectivity during infancy and its relationship with 4-year behavioral outcomes.
        Biol Psychiatry Cogn Neurosci Neuroimaging. 2019; 4: 62-71
        • Gabard-Durnam L.J.
        • Flannery J.
        • Goff B.
        • Gee D.G.
        • Humphreys K.L.
        • Telzer E.
        • et al.
        The development of human amygdala functional connectivity at rest from 4 to 23years: A cross-sectional study.
        NeuroImage. 2014; 95C: 193-207
        • Qin S.
        • Young C.B.
        • Supekar K.
        • Uddin L.Q.
        • Menon V.
        Immature integration and segregation of emotion-related brain circuitry in young children.
        Proc Natl Acad Sci U S A. 2012; 109: 7941-7946
        • Jalbrzikowski M.
        • Larsen B.
        • Hallquist M.N.
        • Foran W.
        • Calabro F.
        • Luna B.
        Development of white matter microstructure and intrinsic functional connectivity between the amygdala and ventromedial prefrontal cortex: Associations with anxiety and depression.
        Biol Psychiatry. 2017; 82: 511-521
        • Gabard-Durnam L.J.
        • Gee D.G.
        • Goff B.
        • Flannery J.
        • Telzer E.
        • Humphreys K.L.
        • et al.
        Stimulus-elicited connectivity influences resting-state connectivity years later in human development: A prospective study.
        J Neurosci. 2016; 36: 4771-4784
        • Gee D.G.
        • Humphreys K.L.
        • Flannery J.
        • Goff B.
        • Telzer E.H.
        • Shapiro M.
        • et al.
        A developmental shift from positive to negative connectivity in human amygdala-prefrontal circuitry.
        J Neurosci. 2013; 33: 4584-4593
        • Perlman S.B.
        • Pelphrey K.A.
        Developing connections for affective regulation: Age-related changes in emotional brain connectivity.
        J Exp Child Psychol. 2011; 108: 607-620
        • Silvers J.A.
        • Insel C.
        • Powers A.
        • Franz P.
        • Helion C.
        • Martin R.E.
        • et al.
        vlPFC-vmPFC-amygdala interactions underlie age-related differences in cognitive regulation of emotion.
        Cereb Cortex. 2016; 27: 3502-3514
        • Decety J.
        • Michalska K.J.
        • Kinzler K.D.
        The contribution of emotion and cognition to moral sensitivity: A neurodevelopmental study.
        Cereb Cortex. 2012; 22: 209-220
        • Wu M.
        • Kujawa A.
        • Lu L.H.
        • Fitzgerald D.A.
        • Klumpp H.
        • Fitzgerald K.D.
        • et al.
        Age-related changes in amygdala-frontal connectivity during emotional face processing from childhood into young adulthood.
        Hum Brain Mapp. 2016; 37: 1684-1695
        • Ducharme S.
        • Albaugh M.D.
        • Hudziak J.J.
        • Botteron K.N.
        • Nguyen T.V.
        • Truong C.
        • et al.
        Anxious/depressed symptoms are linked to right ventromedial prefrontal cortical thickness maturation in healthy children and young adults.
        Cereb Cortex. 2014; 24: 2941-2950
        • Dougherty L.R.
        • Blankenship S.L.
        • Spechler P.A.
        • Padmala S.
        • Pessoa L.
        An fMRI pilot study of cognitive reappraisal in children: Divergent effects on brain and behavior.
        J Psychopathol Behav Assess. 2015; 37: 634-644
        • Swartz J.R.
        • Carrasco M.
        • Wiggins J.L.
        • Thomason M.E.
        • Monk C.S.
        Age-related changes in the structure and function of prefrontal cortex-amygdala circuitry in children and adolescents: A multi-modal imaging approach.
        NeuroImage. 2014; 86: 212-220
        • Vink M.
        • Derks J.M.
        • Hoogendam J.M.
        • Hillegers M.
        • Kahn R.S.
        Functional differences in emotion processing during adolescence and early adulthood.
        NeuroImage. 2014; 91: 70-76
        • Tottenham N.
        • Phuong J.
        • Flannery J.
        • Gabard-Durnam L.
        • Goff B.
        A negativity bias for ambiguous facial-expression valence during childhood: Converging evidence from behavior and facial corrugator muscle responses.
        Emotion. 2013; 13: 92-103
        • Shechner T.
