Advertisement

Genetics of Resilience: Gene-by-Environment Interaction Studies as a Tool to Dissect Mechanisms of Resilience

      Abstract

      The identification and understanding of resilience mechanisms holds potential for the development of mechanistically informed prevention and interventions in psychiatry. However, investigating resilience mechanisms is conceptually and methodologically challenging because resilience does not merely constitute the absence of disease-specific risk but rather reflects active processes that aid in the maintenance of physiological and psychological homeostasis across a broad range of environmental circumstances. In this conceptual review, we argue that the principle used in gene-by-environment interaction studies may help to unravel resilience mechanisms on different investigation levels. We present how this could be achieved by top-down designs that start with gene-by-environment interaction effects on disease phenotypes as well as by bottom-up approaches that start at the molecular level. We also discuss how recent technological advances may improve both top-down and bottom-up strategies.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Russo S.J.
        • Murrough J.W.
        • Han M.H.
        • Charney D.S.
        • Nestler E.J.
        Neurobiology of resilience.
        Nat Neurosci. 2012; 15: 1475-1484
        • Schmitt A.
        • Malchow B.
        • Hasan A.
        • Falkai P.
        The impact of environmental factors in severe psychiatric disorders.
        Front Neurosci. 2014; 8: 19
        • Assary E.
        • Vincent J.P.
        • Keers R.
        • Pluess M.
        Gene-environment interaction and psychiatric disorders: Review and future directions.
        Semin Cell Dev Biol. 2018; 77: 133-143
        • Halldorsdottir T.
        • Binder E.B.
        Gene × environment interactions: From molecular mechanisms to behavior.
        Annu Rev Psychol. 2017; 68: 215-241
        • Gerke J.
        • Koenig A.M.
        • Conrad D.
        • Doyen-Waldecker C.
        • Pauly M.
        • Gündel H.
        • et al.
        Childhood maltreatment as risk factor for lifetime depression: The role of different types of experiences and sensitive periods.
        Ment Health Prev. 2018; 10: 56-65
        • Border R.
        • Johnson E.C.
        • Evans L.M.
        • Smolen A.
        • Berley N.
        • Sullivan P.F.
        • Keller M.C.
        No support for historical candidate gene or candidate gene-by-interaction hypotheses for major depression across multiple large samples.
        Am J Psychiatry. 2019; 176: 376-387
        • Koob G.F.
        Corticotropin-releasing factor, norepinephrine, and stress.
        Biol Psychiatry. 1999; 46: 1167-1180
        • Binder E.B.
        • Nemeroff C.B.
        The CRF system, stress, depression and anxiety—Insights from human genetic studies.
        Mol Psychiatry. 2010; 15: 574-588
        • Matosin N.
        • Halldorsdottir T.
        • Binder E.B.
        Understanding the molecular mechanisms underpinning gene by environment interactions in psychiatric disorders: The FKBP5 model.
        Biol Psychiatry. 2018; 83: 821-830
        • Heils A.
        • Teufel A.
        • Petri S.
        • Stober G.
        • Riederer P.
        • Bengel D.
        • et al.
        Allelic variation of human serotonin transporter gene expression.
        J Neurochem. 1996; 66: 2621-2624
        • Appel K.
        • Schwahn C.
        • Mahler J.
        • Schulz A.
        • Spitzer C.
        • Fenske K.
        • et al.
        Moderation of adult depression by a polymorphism in the FKBP5 gene and childhood physical abuse in the general population.
        Neuropsychopharmacology. 2011; 36: 1982-1991
        • Bradley R.G.
        • Binder E.B.
        • Epstein M.P.
        • Tang Y.
        • Nair H.P.
        • Liu W.
        • et al.
        Influence of child abuse on adult depression—Moderation by the corticotropin-releasing hormone receptor gene.
        Arch Gen Psychiatry. 2008; 65: 190-200
        • Caspi A.
        • Sugden K.
        • Moffitt T.E.
        • Taylor A.
        • Craig I.W.
        • Harrington H.
        • et al.
        Influence of life stress on depression: Moderation by a polymorphism in the 5-HTT gene.
