Advertisement

Fighting Females: Neural and Behavioral Consequences of Social Defeat Stress in Female Mice

      Abstract

      Background

      Despite the twofold higher prevalence of major depressive and posttraumatic stress disorders in women compared with men, most clinical and preclinical studies have focused on male subjects. We used an ethological murine model to study several cardinal symptoms of affective disorders in the female targets of female aggression.

      Methods

      Intact Swiss Webster (CFW) female resident mice were housed with castrated male mice and tested for aggression toward female intruders. For 10 days, aggressive CFW female residents defeated C57BL/6J (B6) female intruders during 5-minute encounters. Measures of corticosterone, c-Fos activation in hypothalamic and limbic structures, and species-typical behaviors were collected from defeated and control females. Ketamine (20 mg/kg) was tested for its potential to reverse stress-induced social deficits.

      Results

      Housed with a castrated male mouse, most intact resident CFW females readily attacked unfamiliar B6 female intruders, inflicting >40 bites in a 5-minute encounter. Compared with controls, defeated B6 females exhibited elevated plasma corticosterone and increased c-Fos activation in the medial amygdala, ventral lateral septum, ventromedial hypothalamus, and hypothalamic paraventricular nucleus. Chronically defeated females also showed vigilance-like behavior and deficits in social interactions, novel object investigation, and nesting. The duration of social interactions increased 24 hours after chronically defeated female mice received a systemic dose of ketamine.

      Conclusions

      These findings demonstrate that CFW female mice living with male conspecifics can be used as aggressive residents in an ethological model of female social defeat stress. These novel behavioral methods will encourage further studies of sex-specific neural, physiological, and behavioral adaptations to chronic stress and the biological bases for interfemale aggression.

