Advertisement

Partial Loss of USP9X Function Leads to a Male Neurodevelopmental and Behavioral Disorder Converging on Transforming Growth Factor β Signaling

      Abstract

      Background

      The X-chromosome gene USP9X encodes a deubiquitylating enzyme that has been associated with neurodevelopmental disorders primarily in female subjects. USP9X escapes X inactivation, and in female subjects de novo heterozygous copy number loss or truncating mutations cause haploinsufficiency culminating in a recognizable syndrome with intellectual disability and signature brain and congenital abnormalities. In contrast, the involvement of USP9X in male neurodevelopmental disorders remains tentative.

      Methods

      We used clinically recommended guidelines to collect and interrogate the pathogenicity of 44 USP9X variants associated with neurodevelopmental disorders in males. Functional studies in patient-derived cell lines and mice were used to determine mechanisms of pathology.

      Results

      Twelve missense variants showed strong evidence of pathogenicity. We define a characteristic phenotype of the central nervous system (white matter disturbances, thin corpus callosum, and widened ventricles); global delay with significant alteration of speech, language, and behavior; hypotonia; joint hypermobility; visual system defects; and other common congenital and dysmorphic features. Comparison of in silico and phenotypical features align additional variants of unknown significance with likely pathogenicity. In support of partial loss-of-function mechanisms, using patient-derived cell lines, we show loss of only specific USP9X substrates that regulate neurodevelopmental signaling pathways and a united defect in transforming growth factor β signaling. In addition, we find correlates of the male phenotype in Usp9x brain-specific knockout mice, and further resolve loss of hippocampal-dependent learning and memory.

