Advertisement

Multiscale Neuroscience of Psychiatric Disorders

  • Martijn P. van den Heuvel
    Correspondence
    Address correspondence to Martijn P. van den Heuvel, Ph.D., Vrije Universiteit Amsterdam, Department of Complex Trait Genetics, CNCR, Boelelaan 1085, W&N B-651, 1081 HV, Amsterdam, the Netherlands.
    Affiliations
    Connectome Lab, Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands

    Department of Clinical Genetics, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, the Netherlands
    Search for articles by this author
  • Lianne H. Scholtens
    Affiliations
    Connectome Lab, Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
    Search for articles by this author
  • René S. Kahn
    Affiliations
    Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht, the Netherlands

    Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
    Search for articles by this author

      Abstract

      The human brain comprises a multiscale network with multiple levels of organization. Neurons with dendritic and axonal connections form the microscale fabric of brain circuitry, and macroscale brain regions and white matter connections form the infrastructure for system-level brain communication and information integration. In this review, we discuss the emerging trend of multiscale neuroscience, the multidisciplinary field that brings together data from these different levels of nervous system organization to form a better understanding of between-scale relationships of brain structure, function, and behavior in health and disease. We provide a broad overview of this developing field and discuss recent findings of exemplary multiscale neuroscience studies that illustrate the importance of studying cross-scale interactions among the genetic, molecular, cellular, and macroscale levels of brain circuitry and connectivity and behavior. We particularly consider a central, overarching goal of these multiscale neuroscience studies of human brain connectivity: to obtain insight into how disease-related alterations at one level of organization may underlie alterations observed at other scales of brain network organization in mental disorders. We conclude by discussing the current limitations, challenges, and future directions of the field.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Anttila V.
        • Bulik-Sullivan B.
        • Finucane H.K.
        • Walters R.K.
        • Bras J.
        • Duncan L.
        • et al.
        Analysis of shared heritability in common disorders of the brain.
        Science. 2018; 360: eaap8757
        • Shelton R.C.
        • Claiborne J.
        • Sidoryk-Wegrzynowicz M.
        • Reddy R.
        • Aschner M.
        • Lewis D.A.
        • et al.
        Altered expression of genes involved in inflammation and apoptosis in frontal cortex in major depression.
        Mol Psychiatry. 2011; 16: 751-762
        • Melbourne J.K.
        • Rosen C.
        • Feiner B.
        • Sharma R.P.
        C4A mRNA expression in PBMCs predicts the presence and severity of delusions in schizophrenia and bipolar disorder with psychosis.
        Schizophr Res. 2018; 77: 37-45
        • Pergola G.
        • Di Carlo P.
        • Jaffe A.E.
        • Papalino M.
        • Chen Q.
        • Hyde T.M.
        • et al.
        Prefrontal coexpression of schizophrenia risk genes is associated with treatment response in patients.
        Biol Psychiatry. 2019; 86: 45-55
        • Amunts K.
        • Zilles K.
        Architectonic mapping of the human brain beyond Brodmann.
        Neuron. 2015; 88: 1086-1107
        • Penzes P.
        • Cahill M.E.
        • Jones K.A.
        • VanLeeuwen J.-E.
        • Woolfrey K.M.
        Dendritic spine pathology in neuropsychiatric disorders.
        Nat Neurosci. 2011; 14: 285-293
        • Crossley N.A.
        • Mechelli A.
        • Scott J.
        • Carletti F.
        • Fox P.T.
        • McGuire P.
        • et al.
        The hubs of the human connectome are generally implicated in the anatomy of brain disorders.
        Brain. 2014; 137: 2382-2395
        • van den Heuvel M.P.
        • Fornito A.
        Brain networks in schizophrenia.
        Neuropsychol Rev. 2014; 24: 32-48
        • Fornito A.
        • Zalesky A.
        • Breakspear M.
        The connectomics of brain disorders.
        Nat Rev Neurosci. 2015; 16: 159-172
        • van den Heuvel M.P.
        • Sporns O.
        A cross-disorder connectome landscape of brain dysconnectivity.
        Nat Rev Neurosci. 2019; 20: 435-446
        • van den Heuvel M.P.
        • Yeo B.T.
        A spotlight on bridging microscale and macroscale human brain architecture.
        Neuron. 2017; 93: 1248-1251
        • Bassett D.S.
        • Sporns O.
        Network neuroscience.
        Nat Neurosci. 2017; 20: 353-364
        • Sporns O.
        • Tononi G.
        • Kotter R.
        The human connectome: A structural description of the human brain.
        PLoS Comput Biol. 2005; 1: e42
        • van den Heuvel M.P.
        • Hulshoff Pol H.E.
        Exploring the brain network: A review on resting-state fMRI functional connectivity.
        Eur Neuropsychopharmacol. 2010; 20: 519-534
        • Kendler K.S.
        Twin studies of psychiatric illness. Current status and future directions.