      Keywords

      To read this article in full you will need to make a payment

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kessler R.C.
        • McGonagle K.A.
        • Swartz M.
        • Blazer D.G.
        • Nelson C.B.
        Sex and depression in the national comorbidity survey. I: Lifetime prevalence, chronicity and recurrence.
        J Affect Disord. 1993; 29: 85-96
        • Kessler R.C.
        • Sonnega A.
        • Bromet E.
        • Hughes M.
        • Nelson C.B.
        Posttraumatic stress disorder in the national comorbidity survey.
        Arch Gen Psychiatry. 1995; 52: 1048-1060
        • Kessler R.C.
        The effects of stressful life events on depression.
        Annu Rev Psychol. 1997; 48: 191-214
        • Kessler R.C.
        Epidemiology of women and depression.
        J Affect Disord. 2003; 74: 5-13
        • Ramikie T.S.
        • Ressler K.J.
        Mechanisms of sex differences in fear and posttraumatic stress disorder.
        Biol Psychiatry. 2018; 83: 876-885
        • Rubinow D.R.
        • Schmidt P.J.
        Sex differences and the neurobiology of affective disorders.
        Neuropsychopharmacology. 2019; 44: 111-128
        • Miczek K.A.
        • Thompson M.L.
        • Shuster L.
        Opioid-like analgesia in defeated mice.
        Science. 1982; 215: 1520-1522
        • Kudryavtseva N.N.
        • Bakshtanovskaya I.V.
        • Koryakina L.A.
        Social model of depression in mice of C57BL/6J strain.
        Pharmacol Biochem Behav. 1991; 38: 315-320
        • Berton O.
        • McClung C.A.
        • Dileone R.J.
        • Krishnan V.
        • Renthal W.
        • Russo S.J.
        • et al.
        Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress.
        Science. 2006; 311: 864-868
        • Krishnan V.
        • Han M.H.
        • Graham D.L.
        • Berton O.
        • Renthal W.
        • Russo S.J.
        • et al.
        Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions.
        Cell. 2007; 131: 391-404
        • Nestler E.J.
        • Hyman S.E.
        Animal models of neuropsychiatric disorders.
        Nat Neurosci. 2010; 13: 1161-1169
        • Covington H.E.
        • Lobo M.K.
        • Maze I.
        • Vialou V.
        • Hyman J.M.
        • Zaman S.
        • et al.
        Antidepressant effect of optogenetic stimulation of the medial prefrontal cortex.
        J Neurosci. 2010; 30: 16082-16090
        • Vialou V.
        • Robison A.J.
        • LaPlant Q.C.
        • Covington H.E.
        • Dietz D.M.
        • Ohnishi Y.N.
        • et al.
        DeltaFosB in brain reward circuits mediates resilience to stress and antidepressant responses.
        Nat Neurosci. 2010; 13: 745-752
        • Golden S.A.
        • Covington H.E.
        • Berton O.
        • Russo S.J.
        A standardized protocol for repeated social defeat stress in mice.
        Nat Protoc. 2011; 6: 1183-1191
        • Tsankova N.M.
        • Berton O.
        • Renthal W.
        • Kumar A.
        • Neve R.L.
        • Nestler E.J.
        Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action.
        Nat Neurosci. 2006; 9: 519-525
        • Covington H.E.
        • Maze I.
        • LaPlant Q.C.
        • Vialou V.F.
        • Ohnishi Y.N.
        • Berton O.
        • et al.
        Antidepressant actions of histone deacetylase inhibitors.
        J Neurosci. 2009; 29: 11451-11460
        • Donahue R.J.
        • Muschamp J.W.
        • Russo S.J.
        • Nestler E.J.
        • Carlezon W.A.
        Effects of striatal DeltaFosB overexpression and ketamine on social defeat stress-induced anhedonia in mice.
        Biol Psychiatry. 2014; 76: 550-558
        • Bagot R.C.
        • Cates H.M.
        • Purushothaman I.
        • Vialou V.
        • Heller E.A.
        • Yieh L.
        • et al.
        Ketamine and imipramine reverse transcriptional signatures of susceptibility and induce resilience-specific gene expression profiles.
        Biol Psychiatry. 2017; 81: 285-295
        • Harris A.Z.
        • Atsak P.
        • Bretton Z.H.
        • Holt E.S.
        • Alam R.
        • Morton M.P.
        • et al.
        A novel method for chronic social defeat stress in female mice.
        Neuropsychopharmacology. 2018; 43: 1276-1283
        • Takahashi A.
        • Chung J.R.
        • Zhang S.
        • Zhang H.X.
        • Grossman Y.
        • Aleyasin H.
        • et al.
        Establishment of a repeated social defeat stress model in female mice.
        Sci Rep. 2017; 7: 12838
        • Iniguez S.D.
        • Flores-Ramirez F.J.
        • Riggs L.M.
        • Alipio J.B.
        • Garcia-Carachure I.
        • Hernandez M.A.
        • et al.