      Conclusions

      Our data demonstrate the involvement of USP9X variants in a distinctive neurodevelopmental and behavioral syndrome in male subjects and identify plausible mechanisms of pathogenesis centered on disrupted transforming growth factor β signaling and hippocampal function.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Murtaza M.
        • Jolly L.A.
        • Gécz J.
        • Wood S.A.
        La FAM fatale: USP9X in development and disease.
        Cell Mol Life Sci. 2015; 72: 2075-2089
        • Pantaleon M.
        • Kanai-Azuma M.
        • Mattick J.S.
        • Kaibuchi K.
        • Kaye P.L.
        • Wood S.A.
        FAM deubiquitylating enzyme is essential for preimplantation mouse embryo development.
        Mech Dev. 2001; 109: 151-160
        • Reijnders M.R.
        • Zachariadis V.
        • Latour B.
        • Jolly L.
        • Mancini G.M.
        • Pfundt R.
        • et al.
        De novo loss-of-function mutations in USP9X cause a female-specific recognizable syndrome with developmental delay and congenital malformations.
        Am J Hum Genet. 2016; 98: 373-381
        • Homan C.C.
        • Kumar R.
        • Nguyen L.S.
        • Haan E.
        • Raymond F.L.
        • Abidi F.
        • et al.
        Mutations in USP9X are associated with X-linked intellectual disability and disrupt neuronal cell migration and growth.
        Am J Hum Genet. 2014; 94: 470-478
        • Paemka L.
        • Mahajan V.B.
        • Ehaideb S.N.
        • Skeie J.M.
        • Tan M.C.
        • Wu S.
        • et al.
        Seizures are regulated by ubiquitin-specific peptidase 9 X-linked (USP9X), a de-ubiquitinase.
        PLoS Genet. 2015; 11: e1005022
        • Agrawal P.
        • Chen Y.T.
        • Schilling B.
        • Gibson B.W.
        • Hughes R.E.
        Ubiquitin-specific peptidase 9, X-linked (USP9X) modulates activity of mammalian target of rapamycin (mTOR).
        J Biol Chem. 2012; 287: 21164-21175
        • Bridges C.R.
        • Tan M.C.
        • Premarathne S.
        • Nanayakkara D.
        • Bellette B.
        • Zencak D.
        • et al.
        USP9X deubiquitylating enzyme maintains RAPTOR protein levels, mTORC1 signalling and proliferation in neural progenitors.
        Sci Rep. 2017; 7: 391
        • Chen X.
        • Zhang B.
        • Fischer J.A.
        A specific protein substrate for a deubiquitinating enzyme: Liquid facets is the substrate of Fat facets.
        Genes Dev. 2002; 16: 289-294
        • Dupont S.
        • Mamidi A.
        • Cordenonsi M.
        • Montagner M.
        • Zacchigna L.
        • Adorno M.
        • et al.
        FAM/USP9x, a deubiquitinating enzyme essential for TGFbeta signaling, controls Smad4 monoubiquitination.
        Cell. 2009; 136: 123-135
        • Mouchantaf R.
        • Azakir B.A.
        • McPherson P.S.
        • Millard S.M.
        • Wood S.A.
        • Angers A.
        The ubiquitin ligase itch is auto-ubiquitylated in vivo and in vitro but is protected from degradation by interacting with the deubiquitylating enzyme FAM/USP9X.
        J Biol Chem. 2006; 281: 38738-38747
        • Overstreet E.
        • Fitch E.
        • Fischer J.A.
        Fat facets and Liquid facets promote Delta endocytosis and Delta signaling in the signaling cells.
        Development. 2004; 131: 5355-5366
        • Premarathne S.
        • Murtaza M.
        • Matigian N.
        • Jolly L.A.
        • Wood S.A.
        Loss of Usp9x disrupts cell adhesion, and components of the Wnt and Notch signaling pathways in neural progenitors.
        Sci Rep. 2017; 7: 8109
        • Taya S.
        • Yamamoto T.
        • Kanai-Azuma M.
        • Wood S.A.
        • Kaibuchi K.
        The deubiquitinating enzyme Fam interacts with and stabilizes beta-catenin.
        Genes Cells. 1999; 4: 757-767
        • Tseng L.C.
        • Zhang C.
        • Cheng C.M.
        • Xu H.
        • Hsu C.H.
        • Jiang Y.J.
        New classes of mind bomb-interacting proteins identified from yeast two-hybrid screens.
        PLoS One. 2014; 9: e93394
        • Xie Y.
        • Avello M.
        • Schirle M.
        • McWhinnie E.
        • Feng Y.
        • Bric-Furlong E.
        • et al.
        Deubiquitinase FAM/USP9X interacts with the E3 ubiquitin ligase SMURF1 protein and protects it from ligase activity-dependent self-degradation.