        Arch Gen Psychiatry. 1993; 50: 905-915
        • Jahanshad N.
        • Rajagopalan P.
        • Hua X.
        • Hibar D.P.
        • Nir T.M.
        • Toga A.W.
        • et al.
        Genome-wide scan of healthy human connectome discovers SPON1 gene variant influencing dementia severity.
        Proc Natl Acad Sci U S A. 2013; 110: 4768-4773
        • Thompson P.M.
        • Stein J.L.
        • Medland S.E.
        • Hibar D.P.
        • Vasquez A.A.
        • Renteria M.E.
        • et al.
        The ENIGMA Consortium: Large-scale collaborative analyses of neuroimaging and genetic data.
        Brain Imaging Behav. 2014; 8: 153-182
        • Sudlow C.
        • Gallacher J.
        • Allen N.
        • Beral V.
        • Burton P.
        • Danesh J.
        • et al.
        UK biobank: An open access resource for identifying the causes of a wide range of complex diseases of middle and old age.
        PLoS Med. 2015; 12e1001779
        • Jaddoe V.W.
        • Bakker R.
        • van Duijn C.M.
        • van der Heijden A.J.
        • Lindemans J.
        • Mackenbach J.P.
        • et al.
        The Generation R Study Biobank: A resource for epidemiological studies in children and their parents.
        Eur J Epidemiol. 2007; 22: 917-923
        • Petersen R.C.
        • Aisen P.S.
        • Beckett L.A.
        • Donohue M.C.
        • Gamst A.C.
        • Harvey D.J.
        • et al.
        Alzheimer's Disease Neuroimaging Initiative (ADNI): Clinical characterization.
        Neurology. 2010; 74: 201-209
        • Hibar D.P.
        • Stein J.L.
        • Renteria M.E.
        • Arias-Vasquez A.
        • Desrivières S.
        • Jahanshad N.
        • et al.
        Common genetic variants influence human subcortical brain structures.
        Nature. 2015; 520: 224
        • Glahn D.C.
        • Winkler A.M.
        • Kochunov P.
        • Almasy L.
        • Duggirala R.
        • Carless M.A.
        • et al.
        Genetic control over the resting brain.
        Proc Natl Acad Sci U S A. 2010; 107: 1223-1228
        • Ge T.
        • Holmes A.J.
        • Buckner R.L.
        • Smoller J.W.
        • Sabuncu M.R.
        Heritability analysis with repeat measurements and its application to resting-state functional connectivity.
        Proc Natl Acad Sci U S A. 2017; 114: 5521-5526
        • Lopez L.M.
        • Bastin M.E.
        • Maniega S.M.
        • Penke L.
        • Davies G.
        • Christoforou A.
        • et al.
        A genome-wide search for genetic influences and biological pathways related to the brain's white matter integrity.
        Neurobiol Aging. 2012; 33 (1847.e1841-1847.e1814)
        • Kochunov P.
        • Glahn D.
        • Nichols T.
        • Winkler A.
        • Hong E.
        • Holcomb H.
        • et al.
        Genetic analysis of cortical thickness and fractional anisotropy of water diffusion in the brain.
        Front Neurosci. 2011; 5: 120
        • Giddaluru S.
        • Espeseth T.
        • Salami A.
        • Westlye L.T.
        • Lundquist A.
        • Christoforou A.
        • et al.
        Genetics of structural connectivity and information processing in the brain.
        Brain Struct Funct. 2016; 221: 4643-4661
        • Hawrylycz M.J.
        • Lein E.S.
        • Guillozet-Bongaarts A.L.
        • Shen E.H.
        • Ng L.
        • Miller J.A.
        • et al.
        An anatomically comprehensive atlas of the adult human brain transcriptome.
        Nature. 2012; 489: 391-399
        • Fulcher B.D.
        • Fornito A.
        A transcriptional signature of hub connectivity in the mouse connectome.
        Proc Natl Acad Sci U S A. 2016; 113: 1435-1440
        • Richiardi J.
        • Altmann A.
        • Milazzo A.C.
        • Chang C.
        • Chakravarty M.M.
        • Banaschewski T.
        • et al.
        BRAIN NETWORKS. Correlated gene expression supports synchronous activity in brain networks.
        Science. 2015; 348: 1241-1244
        • Arnatkeviciute A.
        • Fornito A.
        • Fulcher B.D.
        Uncovering the transcriptional signatures of hub connectivity in neural networks [published online ahead of print Aug 8].
        PsyArXiv. 2018;
        • Diez I.
        • Sepulcre J.
        Neurogenetic profiles delineate large-scale connectivity dynamics of the human brain.
        Nat Commun. 2018; 9: 3876
        • Krienen F.M.
        • Yeo B.T.T.
        • Ge T.
        • Buckner R.L.
        • Sherwood C.C.
        Transcriptional profiles of supragranular-enriched genes associate with corticocortical network architecture in the human brain.