        • Hong M.
        • Britton J.C.
        • Pine D.S.
        • Fox N.A.
        Fear conditioning and extinction across development: Evidence from human studies and animal models.
        Biol Psychol. 2014; 100: 1-12
        • Gullone E.
        The development of normal fear: A century of research.
        Clin Psychol Rev. 2000; 20: 429-451
        • Hein T.C.
        • Mattson W.I.
        • Dotterer H.L.
        • Mitchell C.
        • Lopez-Duran N.
        • Thomason M.E.
        • et al.
        Amygdala habituation and uncinate fasciculus connectivity in adolescence: A multi-modal approach.
        NeuroImage. 2018; 183: 617-626
        • Callaghan B.
        • Meyer H.
        • Opendak M.
        • Van Tieghem M.
        • Harmon C.
        • Li A.
        • et al.
        Using a developmental ecology framework to align fear neurobiology across species.
        Annu Rev Clin Psychol. 2019; 15: 345-369
        • Landers M.S.
        • Sullivan R.M.
        The development and neurobiology of infant attachment and fear.
        Dev Neurosci. 2012; 34: 101-114
        • Tottenham N.
        • Shapiro M.
        • Flannery J.
        • Caldera C.
        • Sullivan R.M.
        Parental presence switches avoidance to attraction learning in children.
        Nat Hum Behav. 2019; 3: 1070-1077
        • Ainsworth M.D.
        • Bell S.M.
        Attachment, exploration, and separation: Illustrated by the behavior of one-year-olds in a strange situation.
        Child Dev. 1970; 41: 49-67
        • Stronach E.P.
        • Toth S.L.
        • Rogosch F.
        • Oshri A.
        • Manly J.T.
        • Cicchetti D.
        Child maltreatment, attachment security, and internal representations of mother and mother-child relationships.
        Child Maltreat. 2011; 16: 137-145
        • Gee D.G.
        • Gabard-Durnam L.
        • Telzer E.H.
        • Humphreys K.L.
        • Goff B.
        • Shapiro M.
        • et al.
        Maternal buffering of human amygdala-prefrontal circuitry during childhood but not during adolescence.
        Psychol Sci. 2014; 25: 2067-2078
        • Telzer E.H.
        • Ichien N.T.
        • Qu Y.
        Mothers know best: Redirecting adolescent reward sensitivity toward safe behavior during risk taking.
        Soc Cogn Affect Neurosci. 2015; 10: 1383-1391
        • Lemche E.
        • Giampietro V.P.
        • Surguladze S.A.
        • Amaro E.J.
        • Andrew C.M.
        • Williams S.C.
        • et al.
        Human attachment security is mediated by the amygdala: Evidence from combined fMRI and psychophysiological measures.
        Hum Brain Mapp. 2006; 27: 623-635
        • Vrticka P.
        • Andersson F.
        • Grandjean D.
        • Sander D.
        • Vuilleumier P.
        Individual attachment style modulates human amygdala and striatum activation during social appraisal.
        PLoS One. 2008; 3: e2868
        • Bernier A.
        • Dégeilh F.
        • Leblanc É.
        • Daneault V.
        • Bailey H.N.
        • Beauchamp M.H.
        Mother–infant interaction and child brain morphology: A multidimensional approach to maternal sensitivity.
        Infancy. 2019; 24: 120-138
        • Lyons-Ruth K.
        • Pechtel P.
        • Yoon S.A.
        • Anderson C.M.
        • Teicher M.H.
        Disorganized attachment in infancy predicts greater amygdala volume in adulthood.
        Behav Brain Res. 2016; 308: 83-93
        • Moutsiana C.
        • Johnstone T.
        • Murray L.
        • Fearon P.
        • Cooper P.J.
        • Pliatsikas C.
        • et al.
        Insecure attachment during infancy predicts greater amygdala volumes in early adulthood.
        J Child Psychol Psychiatry. 2015; 56: 540-548
        • Bowlby J.
        Attachment and Loss.
        Basic Books, New York1969
        • Callaghan B.L.
        • Tottenham N.
        The neuro-environmental loop of plasticity: A cross-species analysis of parental effects on emotion circuitry development following typical and adverse caregiving.
        Neuropsychopharmacology. 2016; 41: 163-176
        • Rifkin-Graboi A.
        • Kong L.