        Vicarious social defeat stress induces depression-related outcomes in female mice.
        Biol Psychiatry. 2018; 83: 9-17
        • Miczek K.A.
        • Maxson S.C.
        • Fish E.W.
        • Faccidomo S.
        Aggressive behavioral phenotypes in mice.
        Behav Brain Res. 2001; 125: 167-181
        • Noirot E.
        Interactions between reproductive and territorial behavior in female mice.
        Int Ment Health Res Newsl. 1969; 11: 10-11
        • Noirot E.
        • Goyens J.
        • Buhot M.C.
        Aggressive behavior of pregnant mice toward males.
        Horm Behav. 1975; 6: 9-17
        • Mann M.A.
        • Svare B.
        Factors influencing pregnancy-induced aggression in mice.
        Behav Neural Biol. 1982; 36: 242-258
        • Ogawa S.
        • Makino J.
        Aggressive behavior in inbred strains of mice during pregnancy.
        Behav Neural Biol. 1984; 40: 195-204
        • Hedricks C.
        • Daniels C.E.
        Agonistic behavior between pregnant mice and male intruders.
        Behav Neural Biol. 1981; 31: 236-241
        • DeBold J.F.
        • Miczek K.A.
        Aggression persists after ovariectomy in female rats.
        Horm Behav. 1984; 18: 177-190
        • Svare B.
        • Gandelman R.
        Postpartum aggression in mice: Experiential and environmental factors.
        Horm Behav. 1973; 4: 323-334
        • Svare B.
        • Gandelman R.
        Suckling stimulation induces aggression in virgin female mice.
        Nature. 1976; 260: 606-608
        • Haney M.
        • DeBold J.F.
        • Miczek K.A.
        Maternal aggression in mice and rats towards male and female conspecifics.
        Aggress Behav. 1989; 15: 443-453
        • Parmigiani S.
        • Brain P.F.
        • Mainardi D.
        • Brunoni V.
        Different patterns of biting attack employed by lactating female mice (Mus domesticus) in encounters with male and female conspecific intruders.
        J Comp Psychol. 1988; 102: 287-293
        • Rosenson L.M.
        • Asheroff A.K.
        Maternal aggression in CD-1 mice: Influence of the hormonal condition of the intruder.
        Behav Biol. 1975; 15: 219-224
        • Clipperton-Allen A.E.
        • Cragg C.L.
        • Wood A.J.
        • Pfaff D.W.
        • Choleris E.
        Agonistic behavior in males and females: Effects of an estrogen receptor beta agonist in gonadectomized and gonadally intact mice.
        Psychoneuroendocrinology. 2010; 35: 1008-1022
        • Valzelli L.
        The “isolation syndrome” in mice.
        Psychopharmacology. 1973; 31: 305-320
        • Miczek K.A.
        • O’Donnell J.M.
        Intruder-evoked aggression in isolated and nonisolated mice: Effects of psychomotor stimulants and L-dopa.
        Psychopharmacology. 1978; 57: 47-55
        • Davis E.S.
        • Marler C.A.
        The progesterone challenge: Steroid hormone changes following a simulated territorial intrusion in female Peromyscus californicus.
        Horm Behav. 2003; 44: 185-198
        • Brain P.F.
        Effects of isolation/grouping on endocrine function and fighting behavior in male and female golden hamsters (Mesocricetus auratus Waterhouse).
        Behav Biol. 1972; 7: 349-357
        • Grelk D.F.
        • Papson B.A.
        • Cole J.E.
        • Rowe F.A.
        The influence of caging conditions and hormone treatments on fighting in male and female hamsters.
        Horm Behav. 1974; 5: 355-366
        • McLean A.C.
        • Valenzuela N.
        • Fai S.
        • Bennett S.A.
        Performing vaginal lavage, crystal violet staining, and vaginal cytological evaluation for mouse estrous cycle staging identification.
        J Vis Exp. 2012; 67: e4389
        • Been L.E.
        • Gibbons A.B.
        • Meisel R.L.
        Towards a neurobiology of female aggression.
        Neuropharmacology. 2019; 156: 107451
        • Floody O.R.
        • Pfaff D.W.
        Aggressive behavior in female hamsters: The hormonal basis for fluctuations in female aggressiveness correlated with estrous state.
        J Comp Physiol Psychol. 1977; 91: 443-464
        • Hyde J.
        • Sawyer T.F.
        Estrous cycle fluctuations in aggressiveness of house mice.
        Horm Behav. 1977; 9: 290-295
        • de Jong T.R.
        • Beiderbeck D.I.
        • Neumann I.D.
        Measuring virgin female aggression in the female intruder test (FIT): Effects of oxytocin, estrous cycle, and anxiety.
        PLoS One. 2014; 9: e91701
        • More L.
        Intra-female aggression in the mouse (Mus musculus domesticus) is linked to the estrous cycle regularity but not to ovulation.
        Aggress Behav. 2008; 34: 46-50
        • Duque-Wilckens N.
        • Steinman M.Q.
        • Busnelli M.
        • Chini B.
        • Yokoyama S.