        J Biol Chem. 2013; 288: 2976-2985
        • Jolly L.A.
        • Taylor V.
        • Wood S.A.
        USP9X enhances the polarity and self-renewal of embryonic stem cell-derived neural progenitors.
        Mol Biol Cell. 2009; 20: 2015-2029
        • Oishi S.
        • Premarathne S.
        • Harvey T.J.
        • Iyer S.
        • Dixon C.
        • Alexander S.
        • et al.
        Usp9x-deficiency disrupts the morphological development of the postnatal hippocampal dentate gyrus.
        Sci Rep. 2016; 6: 25783
        • Stegeman S.
        • Jolly L.A.
        • Premarathne S.
        • Gecz J.
        • Richards L.J.
        • Mackay-Sim A.
        • et al.
        Loss of Usp9x disrupts cortical architecture, hippocampal development and TGFbeta-mediated axonogenesis.
        PLoS One. 2013; 8: e68287
        • Liang C.C.
        • Park A.Y.
        • Guan J.L.
        In vitro scratch assay: A convenient and inexpensive method for analysis of cell migration in vitro.
        Nat Protoc. 2007; 2: 329-333
        • Jolly L.A.
        • Nguyen L.S.
        • Domingo D.
        • Sun Y.
        • Barry S.
        • Hancarova M.
        • et al.
        HCFC1 loss-of-function mutations disrupt neuronal and neural progenitor cells of the developing brain.
        Hum Mol Genet. 2015; 24: 3335-3347
        • Harris L.
        • Dixon C.
        • Cato K.
        • Heng Y.H.
        • Kurniawan N.D.
        • Ullmann J.F.
        • et al.
        Heterozygosity for nuclear factor one x affects hippocampal-dependent behaviour in mice.
        PLoS One. 2013; 8: e65478
        • Rogers D.C.
        • Fisher E.M.
        • Brown S.D.
        • Peters J.
        • Hunter A.J.
        • Martin J.E.
        Behavioral and functional analysis of mouse phenotype: SHIRPA, a proposed protocol for comprehensive phenotype assessment.
        Mamm Genome. 1997; 8: 711-713
        • Stuchlik A.
        • Petrasek T.
        • Prokopova I.
        • Holubova K.
        • Hatalova H.
        • Vales K.
        • et al.
        Place avoidance tasks as tools in the behavioral neuroscience of learning and memory.
        Physiol Res. 2013; 62: S1-S19
        • Firth H.V.
        • Richards S.M.
        • Bevan A.P.
        • Clayton S.
        • Corpas M.
        • Rajan D.
        • et al.
        DECIPHER: Database of Chromosomal Imbalance and Phenotype in Humans Using Ensembl Resources.
        Am J Hum Genet. 2009; 84: 524-533
        • Richards S.
        • Aziz N.
        • Bale S.
        • Bick D.
        • Das S.
        • Gastier-Foster J.
        • et al.
        Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology.
        Genet Med. 2015; 17: 405-424
        • Zhang Q.
        • Dong A.
        • Walker J.R.
        • Bountra C.
        • Arrowsmith C.H.
        • Edwards A.M.
        • et al.
        Crystal structure of a peptidase.
        (Available at:) (Accessed June 2, 2018)
        • Wang K.
        • Li M.
        • Hakonarson H.
        ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data.
        Nucleic Acids Res. 2010; 38: e164
        • Rentzsch P.
        • Witten D.
        • Cooper G.M.
        • Shendure J.
        • Kircher M.
        CADD: Predicting the deleteriousness of variants throughout the human genome.
        Nucleic Acids Res. 2019; 47: D886-D894
        • Pejaver V.
        • Urresti J.
        • Lugo-Martinez J.
        • Pagel K.A.
        • Lin G.N.
        • Nam H.
        • et al.
        MutPred2: Inferring the molecular and phenotypic impact of amino acid variants [published online ahead of print May 9].
        bioRxiv. 2017;
        • Ebisawa T.
        • Fukuchi M.
        • Murakami G.
        • Chiba T.
        • Tanaka K.
        • Imamura T.
        • et al.
        Smurf1 interacts with transforming growth factor-beta type I receptor through Smad7 and induces receptor degradation.
        J Biol Chem. 2001; 276: 12477-12480
        • Wiese K.E.
        • Nusse R.
        • van Amerongen R.
        Wnt signalling: Conquering complexity.
        Development. 2018; 145
        • Crino P.B.
        The mTOR signalling cascade: Paving new roads to cure neurological disease.
        Nat Rev Neurol. 2016; 12: 379-392
        • Vucic D.