        • Sim L.W.
        • Sanmugam S.
        • Broekman B.F.
        • Chen H.
        • et al.
        Maternal sensitivity, infant limbic structure volume and functional connectivity: A preliminary study.
        Transl Psychiatry. 2015; 5: e668
        • Thijssen S.
        • Muetzel R.L.
        • Bakermans-Kranenburg M.J.
        • Jaddoe V.W.
        • Tiemeier H.
        • Verhulst F.C.
        • et al.
        Insensitive parenting may accelerate the development of the amygdala-medial prefrontal cortex circuit.
        Dev Psychopathol. 2017; 29: 505-518
        • Romund L.
        • Raufelder D.
        • Flemming E.
        • Lorenz R.C.
        • Pelz P.
        • Gleich T.
        • et al.
        Maternal parenting behavior and emotion processing in adolescents-An fMRI study.
        Biol Psychol. 2016; 120: 120-125
        • Kopala-Sibley D.C.
        • Cyr M.
        • Finsaas M.C.
        • Orawe J.
        • Huang A.
        • Tottenham N.
        • Klein D.N.
        Early childhood parenting predicts late childhood brain functional connectivity during emotion perception and reward processing [published online ahead of print Aug 13].
        Child Dev. 2018;
        • Aupperle R.L.
        • Morris A.S.
        • Silk J.S.
        • Criss M.M.
        • Judah M.R.
        • Eagleton S.G.
        • et al.
        Neural responses to maternal praise and criticism: Relationship to depression and anxiety symptoms in high-risk adolescent girls.
        NeuroImage Clin. 2016; 11: 548-554
        • Whittle S.
        • Simmons J.G.
        • Dennison M.
        • Vijayakumar N.
        • Schwartz O.
        • Yap M.B.
        • et al.
        Positive parenting predicts the development of adolescent brain structure: A longitudinal study.
        Dev Cogn Neurosci. 2014; 8: 7-17
        • Callaghan B.
        • Gee D.G.
        • Gabard-Durnam L.
        • Tottenham N.
        Decreased amygdala reactivity to parent cues protects against anxiety following early adversity: An examination across 3-years.
        Biol Psychiatry Cogn Neurosci Neuroimaging. 2019; 4: 664-671
        • Burghy C.A.
        • Stodola D.E.
        • Ruttle P.L.
        • Molloy E.K.
        • Armstrong J.M.
        • Oler J.A.
        • et al.
        Developmental pathways to amygdala-prefrontal function and internalizing symptoms in adolescence.
        Nat Neurosci. 2012; 15: 1736-1741
        • Tan P.Z.
        • Lee K.H.
        • Dahl R.E.
        • Nelson E.E.
        • Stroud L.J.
        • Siegle G.J.
        • et al.
        Associations between maternal negative affect and adolescent's neural response to peer evaluation.
        Dev Cogn Neurosci. 2014; 8: 28-39
        • Kim P.
        • Leckman J.F.
        • Mayes L.C.
        • Newman M.A.
        • Feldman R.
        • Swain J.E.
        Perceived quality of maternal care in childhood and structure and function of mothers' brain.
        Dev Sci. 2010; 13: 662-673
        • Ainsworth M.D.
        Object relations, dependency, and attachment: A theoretical review of the infant-mother relationship.
        Child Dev. 1969; 40: 969-1025
        • Cicchetti D.
        • Toth S.L.
        Child maltreatment.
        Annu Rev Clin Psychol. 2005; 1: 409-438
        • Zeanah C.H.
        • Egger H.L.
        • Smyke A.T.
        • Nelson C.A.
        • Fox N.A.
        • Marshall P.J.
        • et al.
        Institutional rearing and psychiatric disorders in Romanian preschool children.
        Am J Psychiatry. 2009; 166: 777-785
        • Kessler R.C.
        • McLaughlin K.A.
        • Green J.G.
        • Gruber M.J.
        • Sampson N.A.
        • Zaslavsky A.M.
        • et al.
        Childhood adversities and adult psychopathology in the WHO World Mental Health Surveys.
        Br J Psychiatry. 2010; 197: 378-385
        • Oshri A.
        • Rogosch F.A.
        • Burnette M.L.
        • Cicchetti D.
        Developmental pathways to adolescent cannabis abuse and dependence: Child maltreatment, emerging personality, and internalizing versus externalizing psychopathology.