        • Pham M.
        • et al.
        Oxytocin receptors in the anteromedial bed nucleus of the stria terminalis promote stress-induced social avoidance in female California mice.
        Biol Psychiatry. 2018; 83: 203-213
        • Zanos P.
        • Moaddel R.
        • Morris P.J.
        • Georgiou P.
        • Fischell J.
        • Elmer G.I.
        • et al.
        NMDAR inhibition-independent antidepressant actions of ketamine metabolites.
        Nature. 2016; 533: 481-486
        • Hultman R.
        • Ulrich K.
        • Sachs B.D.
        • Blount C.
        • Carlson D.E.
        • Ndubuizu N.
        • et al.
        Brain-wide electrical spatiotemporal dynamics encode depression vulnerability.
        Cell. 2018; 173: 166-180.e114
        • Deacon R.M.
        Assessing nest building in mice.
        Nat Protoc. 2006; 1: 1117-1119
        • Lisciotto C.A.
        • DeBold J.F.
        • Miczek K.A.
        Sexual differentiation and the effects of alcohol on aggressive behavior in mice.
        Pharmacol Biochem Behav. 1990; 35: 357-362
        • Norman K.J.
        • Seiden J.A.
        • Klickstein J.A.
        • Han X.
        • Hwa L.S.
        • DeBold J.F.
        • et al.
        Social stress and escalated drug self-administration in mice: I. Alcohol and corticosterone.
        Psychopharmacology. 2015; 232: 991-1001
        • Berman R.M.
        • Cappiello A.
        • Anand A.
        • Oren D.A.
        • Heninger G.R.
        • Charney D.S.
        • et al.
        Antidepressant effects of ketamine in depressed patients.
        Biol Psychiatry. 2000; 47: 351-354
        • Zarate C.A.
        • Singh J.B.
        • Carlson P.J.
        • Brutsche N.E.
        • Ameli R.
        • Luckenbaugh D.A.
        • et al.
        A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression.
        Arch Gen Psychiatry. 2006; 63: 856-864
        • Dzirasa K.
        • Covington H.E.
        Increasing the validity of experimental models for depression.
        Ann N Y Acad Sci. 2012; 1265: 36-45
        • Blanchard D.C.
        • Griebel G.
        • Pobbe R.
        • Blanchard R.J.
        Risk assessment as an evolved threat detection and analysis process.
        Neurosci Biobehav Rev. 2011; 35: 991-998
        • Van de Weerd H.A.
        • Van Loo P.L.
        • Van Zutphen L.F.
        • Koolhaas J.M.
        • Baumans V.
        Preferences for nesting material as environmental enrichment for laboratory mice.
        Lab Anim. 1997; 31: 133-143
        • Jirkof P.
        Burrowing and nest building behavior as indicators of well-being in mice.
        J Neurosci Methods. 2014; 234: 139-146
        • Gaskill B.N.
        • Karas A.Z.
        • Garner J.P.
        • Pritchett-Corning K.R.
        Nest building as an indicator of health and welfare in laboratory mice.
        J Vis Exp. 2013; 82: 51012
        • Otabi H.
        • Goto T.
        • Okayama T.
        • Kohari D.
        • Toyoda A.
        Subchronic and mild social defeat stress alter mouse nest building behavior.
        Behav Processes. 2016; 122: 21-25
        • Rettich A.
        • Käsermann H.P.
        • Pelczar P.
        • Bürki K.
        • Arras M.
        The physiological and behavioral impact of sensory contact among unfamiliar adult mice in the laboratory.
        J Appl Anim Welf Sci. 2006; 9: 277-288
        • Roper T.J.
        Self-sustaining activities and reinforcement in the nest building behaviour of mice.
        Behaviour. 1976; 59: 40-58
        • Roper T.J.
        Nesting material as a reinforcer for female mice.
        Anim Behav. 1973; 21: 733-740
        • Jansen P.E.
        • Goodman E.D.
        • Jowaisas D.
        • Bunnell B.N.
        Paper as a positive reinforcer for acquisition of bar press response by the golden hamster.
        Psychon Sci. 1969; 16: 113-114
        • Oley N.N.
        • Slotnick B.M.
        Nesting material as a reinforcement for operant behavior in the rat.
        Psychon Sci. 1970; 21: 41-43
        • American Psychiatric Association
        Diagnostic and Statistical Manual of Mental Disorders.
        5th ed. American Psychiatric Press, Arlington, VA2013
        • Der-Avakian A.
        • Markou A.
        The neurobiology of anhedonia and other reward-related deficits.
        Trends Neurosci. 2012; 35: 68-77
        • Strong C.E.
        • Kabbaj M.
        On the safety of repeated ketamine infusions for the treatment of depression: Effects of sex and developmental periods.
        Neurobiol Stress. 2018; 9: 166-175
        • Newman S.W.
        The medial extended amygdala in male reproductive behavior: A node in the mammalian social behavior network.
        Ann N Y Acad Sci. 1999; 877: 242-257
        • O’Connell L.A.