        Science. 2003; 301: 386-389
        • Polanczyk G.
        • Caspi A.
        • Williams B.
        • Price T.S.
        • Danese A.
        • Sugden K.
        • et al.
        Protective effect of CRHR1 gene variants on the development of adult depression following childhood maltreatment: Replication and extension.
        Arch Gen Psychiatry. 2009; 66: 978-985
        • Sharpley C.F.
        • Palanisamy S.K.
        • Glyde N.S.
        • Dillingham P.W.
        • Agnew L.L.
        An update on the interaction between the serotonin transporter promoter variant (5-HTTLPR), stress and depression, plus an exploration of non-confirming findings.
        Behav Brain Res. 2014; 273: 89-105
        • Wang Q.
        • Shelton R.C.
        • Dwivedi Y.
        Interaction between early-life stress and FKBP5 gene variants in major depressive disorder and post-traumatic stress disorder: A systematic review and meta-analysis.
        J Affect Disord. 2018; 225: 422-428
        • Zimmermann P.
        • Bruckl T.
        • Nocon A.
        • Pfister H.
        • Binder E.B.
        • Uhr M.
        • et al.
        Interaction of FKBP5 gene variants and adverse life events in predicting depression onset: Results from a 10-year prospective community study.
        Am J Psychiatry. 2011; 168: 1107-1116
        • Binder E.B.
        • Bradley R.G.
        • Liu W.
        • Epstein M.P.
        • Deveau T.C.
        • Mercer K.B.
        • et al.
        Association of FKBP5 polymorphisms and childhood abuse with risk of posttraumatic stress disorder symptoms in adults.
        JAMA. 2008; 299: 1291-1305
        • Gressier F.
        • Calati R.
        • Balestri M.
        • Marsano A.
        • Alberti S.
        • Antypa N.
        • et al.
        The 5-HTTLPR polymorphism and posttraumatic stress disorder: A meta-analysis.
        J Trauma Stress. 2013; 26: 645-653
        • Kilpatrick D.G.
        • Koenen K.C.
        • Ruggiero K.J.
        • Acierno R.
        • Galea S.
        • Resnick H.S.
        • et al.
        The serotonin transporter genotype and social support and moderation of posttraumatic stress disorder and depression in hurricane-exposed adults.
        Am J Psychiatry. 2007; 164: 1693-1699
        • Klengel T.
        • Mehta D.
        • Anacker C.
        • Rex-Haffner M.
        • Pruessner J.C.
        • Pariante C.M.
        • et al.
        Allele-specific FKBP5 DNA demethylation mediates gene-childhood trauma interactions.
        Nat Neurosci. 2013; 16: 33-41
        • Koenen K.C.
        • Aiello A.E.
        • Bakshis E.
        • Amstadter A.B.
        • Ruggiero K.J.
        • Acierno R.
        • et al.
        Modification of the association between serotonin transporter genotype and risk of posttraumatic stress disorder in adults by county-level social environment.
        Am J Epidemiol. 2009; 169: 704-711
        • Liu Y.
        • Garrett M.E.
        • Dennis M.F.
        • Green K.T.
        • Ashley-Koch A.E.
        • Hauser M.A.
        • et al.
        An examination of the association between 5-HTTLPR, combat exposure, and PTSD diagnosis among U.S. veterans.
        PLoS One. 2015; 10: e119998
        • Watkins L.E.
        • Han S.Z.
        • Harpaz-Rotem I.
        • Mota N.P.
        • Southwick S.M.
        • Krystal J.H.
        • et al.
        FKBP5 polymorphisms, childhood abuse, and PTSD symptoms: Results from the National Health and Resilience in Veterans Study.
        Psychoneuroendocrinology. 2016; 69: 98-105
        • White S.
        • Acierno R.
        • Ruggiero K.J.
        • Koenen K.C.
        • Kilpatrick D.G.
        • Galea S.
        • et al.
        Association of CRHR1 variants and posttraumatic stress symptoms in hurricane exposed adults.
        J Anxiety Disord. 2013; 27: 678-683
        • Xie P.
        • Kranzler H.R.
        • Poling J.