        Proc Natl Acad Sci U S A. 2016; 113: E469-E478
        • Vertes P.E.
        • Rittman T.
        • Whitaker K.J.
        • Romero-Garcia R.
        • Vasa F.
        • Kitzbichler M.G.
        • et al.
        Gene transcription profiles associated with inter-modular hubs and connection distance in human functional magnetic resonance imaging networks.
        Philos Trans R Soc Lond B Biol Sci. 2016; 371: 20150362
        • Romero-Garcia R.
        • Whitaker K.J.
        • Váša F.
        • Seidlitz J.
        • Shinn M.
        • Fonagy P.
        • et al.
        Structural covariance networks are coupled to expression of genes enriched in supragranular layers of the human cortex.
        Neuroimage. 2018; 171: 256-267
        • Anderson K.M.
        • Krienen F.M.
        • Choi E.Y.
        • Reinen J.M.
        • Yeo B.T.T.
        • Holmes A.J.
        Gene expression links functional networks across cortex and striatum.
        Nat Commun. 2018; 9: 1428
        • Barbas H.
        • Rempel-Clower N.
        Cortical structure predicts the pattern of corticocortical connections.
        Cereb Cortex. 1997; 7: 635-646
        • Goulas A.
        • Uylings H.B.
        • Hilgetag C.C.
        Principles of ipsilateral and contralateral cortico-cortical connectivity in the mouse.
        Brain Struct Funct. 2017; 222: 1281-1295
        • Beul S.F.
        • Grant S.
        • Hilgetag C.C.
        A predictive model of the cat cortical connectome based on cytoarchitecture and distance.
        Brain Struct Funct. 2015; 220: 3167-3184
        • Scholtens L.H.
        • Schmidt R.
        • de Reus M.A.
        • van den Heuvel M.P.
        Linking macroscale graph analytical organization to microscale neuroarchitectonics in the macaque connectome.
        J Neurosci. 2014; 34: 12192-12205
        • Elston G.N.
        Cortex, cognition and the cell: New insights into the pyramidal neuron and prefrontal function.
        Cereb Cortex. 2003; 13: 1124-1138
        • van den Heuvel M.P.
        • Scholtens L.H.
        • Turk E.
        • Mantini D.
        • Vanduffel W.
        • Feldman Barrett L.
        Multimodal analysis of cortical chemoarchitecture and macroscale fMRI resting-state functional connectivity.
        Hum Brain Mapp. 2016; 37: 3103-3113
        • Stagg C.J.
        • Bachtiar V.
        • Amadi U.
        • Gudberg C.A.
        • Ilie A.S.
        • Sampaio-Baptista C.
        • et al.
        Local GABA concentration is related to network-level resting functional connectivity.
        eLife. 2014; 3e01465
        • Kapogiannis D.
        • Reiter D.A.
        • Willette A.A.
        • Mattson M.P.
        Posteromedial cortex glutamate and GABA predict intrinsic functional connectivity of the default mode network.
        Neuroimage. 2013; 64: 112-119
        • Duarte R.
        • Seeholzer A.
        • Zilles K.
        • Morrison A.
        Synaptic patterning and the timescales of cortical dynamics.
        Curr Opin Neurobiol. 2017; 43: 156-165
        • Wylie K.P.
        • Kronberg E.
        • Maharajh K.
        • Smucny J.
        • Cornier M.-A.
        • Tregellas J.R.
        Between-network connectivity occurs in brain regions lacking layer IV input.
        Neuroimage. 2015; 116: 50-58
        • Hunt B.A.E.
        • Tewarie P.K.
        • Mougin O.E.
        • Geades N.
        • Jones D.K.
        • Singh K.D.
        • et al.
        Relationships between cortical myeloarchitecture and electrophysiological networks.
        Proc Natl Acad Sci U S A. 2016; 113: 13510-13515
        • Savage J.E.
        • Jansen P.R.
        • Stringer S.
        • Watanabe K.
        • Bryois J.
        • de Leeuw C.A.
        • et al.
        Genome-wide association meta-analysis in 269,867 individuals identifies new genetic and functional links to intelligence.
        Nat Genet. 2018; 50: 912-919
        • Day F.R.
        • Ong K.K.
        • Perry J.R.B.
        Elucidating the genetic basis of social interaction and isolation.
        Nat Commun. 2018; 9: 2457
        • Nagel M.
        • Jansen P.R.
        • Stringer S.
        • Watanabe K.
        • de Leeuw C.A.
        • Bryois J.
        • et al.
        Meta-analysis of genome-wide association studies for neuroticism in 449,484 individuals identifies novel genetic loci and pathways.
        Nat Genet. 2018; 50: 920-927
        • Schizophrenia Working Group of the Psychiatric Genomics Consortium
        Biological insights from 108 schizophrenia-associated genetic loci.