        • Hofmann H.A.
        The vertebrate mesolimbic reward system and social behavior network: A comparative synthesis.
        J Comp Neurol. 2011; 519: 3599-3639
        • Kim Y.
        • Venkataraju K.U.
        • Pradhan K.
        • Mende C.
        • Taranda J.
        • Turaga S.C.
        • et al.
        Mapping social behavior-induced brain activation at cellular resolution in the mouse.
        Cell Rep. 2015; 10: 292-305
        • Canteras N.S.
        The medial hypothalamic defensive system: Hodological organization and functional implications.
        Pharmacol Biochem Behav. 2002; 71: 481-491
        • Steinman M.Q.
        • Duque-Wilckens N.
        • Greenberg G.D.
        • Hao R.
        • Campi K.L.
        • Laredo S.A.
        • et al.
        Sex-specific effects of stress on oxytocin neurons correspond with responses to intranasal oxytocin.
        Biol Psychiatry. 2016; 80: 406-414
        • Wang L.
        • Chen I.Z.
        • Lin D.
        Collateral pathways from the ventromedial hypothalamus mediate defensive behaviors.
        Neuron. 2015; 85: 1344-1358
        • Wang L.
        • Talwar V.
        • Osakada T.
        • Kuang A.
        • Guo Z.
        • Yamaguchi T.
        • et al.
        Hypothalamic control of conspecific self-defense.
        Cell Rep. 2019; 26: 1747-1758.e1745
        • Matsuda S.
        • Peng H.
        • Yoshimura H.
        • Wen T.C.
        • Fukuda T.
        • Sakanaka M.
        Persistent c-fos expression in the brains of mice with chronic social stress.
        Neurosci Res. 1996; 26: 157-170
        • Wohleb E.S.
        • Hanke M.L.
        • Corona A.W.
        • Powell N.D.
        • Stiner L.M.
        • Bailey M.T.
        • et al.
        Beta-adrenergic receptor antagonism prevents anxiety-like behavior and microglial reactivity induced by repeated social defeat.
        J Neurosci. 2011; 31: 6277-6288
        • Martinez M.
        • Phillips P.J.
        • Herbert J.
        Adaptation in patterns of c-fos expression in the brain associated with exposure to either single or repeated social stress in male rats.
        Eur J Neurosci. 1998; 10: 20-33
        • Nikulina E.M.
        • Covington H.E.
        • Ganschow L.
        • Hammer R.P.
        • Miczek K.A.
        Long-term behavioral and neuronal cross-sensitization to amphetamine induced by repeated brief social defeat stress: fos in the ventral tegmental area and amygdala.
        Neuroscience. 2004; 123: 857-865
        • Kollack-Walker S.
        • Don C.
        • Watson S.J.
        • Akil H.
        Differential expression of c-fos mRNA within neurocircuits of male hamsters exposed to acute or chronic defeat.
        J Neuroendocrinol. 1999; 11: 547-559
        • Martinez M.
        • Calvo-Torrent A.
        • Herbert J.
        Mapping brain response to social stress in rodents with c-fos expression: A review.
        Stress. 2002; 5: 3-13
        • Xu P.S.
        • Lee D.
        • Holy T.E.
        Experience-dependent plasticity drives individual differences in pheromone-sensing neurons.
        Neuron. 2016; 91: 878-892
        • Ishii K.K.
        • Osakada T.
        • Mori H.
        • Miyasaka N.
        • Yoshihara Y.
        • Miyamichi K.
        • et al.
        A labeled-line neural circuit for pheromone-mediated sexual behaviors in mice.
        Neuron. 2017; 95: 123-137.e128
        • Lischinsky J.E.
        • Sokolowski K.
        • Li P.
        • Esumi S.
        • Kamal Y.
        • Goodrich M.
        • et al.
        Embryonic transcription factor expression in mice predicts medial amygdala neuronal identity and sex-specific responses to innate behavioral cues.
        Elife. 2017; 6
        • Li Y.
        • Mathis A.
        • Grewe B.F.
        • Osterhout J.A.
        • Ahanonu B.
        • Schnitzer M.J.
        • et al.
        Neuronal representation of social information in the medial amygdala of awake behaving mice.
        Cell. 2017; 171: 1176-1190.e1117
        • Remedios R.
        • Kennedy A.
        • Zelikowsky M.
        • Grewe B.F.
        • Schnitzer M.J.
        • Anderson D.J.
        Social behaviour shapes hypothalamic neural ensemble representations of conspecific sex.
        Nature. 2017; 550: 388-392
        • Moffitt J.R.
        • Bambah-Mukku D.
        • Eichhorn S.W.
        • Vaughn E.
        • Shekhar K.
        • Perez J.D.
        • et al.
        Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region.
        Science. 2018; 362
        • Ressler K.J.
        • Mercer K.B.
        • Bradley B.
        • Jovanovic T.
        • Mahan A.
        • Kerley K.
        • et al.
        Post-traumatic stress disorder is associated with PACAP and the PAC1 receptor.