        • Stein M.B.
        • Anton R.F.
        • Farrer L.A.
        • et al.
        Interaction of FKBP5 with childhood adversity on risk for post-traumatic stress disorder.
        Neuropsychopharmacology. 2010; 35: 1684-1692
        • Kolassa I.T.
        • Ertl V.
        • Eckart C.
        • Glockner F.
        • Kolassa S.
        • Papassotiropoulos A.
        • et al.
        Association study of trauma load and SLC6A4 promoter polymorphism in posttraumatic stress disorder: Evidence from survivors of the Rwandan genocide.
        J Clin Psychiatry. 2010; 71: 543-547
        • Kranzler H.R.
        • Scott D.
        • Tennen H.
        • Feinn R.
        • Williams C.
        • Armeli S.
        • et al.
        The 5-HTTLPR polymorphism moderates the effect of stressful life events on drinking behavior in college students of African descent.
        Am J Med Genet B Neuropsychiatr Genet. 2012; 159B: 484-490
        • Lieberman R.
        • Armeli S.
        • Scott D.M.
        • Kranzler H.R.
        • Tennen H.
        • Covault J.
        FKBP5 genotype interacts with early life trauma to predict heavy drinking in college students.
        Am J Med Genet B Neuropsychiatr Genet. 2016; 171: 879-887
        • Nylander I.
        • Todkar A.
        • Granholm L.
        • Vrettou M.
        • Bendre M.
        • Boon W.
        • et al.
        Evidence for a link between Fkbp5/FKBP5, early life social relations and alcohol drinking in young adult rats and humans.
        Mol Neurobiol. 2017; 54: 6225-6234
        • Schmid B.
        • Blomeyer D.
        • Treutlein J.
        • Zimmermann U.S.
        • Buchmann A.F.
        • Schmidt M.H.
        • et al.
        Interacting effects of CRHR1 gene and stressful life events on drinking initiation and progression among 19-year-olds.
        Int J Neuropsychopharmacol. 2010; 13: 703-714
        • Treutlein J.
        • Kissling C.
        • Frank J.
        • Wiemann S.
        • Dong L.
        • Depner M.
        • et al.
        Genetic association of the human corticotropin releasing hormone receptor 1 (CRHR1) with binge drinking and alcohol intake patterns in two independent samples.
        Mol Psychiatry. 2006; 11: 594-602
        • Collip D.
        • Myin-Germeys I.
        • Wichers M.
        • Jacobs N.
        • Derom C.
        • Thiery E.
        • et al.
        FKBP5 as a possible moderator of the psychosis-inducing effects of childhood trauma.
        Br J Psychiatry. 2013; 202: 261-268
        • Bernardo M.
        • Bioque M.
        • Cabrera B.
        • Lobo A.
        • Gonzalez-Pinto A.
        • Pina L.
        • et al.
        Modelling gene-environment interaction in first episodes of psychosis.
        Schizophr Res. 2017; 189: 181-189
        • Hornung O.P.
        • Heim C.M.
        Gene-environment interactions and intermediate phenotypes: Early trauma and depression.
        Front Endocrinol. 2014; 5: 14
        • Bunea I.M.
        • Szentagotai-Tatar A.
        • Miu A.C.
        Early-life adversity and cortisol response to social stress: A meta-analysis.
        Transl Psychiatry. 2017; 7: 1274
        • De Kloet E.R.
        • Joëls M.
        • Holsboer F.
        Stress and the brain: From adaptation to disease.
        Nat Rev Neurosci. 2005; 6: 463-475
        • Heuser I.
        • Yassouridis A.
        • Holsboer F.
        The combined dexamethasone/CRH test: A refined laboratory test for psychiatric disorders.
        J Psychiatr Res. 1994; 28: 341-356
        • Kirschbaum C.
        • Pirke K.M.
        • Hellhammer D.H.
        The “Trier Social Stress Test”—A tool for investigating psychobiological stress responses in a laboratory setting.
        Neuropsychobiology. 1993; 28: 76-81
        • Steptoe A.
        • Serwinski B.
