Advertisement

Differential Patterns of Visual Sensory Alteration Underlying Face Emotion Recognition Impairment and Motion Perception Deficits in Schizophrenia and Autism Spectrum Disorder

      Abstract

      Background

      Impaired face emotion recognition (FER) and abnormal motion processing are core features in schizophrenia (SZ) and autism spectrum disorder (ASD) that have been linked to atypical activity within the visual cortex. Despite overlaps, only a few studies have directly explored convergent versus divergent neural mechanisms of altered visual processing in ASD and SZ. We employed a multimodal imaging approach to evaluate FER and motion perception in relation to functioning of subcortical and cortical visual regions.

      Methods

      Subjects were 20 high-functioning adults with ASD, 19 patients with SZ, and 17 control participants. Behavioral measures of coherent motion sensitivity and FER along with electrophysiological and functional magnetic resonance imaging measures of visual pattern and motion processing were obtained. Resting-state functional magnetic resonance imaging was used to assess the relationship between corticocortical and thalamocortical connectivity and atypical visual processing.

      Results

      SZ and ASD participants had intercorrelated deficits in FER and motion sensitivity. In both groups, reduced motion sensitivity was associated with reduced functional magnetic resonance imaging activation in the occipitotemporal cortex and lower delta-band electroencephalogram power. In ASD, FER deficits correlated with hyperactivation of dorsal stream regions and increased evoked theta power. Activation of the pulvinar correlated with abnormal alpha-band modulation in SZ and ASD with under- and overmodulation, respectively, predicting increased clinical symptoms in both groups.