        Nature. 2014; 511: 421-427
        • Bralten J.
        • van Hulzen K.J.
        • Martens M.B.
        • Galesloot T.E.
        • Arias Vasquez A.
        • Kiemeney L.A.
        • et al.
        Autism spectrum disorders and autistic traits share genetics and biology.
        Mol Psychiatry. 2018; 23: 1205-1212
        • Goriounova N.A.
        • Heyer D.B.
        • Wilbers R.
        • Verhoog M.B.
        • Giugliano M.
        • Verbist C.
        • et al.
        Large and fast human pyramidal neurons associate with intelligence.
        eLife. 2018; 7e41714
        • Glantz L.A.
        • Lewis D.A.
        Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia.
        Arch Gen Psychiatry. 2000; 57: 65-73
        • McGlashan T.H.
        • Hoffman R.E.
        Schizophrenia as a disorder of developmentally reduced synaptic connectivity.
        Arch Gen Psychiatry. 2000; 57: 637-648
        • van Haren N.E.
        • Schnack H.G.
        • Cahn W.
        • van den Heuvel M.P.
        • Lepage C.
        • Collins L.
        • et al.
        Changes in cortical thickness during the course of illness in schizophrenia.
        Arch Gen Psychiatry. 2011; 68: 871-880
        • van den Heuvel M.P.
        • Sporns O.
        • Collin G.
        • Scheewe T.
        • Mandl R.C.W.
        • Cahn W.
        • et al.
        Abnormal rich club organization and functional brain dynamics in schizophrenia.
        JAMA Psychiatry. 2013; 70: 783-792
        • Zalesky A.
        • Fornito A.
        • Seal M.L.
        • Cocchi L.
        • Westin C.F.
        • Bullmore E.T.
        • et al.
        Disrupted axonal fiber connectivity in schizophrenia.
        Biol Psychiatry. 2011; 69: 80-89
        • Whitford T.J.
        • Grieve S.M.
        • Farrow T.F.
        • Gomes L.
        • Brennan J.
        • Harris A.W.
        • et al.
        Volumetric white matter abnormalities in first-episode schizophrenia: A longitudinal, tensor-based morphometry study.
        Am J Psychiatry. 2007; 164: 1082-1089
        • Lynall M.-E.
        • Bassett D.S.
        • Kerwin R.
        • McKenna P.J.
        • Kitzbichler M.
        • Muller U.
        • et al.
        Functional connectivity and brain networks in schizophrenia.
        J Neurosci. 2010; 30: 9477-9487
        • Buckner R.L.
        • Sepulcre J.
        • Talukdar T.
        • Krienen F.M.
        • Liu H.
        • Hedden T.
        • et al.
        Cortical hubs revealed by intrinsic functional connectivity: Mapping, assessment of stability, and relation to Alzheimer's disease.
        J Neurosci. 2009; 29: 1860-1873
        • Prescott J.W.
        • Guidon A.
        • Doraiswamy P.M.
        • Roy Choudhury K.
        • Liu C.
        • Petrella J.R.
        The Alzheimer structural connectome: Changes in cortical network topology with increased amyloid plaque burden.
        Radiology. 2014; 273: 175-184
        • de Haan W.
        • Mott K.
        • van Straaten E.C.W.
        • Scheltens P.
        • Stam C.J.
        Activity dependent degeneration explains hub vulnerability in Alzheimer's disease.
        PLoS Comput Biol. 2012; 8e1002582
        • Kauppi K.
        • Westlye L.T.
        • Tesli M.
        • Bettella F.
        • Brandt C.L.
        • Mattingsdal M.
        • et al.
        Polygenic risk for schizophrenia associated with working memory-related prefrontal brain activation in patients with schizophrenia and healthy controls.
        Schizophr Bull. 2014; 41: 736-743
        • Dima D.
        • de Jong S.
        • Breen G.
        • Frangou S.
        The polygenic risk for bipolar disorder influences brain regional function relating to visual and default state processing of emotional information.
        Neuroimage Clin. 2016; 12: 838-844
        • Dima D.
        • Roberts R.E.
        • Frangou S.
        Connectomic markers of disease expression, genetic risk and resilience in bipolar disorder.
        Transl Psychiatry. 2016; 6: e706
        • Wang T.
        • Zhang X.
        • Li A.
        • Zhu M.
        • Liu S.
        • Qin W.
        • et al.
        Polygenic risk for five psychiatric disorders and cross-disorder and disorder-specific neural connectivity in two independent populations.
        Neuroimage Clin. 2017; 14: 441-449
        • Zhang Z.
        • Yan T.
        • Wang Y.
        • Zhang Q.
        • Zhao W.
        • Chen X.
        • et al.
        Polymorphism in schizophrenia risk gene MIR137 is associated with the posterior cingulate Cortex's activation and functional and structural connectivity in healthy controls.
        Neuroimage Clin. 2018; 19: 160-166
        • Krug A.