        Nature. 2011; 470: 492-497
        • Mercer K.B.
        • Dias B.
        • Shafer D.
        • Maddox S.A.
        • Mulle J.G.
        • Hu P.
        • et al.
        Functional evaluation of a PTSD-associated genetic variant: estradiol regulation and ADCYAP1R1.
        Transl Psychiatry. 2016; 6: e978
        • Haug M.
        Attack by female mice on “strangers”.
        Aggress Behav. 1978; 4: 133-139
        • Stockley P.
        • Campbell A.
        Female competition and aggression: Interdisciplinary perspectives.
        Philos Trans R Soc Lond B Biol Sci. 2013; 368: 20130073
        • Reinhardt V.
        • Reinhardt A.
        • Reinhardt C.
        Evaluating sex differences in aggressiveness in cattle, bison and rhesus monkeys.
        Behaviour. 1987; 102: 58-66
        • Duque-Wilckens N.
        • Trainor B.C.
        Behavioral neuroendocrinology of female aggression.
        Oxford Research Encyclopedia of Neuroscience Feb 2017. 2017; (Available at:) (Accessed September 12, 1019)
        • Denson T.F.
        • O’Dean S.M.
        • Blake K.R.
        • Beames J.R.
        Aggression in women: Behavior, brain and hormones.
        Front Behav Neurosci. 2018; 12: 81
        • Albert D.J.
        • Dyson E.M.
        • Petrovic D.M.
        • Walsh M.L.
        Activation of aggression in female rats by normal males and by castrated males with testosterone implants.
        Physiol Behav. 1988; 44: 9-13
        • Albert D.J.
        • Petrovic D.M.
        • Walsh M.L.
        Ovariectomy attenuates aggression by female rats cohabiting with sexually active sterile males.
        Physiol Behav. 1989; 45: 225-228
        • Albert D.J.
        • Jonik R.H.
        • Watson N.V.
        • Moe I.V.
        • Walsh M.L.
        Aggression by a female rat cohabitating with a sterile male: Termination of pseudopregnancy does not abolish aggression.
        Physiol Behav. 1991; 50: 519-523
        • Unger E.K.
        • Burke K.J.
        • Yang C.F.
        • Bender K.J.
        • Fuller P.M.
        • Shah N.M.
        Medial amygdalar aromatase neurons regulate aggression in both sexes.
        Cell Rep. 2015; 10: 453-462
        • Yang C.F.
        • Chiang M.C.
        • Gray D.C.
        • Prabhakaran M.
        • Alvarado M.
        • Juntti S.A.
        • et al.
        Sexually dimorphic neurons in the ventromedial hypothalamus govern mating in both sexes and aggression in males.
        Cell. 2013; 153: 896-909
        • Hashikawa K.
        • Hashikawa Y.
        • Tremblay R.
        • Zhang J.
        • Feng J.E.
        • Sabol A.
        • et al.
        Esr1+ cells in the ventromedial hypothalamus control female aggression.
        Nat Neurosci. 2017; 20: 1580-1590
        • Chen P.
        • Hong W.
        Neural circuit mechanisms of social behavior.
        Neuron. 2018; 98: 16-30
        • Hashikawa K.
        • Hashikawa Y.
        • Lischinsky J.
        • Lin D.
        The neural mechanisms of sexually dimorphic aggressive behaviors.
        Trends Genet. 2018; 34: 755-776
        • Sakurai K.
        • Zhao S.
        • Takatoh J.
        • Rodriguez E.
        • Lu J.
        • Leavitt A.D.
        • et al.
        Capturing and manipulating activated neuronal ensembles with CANE delineates a hypothalamic social-fear circuit.
        Neuron. 2016; 92: 739-753
        • Covington H.E.
        • Newman E.L.
        • Tran S.
        • Walton L.
        • Hayek W.
        • Leonard M.Z.
        • et al.
        The urge to fight: Persistent escalation by alcohol and role of NMDA receptors in mice.
        Front Behav Neurosci. 2018; 12: 206
        • Golden S.A.
        • Heins C.
        • Venniro M.
        • Caprioli D.
        • Zhang M.
        • Epstein D.H.
        • et al.
        Compulsive addiction-like aggressive behavior in mice.
        Biol Psychiatry. 2017; 82: 239-248
        • Falkner A.L.
        • Grosenick L.
        • Davidson T.J.
        • Deisseroth K.
        • Lin D.
        Hypothalamic control of male aggression-seeking behavior.
        Nat Neurosci. 2016; 19: 596-604
        • Fish E.W.
        • De Bold J.F.
        • Miczek K.A.
        Aggressive behavior as a reinforcer in mice: Activation by allopregnanolone.
        Psychopharmacology. 2002; 163: 459-466
        • Fish E.W.
        • McKenzie-Quirk S.D.
        • Bannai M.
        • Miczek K.A.
        5-HT(1B) receptor inhibition of alcohol-heightened aggression in mice: Comparison to drinking and running.
        Psychopharmacology. 2008; 197: 145-156
        • Couppis M.H.
        • Kennedy C.H.
        The rewarding effect of aggression is reduced by nucleus accumbens dopamine receptor antagonism in mice.
        Psychopharmacology. 2008; 197: 449-456