      Conclusions

      SZ and ASD participants showed equivalent deficits in FER and motion sensitivity but markedly different profiles of physiological dysfunction. The specific pattern of deficits observed in each group may help guide development of treatments designed to downregulate versus upregulate visual processing within the respective clinical groups.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kohler C.G.
        • Walker J.B.
        • Martin E.A.
        • Healey K.M.
        • Moberg P.J.
        Facial emotion perception in schizophrenia: A meta-analytic review.
        Schizophr Bull. 2010; 36: 1009-1019
        • Edwards J.
        • Jackson H.J.
        • Pattison P.E.
        Emotion recognition via facial expression and affective prosody in schizophrenia: A methodological review.
        Clin Psychol Rev. 2002; 22: 789-832
        • Corcoran C.M.
        • Keilp J.G.
        • Kayser J.
        • Klim C.
        • Butler P.D.
        • Bruder G.E.
        • et al.
        Emotion recognition deficits as predictors of transition in individuals at clinical high risk for schizophrenia: A neurodevelopmental perspective.
        Psychol Med. 2015; 45: 2959-2973
        • Harms M.B.
        • Martin A.
        • Wallace G.L.
        Facial emotion recognition in autism spectrum disorders: A review of behavioral and neuroimaging studies.
        Neuropsychol Rev. 2010; 20: 290-322
        • Uljarevic M.
        • Hamilton A.
        Recognition of emotions in autism: A formal meta-analysis.
        J Autism Dev Disord. 2013; 43: 1517-1526
        • Sasson N.J.
        • Pinkham A.E.
        • Weittenhiller L.P.
        • Faso D.J.
        • Simpson C.
        Context effects on facial affect recognition in schizophrenia and autism: Behavioral and eye-tracking evidence.
        Schizophr Bull. 2016; 42: 675-683
        • Pinkham A.E.
        • Hopfinger J.B.
        • Pelphrey K.A.
        • Piven J.
        • Penn D.L.
        Neural bases for impaired social cognition in schizophrenia and autism spectrum disorders.
        Schizophr Res. 2008; 99: 164-175
        • Tobe R.H.
        • Corcoran C.M.
        • Breland M.
        • MacKay-Brandt A.
        • Klim C.
        • Colcombe S.J.
        • et al.
        Differential profiles in auditory social cognition deficits between adults with autism and schizophrenia spectrum disorders: A preliminary analysis.
        J Psychiatr Res. 2016; 79: 21-27
        • Wallace G.L.
        • Case L.K.
        • Harms M.B.
        • Silvers J.A.
        • Kenworthy L.
        • Martin A.
        Diminished sensitivity to sad facial expressions in high functioning autism spectrum disorders is associated with symptomatology and adaptive functioning.
        J Autism Dev Disord. 2011; 41: 1475-1486
        • Trevisan D.A.
        • Birmingham E.
        Are emotion recognition abilities related to everyday social functioning in ASD? A meta-analysis.
        Res Autism Spectr Disord. 2016; 32: 24-42
        • McPartland J.C.
        • Webb S.J.
        • Keehn B.
        • Dawson G.
        Patterns of visual attention to faces and objects in autism spectrum disorder.
        J Autism Dev Disord. 2011; 41: 148-157
        • Gepner B.
        • Deruelle C.
        • Grynfeltt S.
        Motion and emotion: A novel approach to the study of face processing by young autistic children.
        J Autism Dev Disord. 2001; 31: 37-45
        • Chen Y.
        Abnormal visual motion processing in schizophrenia: A review of research progress.
        Schizophr Bull. 2011; 37: 709-715
        • Annaz D.
        • Remington A.
        • Milne E.
        • Coleman M.
        • Campbell R.
        • Thomas M.S.
        • et al.
        Development of motion processing in children with autism.
        Dev Sci. 2010; 13: 826-838
        • Milne E.
        • Swettenham J.
        • Hansen P.
        • Campbell R.
        • Jeffries H.
        • Plaisted K.
        High motion coherence thresholds in children with autism.
        J Child Psychol Psychiatry. 2002; 43: 255-263
        • Robertson C.E.
        • Thomas C.
        • Kravitz D.J.
        • Wallace G.L.
        • Baron-Cohen S.
        • Martin A.
        • et al.
        Global motion perception deficits in autism are reflected as early as primary visual cortex.
        Brain. 2014; 137: 2588-2599
        • Fusar-Poli P.
        • Placentino A.
        • Carletti F.
        • Landi P.
        • Allen P.
        • Surguladze S.
        • et al.
        Functional atlas of emotional faces processing: A voxel-based meta-analysis of 105 functional magnetic resonance imaging studies.
        J Psychiatry Neurosci. 2009; 34: 418-432
        • Glasser M.F.
        • Coalson T.S.
        • Robinson E.C.
        • Hacker C.D.
        • Harwell J.
        • Yacoub E.