        Psychol Addict Behav. 2011; 25: 634-644
        • Raposo S.M.
        • Mackenzie C.S.
        • Henriksen C.A.
        • Afifi TO
        Time does not heal all wounds: Older adults who experienced childhood adversities have higher odds of mood, anxiety, and personality disorders.
        Am J Geriatr Psychiatry. 2013; 22: 1241-1250
        • Bale T.L.
        • Epperson C.N.
        Sex differences and stress across the lifespan.
        Nat Neurosci. 2015; 18: 1413-1420
        • Andersen S.L.
        • Teicher M.H.
        Stress, sensitive periods and maturational events in adolescent depression.
        Trends Neurosci. 2008; 31: 183-191
        • Giedd J.N.
        • Vaituzis A.C.
        • Hamburger S.D.
        • Lange N.
        • Rajapakse J.C.
        • Kaysen D.
        • et al.
        Quantitative MRI of the temporal lobe, amygdala, and hippocampus in normal human development: Ages 4-18 years.
        J Comp Neurol. 1996; 366: 223-230
        • Bramen J.E.
        • Hranilovich J.A.
        • Dahl R.E.
        • Forbes E.E.
        • Chen J.
        • Toga A.W.
        • et al.
        Puberty influences medial temporal lobe and cortical gray matter maturation differently in boys than girls matched for sexual maturity.
        Cereb Cortex. 2011; 21: 636-646
        • Trickett P.K.
        • Kim K.
        • Prindle J.
        Variations in emotional abuse experiences among multiply maltreated young adolescents and relations with developmental outcomes.
        Child Abuse Negl. 2011; 35: 876-886
        • Lupien S.J.
        • McEwen B.S.
        • Gunnar M.R.
        • Heim C.
        Effects of stress throughout the lifespan on the brain, behaviour and cognition.
        Nat Rev Neurosci. 2009; 10: 434-445
        • Tottenham N.
        The importance of early experiences for neuro-affective development.
        Curr Top Behav Neurosci. 2014; 16: 109-129
        • Moriceau S.
        • Shionoya K.
        • Jakubs K.
        • Sullivan R.M.
        Early-life stress disrupts attachment learning: The role of amygdala corticosterone, locus ceruleus corticotropin releasing hormone, and olfactory bulb norepinephrine.
        J Neurosci. 2009; 29: 15745-15755
        • Debiec J.
        • Sullivan R.M.
        Intergenerational transmission of emotional trauma through amygdala-dependent mother-to-infant transfer of specific fear.
        Proc Natl Acad Sci U S A. 2014; 111: 12222-12227
        • Ono M.
        • Kikusui T.
        • Sasaki N.
        • Ichikawa M.
        • Mori Y.
        • Murakami-Murofushi K.
        Early weaning induces anxiety and precocious myelination in the anterior part of the basolateral amygdala of male Balb/c mice.
        Neuroscience. 2008; 156: 1103-1110
        • Guadagno A.
        • Wong T.P.
        • Walker C.D.
        Morphological and functional changes in the preweaning basolateral amygdala induced by early chronic stress associate with anxiety and fear behavior in adult male, but not female rats.
        Prog Neuropsychopharmacol Biol Psychiatry. 2018; 81: 25-37
        • Malter Cohen M.
        • Jing D.
        • Yang R.R.
        • Tottenham N.
        • Lee F.S.
        • Casey B.J.
        Early-life stress has persistent effects on amygdala function and development in mice and humans.
        Proc Natl Acad Sci U S A. 2013; 110: 18274-18278
        • Ovtscharoff Jr., W.
        • Braun K.
        Maternal separation and social isolation modulate the postnatal development of synaptic composition in the infralimbic cortex of Octodon degus.
        Neuroscience. 2001; 104: 33-40
        • Callaghan B.L.
        • Richardson R.
        Maternal separation results in early emergence of adult-like fear and extinction learning in infant rats.
        Behav Neurosci. 2011; 125: 20-28
        • Bath K.G.
        • Manzano-Nieves G.
        • Goodwill H.
        Early life stress accelerates behavioral and neural maturation of the hippocampus in male mice.
        Horm Behav. 2016; 82: 64-71
        • Chocyk A.
        • Bobula B.
        • Dudys D.
        • Przyborowska A.
        • Majcher-Maslanka I.