        • Dietsche B.
        • Zöllner R.
        • Yüksel D.
        • Nöthen M.M.
        • Forstner A.J.
        • et al.
        Polygenic risk for schizophrenia affects working memory and its neural correlates in healthy subjects.
        Schizophr Res. 2018; 197: 315-320
        • Franke B.
        • Stein J.L.
        • Ripke S.
        • Anttila V.
        • Hibar D.P.
        • van Hulzen K.J.E.
        • et al.
        Genetic influences on schizophrenia and subcortical brain volumes: Large-scale proof of concept.
        Nat Neurosci. 2016; 19: 420-431
        • Lawrie S.M.
        • Whalley H.C.
        • Abukmeil S.S.
        • Kestelman J.N.
        • Donnelly L.
        • Miller P.
        • et al.
        Brain structure, genetic liability, and psychotic symptoms in subjects at high risk of developing schizophrenia.
        Biol Psychiatry. 2001; 49: 811-823
        • Reus L.M.
        • Shen X.
        • Gibson J.
        • Wigmore E.
        • Ligthart L.
        • Adams M.J.
        • et al.
        Association of polygenic risk for major psychiatric illness with subcortical volumes and white matter integrity in UK Biobank.
        Sci Rep. 2017; 7: 42140
        • Jansen P.R.
        • Muetzel R.L.
        • Polderman T.J.C.
        • Jaddoe V.W.
        • Verhulst F.C.
        • van der Lugt A.
        • et al.
        Polygenic scores for neuropsychiatric traits and white matter microstructure in the pediatric population.
        Biol Psychiatry Cogn Neurosci Neuroimaging. 2019; 4: 243-250
        • French L.
        • Gray C.
        • Leonard G.
        • Perron M.
        • Pike G.B.
        • Richer L.
        • et al.
        Early cannabis use, polygenic risk score for schizophrenia and brain maturation in adolescence.
        JAMA Psychiatry. 2015; 72: 1002-1011
        • Romme I.A.C.
        • de Reus M.A.
        • Ophoff R.A.
        • Kahn R.S.
        • van den Heuvel M.P.
        Connectome disconnectivity and cortical gene expression in patients with schizophrenia.
        Biol Psychiatry. 2017; 81: 495-502
        • McCarthy M.J.
        • Liang S.
        • Spadoni A.D.
        • Kelsoe J.R.
        • Simmons A.N.
        Whole brain expression of bipolar disorder associated genes: Structural and genetic analyses.
        PloS One. 2014; 9e100204
        • Grothe M.J.
        • Sepulcre J.
        • Gonzalez-Escamilla G.
        • Jelistratova I.
        • Scholl M.
        • Hansson O.
        • et al.
        Molecular properties underlying regional vulnerability to Alzheimer's disease pathology.
        Brain. 2018; 141: 2755-2771
        • Rittman T.
        • Rubinov M.
        • Vertes P.E.
        • Patel A.X.
        • Ginestet C.E.
        • Ghosh B.C.P.
        • et al.
        Regional expression of the MAPT gene is associated with loss of hubs in brain networks and cognitive impairment in Parkinson disease and progressive supranuclear palsy.
        Neurobiol Aging. 2016; 48: 153-160
        • Tabrizi S.J.
        • Scahill R.I.
        • Durr A.
        • Roos R.A.
        • Leavitt B.R.
        • Jones R.
        • et al.
        Biological and clinical changes in premanifest and early stage Huntington's disease in the TRACK-HD study: The 12-month longitudinal analysis.
        Lancet Neurol. 2011; 10: 31-42
        • McColgan P.
        • Gregory S.
        • Seunarine K.K.
        • Razi A.
        • Papoutsi M.
        • Johnson E.
        • et al.
        Brain regions showing white matter loss in Huntington's disease are enriched for synaptic and metabolic genes.
        Biol Psychiatry. 2018; 83: 456-465
        • Kolluri N.
        • Sun Z.
        • Sampson A.R.
        • Lewis D.A.
        Lamina-specific reductions in dendritic spine density in the prefrontal cortex of subjects with schizophrenia.
        Am J Psychiatry. 2005; 162: 1200-1202
        • Wagstyl K.
        • Ronan L.
        • Whitaker K.J.
        • Goodyer I.M.
        • Roberts N.
        • Crow T.J.
        • et al.
        Multiple markers of cortical morphology reveal evidence of supragranular thinning in schizophrenia.
        Transl Psychiatry. 2016; 6: e780
        • van den Heuvel M.P.
        • Scholtens L.H.
        • de Reus M.A.
        • Kahn R.S.
        Associated microscale spine density and macroscale connectivity disruptions in schizophrenia.
        Biol Psychiatry. 2016; 80: 293-301
        • Wang P.
        • Zhao D.
        • Lachman H.M.
        • Zheng D.
        Enriched expression of genes associated with autism spectrum disorders in human inhibitory neurons.