        • et al.
        A multi-modal parcellation of human cerebral cortex.
        Nature. 2016; 536: 171-178
        • Bridge H.
        • Leopold D.A.
        • Bourne J.A.
        Adaptive pulvinar circuitry supports visual cognition.
        Trends Cogn Sci. 2016; 20: 146-157
        • Tamietto M.
        • de Gelder B.
        Neural bases of the non-conscious perception of emotional signals.
        Nat Rev Neurosci. 2010; 11: 697-709
        • Belge J.B.
        • Maurage P.
        • Mangelinckx C.
        • Leleux D.
        • Delatte B.
        • Constant E.
        Facial decoding in schizophrenia is underpinned by basic visual processing impairments.
        Psychiatry Res. 2017; 255: 167-172
        • Bedwell J.S.
        • Chan C.C.
        • Cohen O.
        • Karbi Y.
        • Shamir E.
        • Rassovsky Y.
        The magnocellular visual pathway and facial emotion misattribution errors in schizophrenia.
        Prog Neuropsychopharmacol Biol Psychiatry. 2013; 44: 88-93
        • Javitt D.C.
        When doors of perception close: Bottom-up models of disrupted cognition in schizophrenia.
        Annu Rev Clin Psychol. 2009; 5: 249-275
        • Sergi M.J.
        • Green M.F.
        Social perception and early visual processing in schizophrenia.
        Schizophr Res. 2003; 59: 233-241
        • Thye M.D.
        • Bednarz H.M.
        • Herringshaw A.J.
        • Sartin E.B.
        • Kana R.K.
        The impact of atypical sensory processing on social impairments in autism spectrum disorder.
        Dev Cogn Neurosci. 2018; 29: 151-167
        • Robertson C.E.
        • Baron-Cohen S.
        Sensory perception in autism.
        Nat Rev Neurosci. 2017; 18: 671-684
        • Marco E.J.
        • Hinkley L.B.
        • Hill S.S.
        • Nagarajan S.S.
        Sensory processing in autism: A review of neurophysiologic findings.
        Pediatr Res. 2011; 69: 48R-54R
        • Kleinhans N.M.
        • Richards T.
        • Johnson L.C.
        • Weaver K.E.
        • Greenson J.
        • Dawson G.
        • et al.
        fMRI evidence of neural abnormalities in the subcortical face processing system in ASD.
        Neuroimage. 2011; 54: 697-704
        • Javitt D.C.
        Neurophysiological models for new treatment development in schizophrenia: Early sensory approaches.
        Ann N Y Acad Sci. 2015; 1344: 92-104
        • Mishra J.
        • Martinez A.
        • Schroeder C.E.
        • Hillyard S.A.
        Spatial attention boosts short-latency neural responses in human visual cortex.
        Neuroimage. 2012; 59: 1968-1978
        • Martinez A.
        • Gaspar P.A.
        • Hillyard S.A.
        • Andersen S.K.
        • Lopez-Calderon J.
        • Corcoran C.M.
        • et al.
        Impaired motion processing in schizophrenia and the attenuated psychosis syndrome: Etiological and clinical implications.
        Am J Psychiatry. 2018; 175: 1243-1254
        • Foxe J.J.
        • Snyder A.C.
        The role of alpha-band brain oscillations as a sensory suppression mechanism during selective attention.
        Front Psychol. 2011; 2: 154
        • Klimesch W.
        Alpha-band oscillations, attention, and controlled access to stored information.
        Trends Cogn Sci. 2012; 16: 606-617
        • Anticevic A.
        • Cole M.W.
        • Repovs G.
        • Murray J.D.
        • Brumbaugh M.S.
        • Winkler A.M.
        • et al.
        Characterizing thalamo-cortical disturbances in schizophrenia and bipolar illness.
        Cereb Cortex. 2014; 24: 3116-3130
        • Klingner C.M.
        • Langbein K.
        • Dietzek M.
        • Smesny S.
        • Witte O.W.
        • Sauer H.
        • et al.
        Thalamocortical connectivity during resting state in schizophrenia.
        Eur Arch Psychiatry Clin Neurosci. 2014; 264: 111-119
        • Cerliani L.
        • Mennes M.
        • Thomas R.M.
        • Di Martino A.
        • Thioux M.
        • Keysers C.
        Increased functional connectivity between subcortical and cortical resting-state networks in autism spectrum disorder.
        JAMA Psychiatry. 2015; 72: 767-777
        • Nair A.
        • Treiber J.M.
        • Shukla D.K.
        • Shih P.
        • Muller R.A.
        Impaired thalamocortical connectivity in autism spectrum disorder: A study of functional and anatomical connectivity.
        Brain. 2013; 136: 1942-1955
        • First M.B.
        • Spitzer R.L.
        • Gibbon M.
        • Williams J.B.W.
        Structured Clinical Interview for DSM-IV Axis I Disorders- Patient Edition.
        New York State Psychiatric Institute, New York1997
        • Kay S.
        • Opler L.
        • Fiszbein A.
        The Positive and Negative Syndrome Scale (PANSS) Manual.
        Multi-Health Systems, Inc, Toronto, Canada1992
        • Ammons R.