        • Hess G.
        • et al.
        Early-life stress affects the structural and functional plasticity of the medial prefrontal cortex in adolescent rats.
        Eur J Neurosci. 2013; 38: 2089-2107
        • Yan C.G.
        • Rincon-Cortes M.
        • Raineki C.
        • Sarro E.
        • Colcombe S.
        • Guilfoyle D.N.
        • et al.
        Aberrant development of intrinsic brain activity in a rat model of caregiver maltreatment of offspring.
        Transl Psychiatry. 2017; 7e1005
        • Walker C.D.
        • Bath K.G.
        • Joels M.
        • Korosi A.
        • Larauche M.
        • Lucassen P.J.
        • et al.
        Chronic early life stress induced by limited bedding and nesting (LBN) material in rodents: Critical considerations of methodology, outcomes and translational potential.
        Stress. 2017; 20: 421-448
        • Callaghan B.L.
        • Richardson R.
        Early experiences and the development of emotional learning systems in rats.
        Biol Mood Anxiety Disord. 2013; 3: 8
        • Callaghan B.L.
        • Tottenham N.
        The stress acceleration hypothesis: Effects of early-life adversity on emotion circuits and behavior.
        Curr Opin Behav Sci. 2016; 7: 76-81
        • Oppenheim R.W.
        Metamorphosis and adaptation in the behavior of developing organisms.
        Dev Psychobiol. 1980; 13: 353-356
        • Travaglia A.
        • Bisaz R.
        • Sweet E.S.
        • Blitzer R.D.
        • Alberini C.M.
        Infantile amnesia reflects a developmental critical period for hippocampal learning.
        Nat Neurosci. 2016; 19: 1225-1233
        • Gee D.G.
        • Gabard-Durnam L.J.
        • Flannery J.
        • Goff B.
        • Humphreys K.L.
        • Telzer E.H.
        • et al.
        Early developmental emergence of human amygdala-prefrontal connectivity after maternal deprivation.
        Proc Natl Acad Sci U S A. 2013; 110: 15638-15643
        • Wolf R.C.
        • Herringa R.J.
        Prefrontal-amygdala dysregulation to threat in pediatric posttraumatic stress disorder.
        Neuropsychopharmacology. 2016; 41: 822-831
        • Herringa R.J.
        • Burghy C.A.
        • Stodola D.E.
        • Fox M.E.
        • Davidson R.J.
        • Essex M.J.
        Enhanced prefrontal-amygdala connectivity following childhood adversity as a protective mechanism against internalizing in adolescence.
        Biol Psychiatry Cogn Neurosci Neuroimaging. 2016; 1: 326-334
        • Posner J.
        • Cha J.
        • Roy A.K.
        • Peterson B.S.
        • Bansal R.
        • Gustafsson H.C.
        • et al.
        Alterations in amygdala-prefrontal circuits in infants exposed to prenatal maternal depression.
        Transl Psychiatry. 2016; 6: e935
        • Goldberg A.D.
        • Allis C.D.
        • Bernstein E.
        Epigenetics: A landscape takes shape.
        Cell. 2007; 128: 635-638
        • Blasi A.
        • Mercure E.
        • Lloyd-Fox S.
        • Thomson A.
        • Brammer M.
        • Sauter D.
        • et al.
        Early specialization for voice and emotion processing in the infant brain.
        Curr Biol. 2011; 21: 1220-1224
        • Dehaene-Lambertz G.
        • Montavont A.
        • Jobert A.
        • Allirol L.
        • Dubois J.
        • Hertz-Pannier L.
        • et al.
        Language or music, mother or Mozart? Structural and environmental influences on infants' language networks.
        Brain Lang. 2010; 114: 53-65
        • Graham A.M.
        • Fisher P.A.
        • Pfeifer J.H.
        What sleeping babies hear: A functional MRI study of interparental conflict and infants' emotion processing.
        Psychol Sci. 2013; 24: 782-789
        • Lupien S.J.
        • Parent S.
        • Evans A.C.
        • Tremblay R.E.
        • Zelazo P.D.
        • Corbo V.
        • et al.
        Larger amygdala but no change in hippocampal volume in 10-year-old children exposed to maternal depressive symptomatology since birth.
        Proc Natl Acad Sci U S A. 2011; 108: 14324-14329
        • McLaughlin K.A.