        • Dixit V.M.
        • Wertz I.E.
        Ubiquitylation in apoptosis: A post-translational modification at the edge of life and death.
        Nat Rev Mol Cell Biol. 2011; 12: 439-452
        • Schiller M.
        • Javelaud D.
        • Mauviel A.
        TGF-beta-induced SMAD signaling and gene regulation: Consequences for extracellular matrix remodeling and wound healing.
        J Dermatol Sci. 2004; 35: 83-92
        • Berletch J.B.
        • Ma W.
        • Yang F.
        • Shendure J.
        • Noble W.S.
        • Disteche C.M.
        • et al.
        Escape from X inactivation varies in mouse tissues.
        PLoS Genet. 2015; 11: e1005079
        • Kashima R.
        • Hata A.
        The role of TGF-β superfamily signaling in neurological disorders.
        Acta Biochim Biophys Sin (Shanghai). 2018; 50: 106-120
        • Bialas A.R.
        • Stevens B.
        TGF-beta signaling regulates neuronal C1q expression and developmental synaptic refinement.
        Nat Neurosci. 2013; 16: 1773-1782
        • Gomes F.C.
        • Sousa Vde O.
        • Romao L.
        Emerging roles for TGF-beta1 in nervous system development.
        Int J Dev Neurosci. 2005; 23: 413-424
        • Caraci F.
        • Gulisano W.
        • Guida C.A.
        • Impellizzeri A.A.
        • Drago F.
        • Puzzo D.
        • et al.
        A key role for TGF-beta1 in hippocampal synaptic plasticity and memory.
        Sci Rep. 2015; 5: 11252
        • Fukushima T.
        • Liu R.Y.
        • Byrne J.H.
        Transforming growth factor-beta2 modulates synaptic efficacy and plasticity and induces phosphorylation of CREB in hippocampal neurons.
        Hippocampus. 2007; 17: 5-9
        • Snijders Blok L.
        • Madsen E.
        • Juusola J.
        • Gilissen C.
        • Baralle D.
        • Reijnders M.R.
        • et al.
        Mutations in DDX3X are a common cause of unexplained intellectual disability with gender-specific effects on Wnt signaling.
        Am J Hum Genet. 2015; 97: 343-352
        • Shoubridge C.
        • Harvey R.J.
        • Dudding-Byth T.
        IQSEC2 mutation update and review of the female-specific phenotype spectrum including intellectual disability and epilepsy.
        Hum Mutat. 2019; 40: 5-24
        • Fieremans N.
        • Van Esch H.
        • de Ravel T.
        • Van Driessche J.
        • Belet S.
        • Bauters M.
        • et al.
        Microdeletion of the escape genes KDM5C and IQSEC2 in a girl with severe intellectual disability and autistic features.
        Eur J Med Genet. 2015; 58: 324-327
        • Jansen S.
        • Kleefstra T.
        • Willemsen M.H.
        • de Vries P.
        • Pfundt R.
        • Hehir-Kwa J.Y.
        • et al.
        De novo loss-of-function mutations in X-linked SMC1A cause severe ID and therapy-resistant epilepsy in females: Expanding the phenotypic spectrum.
        Clin Genet. 2016; 90: 413-419
        • Epi K.C.
        • Epilepsy Phenome/Genome P.
        • Allen A.S.
        • Berkovic S.F.
        • Cossette P.
        • Delanty N.
        • et al.
        De novo mutations in epileptic encephalopathies.
        Nature. 2013; 501: 217-221
        • Sakakibara N.
        • Morisada N.
        • Nozu K.
        • Nagatani K.
        • Ohta T.
        • Shimizu J.
        • et al.
        Clinical spectrum of male patients with OFD1 mutations.
        J Hum Genet. 2019; 64: 3-9
        • Bostrom C.
        • Yau S.Y.
        • Majaess N.
        • Vetrici M.
        • Gil-Mohapel J.
        • Christie B.R.
        Hippocampal dysfunction and cognitive impairment in Fragile-X Syndrome.
        Neurosci Biobehav Rev. 2016; 68: 563-574
        • Penzes P.
        • Buonanno A.
        • Passafaro M.
        • Sala C.
        • Sweet R.A.
        Developmental vulnerability of synapses and circuits associated with neuropsychiatric disorders.
        J Neurochem. 2013; 126: 165-182
        • Nadel L.
        Down's syndrome: A genetic disorder in biobehavioral perspective.
        Genes Brain Behav. 2003; 2: 156-166
        • Deboer T.
        • Wu Z.
        • Lee A.
        • Simon T.J.
        Hippocampal volume reduction in children with chromosome 22q11.2 deletion syndrome is associated with cognitive impairment.
        Behav Brain Funct. 2007; 3: 54