        • Ammons C.
        The Quick Test (QT): Provisional manual.
        Psychological Report. 1962; 11: 111-162
        • Watson A.B.
        • Pelli D.G.
        QUEST: A Bayesian adaptive psychometric method.
        Percept Psychophys. 1983; 33: 113-120
        • Taylor S.F.
        • MacDonald 3rd, A.W.
        • Cognitive Neuroscience Treatment Research to Improve Cognition in Schizophrenia
        Brain mapping biomarkers of socio-emotional processing in schizophrenia.
        Schizophr Bull. 2012; 38: 73-80
        • Pinkham A.E.
        • Harvey P.D.
        • Penn D.L.
        Social Cognition Psychometric Evaluation: Results of the final validation study.
        Schizophr Bull. 2018; 44: 737-748
        • Woldorff M.G.
        • Liotti M.
        • Seabolt M.
        • Busse L.
        • Lancaster J.L.
        • Fox P.T.
        The temporal dynamics of the effects in occipital cortex of visual-spatial selective attention.
        Brain Res Cogn Brain Res. 2002; 15: 1-15
        • Lopez-Calderon J.
        • Luck S.J.
        ERPLAB: An open-source toolbox for the analysis of event-related potentials.
        Front Hum Neurosci. 2014; 8: 213
        • Tootell R.B.
        • Hadjikhani N.K.
        • Mendola J.D.
        • Marrett S.
        • Dale A.M.
        From retinotopy to recognition: fMRI in human visual cortex.
        Trends Cogn Sci. 1998; 2: 174-183
        • Dale A.M.
        • Fischl B.
        • Sereno M.I.
        Cortical surface-based analysis I: Segmentation and surface reconstruction.
        Neuroimage. 1999; 9: 179-194
        • Cox M.D.
        • Leventhal D.B.
        A multivariate analysis and modification of a preattentive, perceptual dysfunction in schizophrenia.
        J Nerv Ment Dis. 1978; 166: 709-718
        • Iglesias J.E.
        • Insausti R.
        • Lerma-Usabiaga G.
        • Bocchetta M.
        • Van Leemput K.
        • Greve D.N.
        • et al.
        A probabilistic atlas of the human thalamic nuclei combining ex vivo MRI and histology.
        Neuroimage. 2018; 183: 314-326
        • Breiman L.
        Random forests.
        Mach Learn. 2001; 45: 5-32
        • Liaw A.
        • Wiener M.
        Classification and Regression by randomForest.
        R News. 2002; 2: 18-22
        • Butler P.D.
        • Abeles I.Y.
        • Weiskopf N.G.
        • Tambini A.
        • Jalbrzikowski M.
        • Legatt M.E.
        • et al.
        Sensory contributions to impaired emotion processing in schizophrenia.
        Schizophr Bull. 2009; 35: 1095-1107
        • Martinez A.
        • Gaspar P.A.
        • Hillyard S.A.
        • Bickel S.
        • Lakatos P.
        • Dias E.C.
        • et al.
        Neural oscillatory deficits in schizophrenia predict behavioral and neurocognitive impairments.
        Front Hum Neurosci. 2015; 9: 371
        • Bates A.T.
        • Kiehl K.A.
        • Laurens K.R.
        • Liddle P.F.
        Low-frequency EEG oscillations associated with information processing in schizophrenia.
        Schizophr Res. 2009; 115: 222-230
        • Ergen M.
        • Marbach S.
        • Brand A.
        • Basar-Eroglu C.
        • Demiralp T.
        P3 and delta band responses in visual oddball paradigm in schizophrenia.
        Neurosci Lett. 2008; 440: 304-308
        • Baruth J.M.
        • Casanova M.F.
        • Sears L.
        • Sokhadze E.
        Early-stage visual processing abnormalities in high-functioning autism spectrum disorder (ASD).
        Transl Neurosci. 2010; 1: 177-187
        • Sokhadze E.M.
        • Lamina E.V.
        • Casanova E.L.
        • Kelly D.P.
        • Opris I.
        • Khachidze I.
        • et al.
        Atypical processing of novel distracters in a visual oddball task in autism spectrum disorder.
        Behav Sci (Basel). 2017; 7: E79
        • Sacrey L.A.
        • Armstrong V.L.
        • Bryson S.E.
        • Zwaigenbaum L.
        Impairments to visual disengagement in autism spectrum disorder: A review of experimental studies from infancy to adulthood.
        Neurosci Biobehav Rev. 2014; 47: 559-577
        • Kleberg J.L.
        • Thorup E.
        • Falck-Ytter T.
        Reduced visual disengagement but intact phasic alerting in young children with autism.
        Autism Res. 2017; 10: 539-545
        • Foss-Feig J.H.
        • Adkinson B.D.
        • Ji J.L.
        • Yang G.
        • Srihari V.H.
        • McPartland J.C.
        • et al.
        Searching for cross-diagnostic convergence: Neural mechanisms governing excitation and inhibition balance in schizophrenia and autism spectrum disorders.
        Biol Psychiatry. 2017; 81: 848-861
        • Krystal J.H.
        • Anticevic A.
        • Yang G.J.
        • Dragoi G.
        • Driesen N.R.
        • Wang X.J.
        • et al.