        • Sheridan M.A.
        • Gold A.L.
        • Duys A.
        • Lambert H.K.
        • Peverill M.
        • et al.
        Maltreatment exposure, brain structure, and fear conditioning in children and adolescents.
        Neuropsychopharmacology. 2016; 41: 1956-1964
        • Garrett A.S.
        • Carrion V.
        • Kletter H.
        • Karchemskiy A.
        • Weems C.F.
        • Reiss A.
        Brain activation to facial expressions in youth with PTSD symptoms.
        Depress Anxiety. 2012; 29: 449-459
        • Marusak H.A.
        • Martin K.R.
        • Etkin A.
        • Thomason M.E.
        Childhood trauma exposure disrupts the automatic regulation of emotional processing.
        Neuropsychopharmacology. 2015; 40: 1250-1258
        • De Bellis M.D.
        • Hooper S.R.
        Neural substrates for processing task-irrelevant emotional distracters in maltreated adolescents with depressive disorders: A pilot study.
        J Trauma Stress. 2012; 25: 198-202
        • McCrory E.J.
        • De Brito S.A.
        • Kelly P.A.
        • Bird G.
        • Sebastian C.L.
        • Mechelli A.
        • et al.
        Amygdala activation in maltreated children during pre-attentive emotional processing.
        Br J Psychiatry. 2013; 202: 269-276
        • Maheu F.S.
        • Dozier M.
        • Guyer A.E.
        • Mandell D.
        • Peloso E.
        • Poeth K.
        • et al.
        A preliminary study of medial temporal lobe function in youths with a history of caregiver deprivation and emotional neglect.
        Cogn Affect Behav Neurosci. 2010; 10: 34-49
        • Tottenham N.
        • Hare T.A.
        • Millner A.
        • Gilhooly T.
        • Zevin J.D.
        • Casey B.J.
        Elevated amygdala response to faces following early deprivation.
        Dev Sci. 2011; 14: 190-204
        • Roth M.C.
        • Humphreys K.L.
        • King L.S.
        • Gotlib I.H.
        Self-reported neglect, amygdala volume, symptoms of anxiety in adolescent boys.
        Child Abuse Negl. 2018; 80: 80-89
        • Sumner J.A.
        • Colich N.L.
        • Uddin M.
        • Armstrong D.
        • McLaughlin K.A.
        Early experiences of threat, but not deprivation, are associated with accelerated biological aging in children and adolescents.
        Biol Psychiatry. 2019; 85: 268-278
        • Dennison M.J.
        • Rosen M.L.
        • Sambrook K.A.
        • Jenness J.L.
        • Sheridan MA
        • McLaughlin K.A.
        Differential associations of distinct forms of childhood adversity with neurobehavioral measures of reward processing: A developmental pathway to depression.
        Child Dev. 2019; 90: e96-e113
        • Pechtel P.
        • Lyons-Ruth K.
        • Anderson C.M.
        • Teicher M.H.
        Sensitive periods of amygdala development: The role of maltreatment in preadolescence.
        NeuroImage. 2014; 97: 236-244
        • Hanson J.L.
        • Nacewicz B.M.
        • Sutterer M.J.
        • Cayo A.A.
        • Schaefer S.M.
        • Rudolph K.D.
        • et al.
        Behavioral problems after early life stress: Contributions of the hippocampus and amygdala.
        Biol Psychiatry. 2015; 77: 314-323
        • Cicchetti D.
        • Rogosch F.A.
        Equifinality and multifinality in developmental psychopathology.
        Dev Psychopathol. 1996; 8: 597-600
        • Tottenham N.
        • Hare T.A.
        • Quinn B.T.
        • McCarry T.
        • Nurse M.
        • Gilhooly T.
        • et al.
        Prolonged institutional rearing is associated with atypically large amygdala volume and emotion regulation difficulties.
        Dev Sci. 2010; 13: 46-61
        • Hodel A.S.
        • Hunt R.H.
        • Cowell R.A.
        • Van Den Heuvel S.E.
        • Gunnar M.R.
        • Thomas K.M.
        Duration of early adversity and structural brain development in post-institutionalized adolescents.
        NeuroImage. 2015; 105: 112-119
        • Flannery J.E.
        • Gabard-Durnam L.J.
        • Shapiro M.
        • Goff B.
        • Caldera C.
        • Louie J.