        Transl Psychiatry. 2018; 8: 13
        • Kana R.K.
        • Keller T.A.
        • Minshew N.J.
        • Just M.A.
        Inhibitory control in high-functioning autism: Decreased activation and underconnectivity in inhibition networks.
        Biol Psychiatry. 2007; 62: 198-206
        • Uddin L.Q.
        • Supekar K.
        • Menon V.
        Reconceptualizing functional brain connectivity in autism from a developmental perspective.
        Front Hum Neurosci. 2013; 7: 458
        • Zoghbi H.Y.
        • Bear M.F.
        Synaptic dysfunction in neurodevelopmental disorders associated with autism and intellectual disabilities.
        Cold Spring Harb Perspect Biol. 2012; 4: a009886
        • Romero-Garcia R.
        • Warrier V.
        • Bullmore E.T.
        • Baron-Cohen S.
        • Bethlehem R.A.I.
        Synaptic and transcriptionally downregulated genes are associated with cortical thickness differences in autism.
        Mol Psychiatry. 2019; 24: 1053-1064
        • Mariani J.
        • Coppola G.
        • Zhang P.
        • Abyzov A.
        • Provini L.
        • Tomasini L.
        • et al.
        FOXG1-dependent dysregulation of GABA/glutamate neuron differentiation in autism spectrum disorders.
        Cell. 2015; 162: 375-390
        • Perin R.
        • Berger T.K.
        • Markram H.
        A synaptic organizing principle for cortical neuronal groups.
        Proc Natl Acad Sci U S A. 2011; 108: 5419-5424
        • Buckner R.L.
        • Krienen F.M.
        The evolution of distributed association networks in the human brain.
        Trends Cogn Sci. 2013; 17: 648-665
        • Barbas H.
        General cortical and special prefrontal connections: Principles from structure to function.
        Annu Rev Neurosci. 2015; 38: 269-289
        • Seeley W.W.
        • Crawford R.K.
        • Zhou J.
        • Miller B.L.
        • Greicius M.D.
        Neurodegenerative diseases target large-scale human brain networks.
        Neuron. 2009; 62: 42-52
        • Schroeter M.S.
        • Charlesworth P.
        • Kitzbichler M.G.
        • Paulsen O.
        • Bullmore E.T.
        Emergence of rich-club topology and coordinated dynamics in development of hippocampal functional networks in vitro.
        J Neurosci. 2015; 35: 5459-5470
        • Gal E.
        • London M.
        • Globerson A.
        • Ramaswamy S.
        • Reimann M.W.
        • Muller E.
        • et al.
        Rich cell-type-specific network topology in neocortical microcircuitry.
        Nat Neurosci. 2017; 20: 1004-1013
        • Chiang A.S.
        • Lin C.Y.
        • Chuang C.C.
        • Chang H.M.
        • Hsieh C.H.
        • Yeh C.W.
        • et al.
        Three-dimensional reconstruction of brain-wide wiring networks in Drosophila at single-cell resolution.
        Curr Biol. 2011; 21: 1-11
        • Hagmann P.
        • Cammoun L.
        • Gigandet X.
        • Meuli R.
        • Honey C.J.
        • Wedeen V.J.
        • et al.
        Mapping the structural core of human cerebral cortex.
        PLoS Biol. 2008; 6: e159
        • van den Heuvel M.P.
        • Bullmore E.T.
        • Sporns O.
        Comparative connectomics.
        Trends Cogn Sci. 2016; 20: 345-361
        • Cox M.J.
        • Mills-Koonce R.
        • Propper C.
        • Gariepy J.L.
        Systems theory and cascades in developmental psychopathology.
        Dev Psychopathol. 2010; 22: 497-506
        • Gariépy J.L.
        The question of continuity and change in development.
        in: Cairns R.B. Elder Jr., G.H. Costello E.J. Cambridge Studies in Social and Emotional Development: Developmental Science. Cambridge University Press, Cambridge, United Kingdom1996: 78-96
        • Nowakowski T.J.
        • Bhaduri A.
        • Pollen A.A.
        • Alvarado B.
        • Mostajo-Radji M.A.
        • Di Lullo E.
        • et al.
        Spatiotemporal gene expression trajectories reveal developmental hierarchies of the human cortex.
        Science. 2017; 358: 1318-1323
        • Douet V.
        • Chang L.
        • Cloak C.
        • Ernst T.
        Genetic influences on brain developmental trajectories on neuroimaging studies: From infancy to young adulthood.
        Brain Imaging Behav. 2014; 8: 234-250
        • Stiles J.
        • Jernigan T.L.
        The basics of brain development.
        Neuropsychol Rev. 2010; 20: 327-348
        • Deoni S.C.L.
        • Mercure E.
        • Blasi A.
        • Gasston D.
        • Thomson A.
        • Johnson M.
        • et al.
        Mapping infant brain myelination with magnetic resonance imaging.