        Impaired tuning of neural ensembles and the pathophysiology of schizophrenia: A translational and computational neuroscience perspective.
        Biol Psychiatry. 2017; 81: 874-885
        • Feinberg I.
        Schizophrenia: Caused by a fault in programmed synaptic elimination during adolescence?.
        J Psychiatr Res. 1982; 17: 319-334
        • Javitt D.C.
        Glutamatergic theories of schizophrenia.
        Isr J Psychiatry Relat Sci. 2010; 47: 4-16
        • Martinez A.
        • Hillyard S.A.
        • Dias E.C.
        • Hagler Jr., D.J.
        • Butler P.D.
        • Guilfoyle D.N.
        • et al.
        Magnocellular pathway impairment in schizophrenia: Evidence from functional magnetic resonance imaging.
        J Neurosci. 2008; 28: 7492-7500
        • Butler P.D.
        • Zemon V.
        • Schechter I.
        • Saperstein A.M.
        • Hoptman M.J.
        • Lim K.O.
        • et al.
        Early-stage visual processing and cortical amplification deficits in schizophrenia.
        Arch Gen Psychiatry. 2005; 62: 495-504
        • Tang G.
        • Gudsnuk K.
        • Kuo S.H.
        • Cotrina M.L.
        • Rosoklija G.
        • Sosunov A.
        • et al.
        Loss of mTOR-dependent macroautophagy causes autistic-like synaptic pruning deficits.
        Neuron. 2014; 83: 1131-1143
        • Oblak A.L.
        • Gibbs T.T.
        • Blatt G.J.
        Decreased GABA(B) receptors in the cingulate cortex and fusiform gyrus in autism.
        J Neurochem. 2010; 114: 1414-1423
        • Coghlan S.
        • Horder J.
        • Inkster B.
        • Mendez M.A.
        • Murphy D.G.
        • Nutt D.J.
        GABA system dysfunction in autism and related disorders: From synapse to symptoms.
        Neurosci Biobehav Rev. 2012; 36: 2044-2055
        • Robertson C.E.
        • Ratai E.M.
        • Kanwisher N.
        Reduced GABAergic action in the autistic brain.
        Curr Biol. 2016; 26: 80-85
        • Marin O.
        Interneuron dysfunction in psychiatric disorders.
        Nat Rev Neurosci. 2012; 13: 107-120
        • Crespi B.
        • Badcock C.
        Psychosis and autism as diametrical disorders of the social brain.
        Behav Brain Sci. 2008; 31 (discussion 261-320): 241-261
        • Rubenstein J.L.
        • Merzenich M.M.
        Model of autism: Increased ratio of excitation/inhibition in key neural systems.
        Genes Brain Behav. 2003; 2: 255-267
        • Canitano R.
        Epilepsy in autism spectrum disorders.
        Eur Child Adolesc Psychiatry. 2007; 16: 61-66
        • Corcoran C.M.
        • Stoops A.
        • Lee M.
        • Martinez A.
        • Sehatpour P.
        • Dias E.C.
        • et al.
        Developmental trajectory of mismatch negativity and visual event-related potentials in healthy controls: Implications for neurodevelopmental vs. neurodegenerative models of schizophrenia.
        Schizophr Res. 2018; 191: 101-108
        • Gogtay N.
        • Giedd J.N.
        • Lusk L.
        • Hayashi K.M.
        • Greenstein D.
        • Vaituzis A.C.
        • et al.
        Dynamic mapping of human cortical development during childhood through early adulthood.
        Proc Natl Acad Sci U S A. 2004; 101: 8174-8179
        • Bedwell J.S.
        • Butler P.D.
        • Chan C.C.
        • Trachik B.J.
        Transdiagnostic psychiatric symptoms related to visual evoked potential abnormalities.
        Psychiatry Res. 2015; 230: 262-270
        • Liu Z.
        • de Zwart J.A.
        • Yao B.
        • van Gelderen P.
        • Kuo L.W.
        • Duyn J.H.
        Finding thalamic BOLD correlates to posterior alpha EEG.
        Neuroimage. 2012; 63: 1060-1069
        • Green S.A.
        • Hernandez L.
        • Bookheimer S.Y.
        • Dapretto M.
        Reduced modulation of thalamocortical connectivity during exposure to sensory stimuli in ASD.
        Autism Res. 2017; 10: 801-809

      Linked Article

      • Looking Under the Hood of Convergent Behavioral Deficits in Schizophrenia and Autism
        Biological PsychiatryVol. 86Issue 7
        • Preview
          Autism spectrum disorder (ASD) and schizophrenia are two neurodevelopmental disorders sharing a complex, overlapping history (1). After an initial period during which both phenotypes were subsumed within one diagnosis, for many decades ASD and schizophrenia have been conceptualized as quite divergent disorders. Indeed, the onset of ASD occurs during early childhood, and schizophrenia usually does not emerge until adolescence or early adulthood, making the developmental trajectories distinct. However, genetic studies point to an overlap between ASD and schizophrenia, with many common gene variants implicated in both disorders and several genetic disorders associated with risk for both clinical manifestations (2).
        • Full-Text
        • PDF