        • et al.
        Diurnal cortisol after early institutional care-age matters.
        Dev Cogn Neurosci. 2017; 25: 160-166
        • Tottenham N.
        Risk and developmental heterogeneity in previously institutionalized children.
        J Adolesc Health. 2012; 51: S29-S33
        • Gunnar M.R.
        • Wenner J.A.
        • Thomas K.M.
        • Glatt C.E.
        • McKenna M.C.
        • Clark A.G.
        The brain-derived neurotrophic factor Val66Met polymorphism moderates early deprivation effects on attention problems.
        Dev Psychopathol. 2012; 24: 1215-1223
        • Drury S.S.
        • Gleason M.M.
        • Theall K.P.
        • Smyke A.T.
        • Nelson C.A.
        • Fox N.A.
        • et al.
        Genetic sensitivity to the caregiving context: The influence of 5httlpr and BDNF val66met on indiscriminate social behavior.
        Physiol Behav. 2012; 106: 728-735
        • Alba L.A.
        • Flannery J.
        • Shapiro M.
        • Tottenham N.
        Working memory moderates the association between early institutional care and separation anxiety symptoms in late childhood and adolescence.
        Dev Psychopathol. 2019; 31: 989-997
        • Tibu F.
        • Sheridan M.A.
        • McLaughlin K.A.
        • Nelson C.A.
        • Fox N.A.
        • Zeanah C.H.
        Disruptions of working memory and inhibition mediate the association between exposure to institutionalization and symptoms of attention deficit hyperactivity disorder.
        Psychol Med. 2016; 46: 529-541
        • Vantieghem M.R.
        • Gabard-Durnam L.
        • Goff B.
        • Flannery J.
        • Humphreys K.L.
        • Telzer E.H.
        • et al.
        Positive valence bias and parent-child relationship security moderate the association between early institutional caregiving and internalizing symptoms.
        Dev Psychopathol. 2017; 29: 519-533
        • Green S.A.
        • Goff B.
        • Gee D.G.
        • Gabard-Durnam L.
        • Flannery J.
        • Telzer E.H.
        • et al.
        Discrimination of amygdala response predicts future separation anxiety in youth with early deprivation.
        J Child Psychol Psychiatry. 2016; 57: 1135-1144
        • Fox N.A.
        • Almas A.N.
        • Degnan K.A.
        • Nelson C.A.
        • Zeanah C.H.
        The effects of severe psychosocial deprivation and foster care intervention on cognitive development at 8 years of age: Findings from the Bucharest Early Intervention Project.
        J Child Psychol Psychiatry. 2011; 52: 919-928
        • Loman M.M.
        • Wiik K.L.
        • Frenn K.A.
        • Pollak S.D.
        • Gunnar M.R.
        Postinstitutionalized children's development: Growth, cognitive, and language outcomes.
        J Dev Behav Pediatr. 2009; 30: 426-434
        • Castle J.
        • Groothues C.
        • Bredenkamp D.
        • Beckett C.
        • O'Connor T.
        • Rutter M.
        Effects of qualities of early institutional care on cognitive attainment. ERA Study Team. English and Romanian Adoptees.
        Am J Orthopsychiatry. 1999; 69: 424-437
        • Nelson C.A.
        • Zeanah C.H.
        • Fox N.A.
        • Marshall P.J.
        • Smyke A.T.
        • Guthrie D.
        Cognitive recovery in socially deprived young children: The Bucharest Early Intervention Project.
        Science. 2007; 318: 1937-1940
        • Lind T.
        • Bernard K.
        • Ross E.
        • Dozier M.
        Intervention effects on negative affect of CPS-referred children: Results of a randomized clinical trial.
        Child Abuse Negl. 2014; 38: 1459-1467
        • Hostinar C.E.
        • Sullivan R.M.
        • Gunnar M.R.
        Psychobiological mechanisms underlying the social buffering of the hypothalamic-pituitary-adrenocortical axis: A review of animal models and human studies across development.
        Psychol Bull. 2014; 140: 256-282
        • van Rooij S.J.
        • Cross D.
        • Stevens J.S.
        • Vance L.A.
        • Kim Y.J.
        • Bradley B.
        • et al.
        Maternal buffering of fear-potentiated startle in children and adolescents with trauma exposure.
        Soc Neurosci. 2017; 12: 22-31