        J Neurosci. 2011; 31: 784-791
        • Supekar K.
        • Musen M.
        • Menon V.
        Development of large-scale functional brain networks in children.
        PLoS Biol. 2009; 7e1000157
        • Zikopoulos B.
        • Barbas H.
        Altered neural connectivity in excitatory and inhibitory cortical circuits in autism.
        Front Hum Neurosci. 2013; 7: 609
        • Scholtens L.H.
        • de Reus M.A.
        • de Lange S.C.
        • Schmidt R.
        • van den Heuvel M.P.
        An MRI Von Economo - Koskinas atlas.
        Neuroimage. 2018; 170: 249-256
        • Van Essen D.C.
        • Smith S.M.
        • Barch D.M.
        • Behrens T.E.
        • Yacoub E.
        • Ugurbil K.
        The WU-Minn Human Connectome Project: An overview.
        Neuroimage. 2013; 80: 62-79
        • Dubois B.
        • Hampel H.
        • Feldman H.H.
        • Scheltens P.
        • Aisen P.
        • Andrieu S.
        • et al.
        Preclinical Alzheimer's disease: Definition, natural history, and diagnostic criteria.
        Alzheimers Dement. 2016; 12: 292-323
        • Klosterkotter J.
        • Hellmich M.
        • Steinmeyer E.M.
        • Schultze-Lutter F.
        Diagnosing schizophrenia in the initial prodromal phase.
        Arch Gen Psychiatry. 2001; 58: 158-164
        • Amunts K.
        • Lepage C.
        • Borgeat L.
        • Mohlberg H.
        • Dickscheid T.
        • Rousseau M.-É.
        • et al.
        BigBrain: An ultrahigh-resolution 3D human brain model.
        Science. 2013; 340: 1472-1475
        • Wei Y.
        • Scholtens L.H.
        • Turk E.
        • van den Heuvel M.P.
        Multiscale examination of cytoarchitectonic similarity and human brain connectivity.
        Netw Neurosci. 2018; 3: 124-137
        • Akbarian S.
        • Liu C.
        • Knowles J.A.
        • Vaccarino F.M.
        • Farnham P.J.
        • et al.
        • PsychENCODE Consortium
        The PsychENCODE project.
        Nat Neurosci. 2015; 18: 1707-1712
        • PsychENCODE Consortium
        Revealing the brain's molecular architecture.
        Science. 2018; 362: 1262-1263
        • Gandal M.J.
        • Zhang P.
        • Hadjimichael E.
        • Walker R.L.
        • Chen C.
        • Liu S.
        • et al.
        Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder.
        Science. 2018; 362
        • BrainSpan Consortium
        BrainSpan: Atlas of the Developing Human Brain.
        (Available at:) (Accessed April 1, 2019)
        • Li M.
        • Santpere G.
        • Imamura Kawasawa Y.
        • Evgrafov O.V.
        • Gulden F.O.
        • Pochareddy S.
        • et al.
        Integrative functional genomic analysis of human brain development and neuropsychiatric risks.
        Science. 2018; 362 (eaat7615)
        • Fox P.T.
        • Lancaster J.L.
        Opinion: Mapping context and content: The BrainMap model.
        Nat Rev Neurosci. 2002; 3: 319-321
        • Yarkoni T.
        • Poldrack R.A.
        • Nichols T.E.
        • Van Essen D.C.
        • Wager T.D.
        Large-scale automated synthesis of human functional neuroimaging data.
        Nat Methods. 2011; 8: 665-670
        • Yeo B.T.
        • Krienen F.M.
        • Eickhoff S.B.
        • Yaakub S.N.
        • Fox P.T.
        • Buckner R.L.
        • et al.
        Functional specialization and flexibility in human association cortex.
        Cereb Cortex. 2015; 25: 3654-3672
        • Deep-Soboslay A.
        • Benes F.M.
        • Haroutunian V.
        • Ellis J.K.
        • Kleinman J.E.
        • Hyde T.M.
        Psychiatric brain banking: Three perspectives on current trends and future directions.
        Biol Psychiatry. 2011; 69: 104-112
        • Giorgi A.
        • Migliarini S.
        • Galbusera A.
        • Maddaloni G.
        • Mereu M.
        • Margiani G.
        • et al.
        Brain-wide mapping of endogenous serotonergic transmission via chemogenetic fMRI.
        Cell Rep. 2017; 21: 910-918
        • Scholtens L.H.
        • Feldman Barrett L.
        • van den Heuvel M.P.
        Cross-species evidence of interplay between neural connectivity at the micro- and macroscale of connectome organization in human, mouse, and rat brain.
        Brain Connect. 2018; 8: 595-603
        • Goulas A.
        • Zilles K.
        • Hilgetag C.C.
        Cortical gradients and laminar projections in mammals.
        Trends Neurosci. 2018; 41: 775-788
        • Doucet G.E.
        • Bassett D.S.
        • Yao N.
        • Glahn D.C.
        • Frangou S.
        The role of intrinsic brain functional connectivity in vulnerability and resilience to bipolar disorder.
        Am J Psychiatry. 2017; 174: 1214-1222
        • Wook Yoo S.
        • Han C.E.
        • Shin J.S.
        • Won Seo S.
        • Na D.L.
        • Kaiser M.
        • et al.
        A network flow-based analysis of cognitive reserve in normal ageing and Alzheimer's disease.
        Sci Rep. 2015; 5: 10057
        • Bozzali M.
        • Dowling C.
        • Serra L.
        • Spano B.
        • Torso M.
        • Marra C.
        • et al.
        The impact of cognitive reserve on brain functional connectivity in Alzheimer's disease.
        J Alzheimers Dis. 2015; 44: 243-250
        • Ramón y Cajal S.
        Comparative Study of the Sensory Areas of the Human Cortex.
        Clark University, Worcester, MA1899
        • Arnatkeviciute A.
        • Fulcher B.D.
        • Pocock R.
        • Fornito A.
        Hub connectivity, neuronal diversity, and gene expression in the Caenorhabditis elegans connectome.
        PLoS Comput Biol. 2018; 14e1005989
        • Beul S.F.
        • Barbas H.
        • Hilgetag C.C.
        A predictive structural model of the primate connectome.
        Sci Rep. 2017; 7: 43176
        • Pramparo T.
        • Lombardo M.V.
        • Campbell K.
        • Barnes C.C.
        • Marinero S.
        • Solso S.
        • et al.
        Cell cycle networks link gene expression dysregulation, mutation, and brain maldevelopment in autistic toddlers.
        Mol Syst Biol. 2015; 11: 841
        • He X.
        • Zhang J.
        Why do hubs tend to be essential in protein networks?.
        PLoS Genet. 2006; 2: e88
        • Bonifazi P.
        • Goldin M.
        • Picardo M.A.
        • Jorquera I.
        • Cattani A.
        • Bianconi G.
        • et al.
        GABAergic hub neurons orchestrate synchrony in developing hippocampal networks.
        Science. 2009; 326: 1419-1424
        • van den Heuvel M.P.
        • Kahn R.S.
        • Goni J.
        • Sporns O.
        High-cost, high-capacity backbone for global brain communication.
        Proc Natl Acad Sci U S A. 2012; 109: 11372-11377
        • Senden M.
        • Deco G.
        • de Reus M.A.
        • Goebel R.
        • van den Heuvel M.P.
        Rich club organization supports a diverse set of functional network configurations.
        Neuroimage. 2014; 96: 174-182
        • Kuroki S.
        • Yoshida T.
        • Tsutsui H.
        • Iwama M.
        • Ando R.
        • Michikawa T.
        • et al.
        Excitatory neuronal hubs configure multisensory integration of slow waves in association cortex.
        Cell Rep. 2018; 22: 2873-2885
        • van Borkulo C.
        • Boschloo L.
        • Borsboom D.
        • Penninx B.W.
        • Waldorp L.J.
        • Schoevers R.A.
        Association of symptom network structure with the course of [corrected] depression.
        JAMA Psychiatry. 2015; 72: 1219-1226
        • Calderwood M.A.
        • Venkatesan K.
        • Xing L.
        • Chase M.R.
        • Vazquez A.
        • Holthaus A.M.
        • et al.
        Epstein-Barr virus and virus human protein interaction maps.
        Proc Natl Acad Sci U S A. 2007; 104: 7606-7611
        • Vinayagam A.
        • Gibson T.E.
        • Lee H.J.
        • Yilmazel B.
        • Roesel C.
        • Hu Y.
        • et al.
        Controllability analysis of the directed human protein interaction network identifies disease genes and drug targets.
        Proc Natl Acad Sci U S A. 2016; 113: 4976-4981
        • Hernandez A.R.
        • Burke S.N.
        Age-related changes in ‘hub' neurons.
        Aging. 2018; 10: 2551-2552
        • Rubinov M.
        • Ypma R.J.
        • Watson C.
        • Bullmore E.T.
        Wiring cost and topological participation of the mouse brain connectome.
        Proc Natl Acad Sci U S A. 2015; 112: 10032-10037
        • van den Heuvel M.P.
        • Sporns O.
        Network hubs in the human brain.
        Trends Cogn Sci. 2013; 17: 683-696
        • van den Heuvel M.P.
        • Sporns O.
        Rich-club organization of the human connectome.
        J Neurosci. 2011; 31: 15775-15786
        • Boschloo L.
        • van Borkulo C.D.
        • Rhemtulla M.
        • Keyes K.M.
        • Borsboom D.
        • Schoevers R.A.
        The network structure of symptoms of the Diagnostic and Statistical Manual of Mental Disorders.
        PLoS One. 2015; 10: e0137621