        Cortisol awakening response.
        in: Fink G. Stress: Concepts, Cognition, Emotion, and Behavior. Academic Press, San Diego2016: 277-283
        • Buchmann A.F.
        • Holz N.
        • Boecker R.
        • Blomeyer D.
        • Rietschel M.
        • Witt S.H.
        • et al.
        Moderating role of FKBP5 genotype in the impact of childhood adversity on cortisol stress response during adulthood.
        Eur Neuropsychopharmacol. 2014; 24: 837-845
        • Chen M.C.
        • Joormann J.
        • Hallmayer J.
        • Gotlib I.H.
        Serotonin transporter polymorphism predicts waking cortisol in young girls.
        Psychoneuroendocrinology. 2009; 34: 681-686
        • Cicchetti D.
        • Rogosch F.A.
        • Oshri A.
        Interactive effects of corticotropin releasing hormone receptor 1, serotonin transporter linked polymorphic region, and child maltreatment on diurnal cortisol regulation and internalizing symptomatology.
        Dev Psychopathol. 2011; 23: 1125-1138
        • Frigerio A.
        • Ceppi E.
        • Rusconi M.
        • Giorda R.
        • Raggi M.E.
        • Fearon P.
        The role played by the interaction between genetic factors and attachment in the stress response in infancy.
        J Child Psychol Psychiatry. 2009; 50: 1513-1522
        • Grad I.
        • Picard D.
        The glucocorticoid responses are shaped by molecular chaperones.
        Mol Cell Endocrinol. 2007; 275: 2-12
        • Heim C.
        • Bradley B.
        • Mletzko T.C.
        • Deveau T.C.
        • Musselman D.L.
        • Nemeroff C.B.
        • et al.
        Effect of childhood trauma on adult depression and neuroendocrine function: Sex-specific moderation by CRH receptor 1 gene.
        Front Behav Neurosci. 2009; 3: 41
        • Ising M.
        • Depping A.M.
        • Siebertz A.
        • Lucae S.
        • Unschuld P.G.
        • Kloiber S.
        • et al.
        Polymorphisms in the FKBP5 gene region modulate recovery from psychosocial stress in healthy controls.
        Eur J Neurosci. 2008; 28: 389-398
        • Koenig A.M.
        • Ramo-Fernandez L.
        • Boeck C.
        • Umlauft M.
        • Pauly M.
        • Binder E.B.
        • et al.
        Intergenerational gene × environment interaction of FKBP5 and childhood maltreatment on hair steroids.
        Psychoneuroendocrinology. 2018; 92: 103-112
        • Kohrt B.A.
        • Worthman C.M.
        • Ressler K.J.
        • Mercer K.B.
        • Upadhaya N.
        • Koirala S.
        • et al.
        Cross-cultural gene-environment interactions in depression, post-traumatic stress disorder, and the cortisol awakening response: FKBP5 polymorphisms and childhood trauma in South Asia.
        Int Rev Psychiatry. 2015; 27: 180-196
        • Luijk M.P.C.M.
        • Velders F.P.
        • Tharner A.
        • van IJzendoorn M.H.
        • Bakermans-Kranenburg M.J.
        • Jaddoe V.W.V.
        • et al.
        FKBP5 and resistant attachment predict cortisol reactivity in infants: Gene-environment interaction.
        Psychoneuroendocrinology. 2010; 35: 1454-1461
        • Mahon P.B.
        • Zandi P.P.
        • Potash J.B.
        • Nestadt G.
        • Wand G.S.
        Genetic association of FKBP5 and CRHR1 with cortisol response to acute psychosocial stress in healthy adults.
        Psychopharmacology. 2013; 227: 231-241
        • McCormack K.
        • Newman T.K.
        • Higley J.D.
        • Maestripieri D.
        • Sanchez M.M.
        Serotonin transporter gene variation, infant abuse, and responsiveness to stress in rhesus macaque mothers and infants.
        Horm Behav. 2009; 55: 538-547
        • Mehta D.
        • Gonik M.
        • Klengel T.
        • Rex-Haffner M.
        • Menke A.
        • Rubel J.
        • et al.
        Using polymorphisms in FKBP5 to define biologically distinct subtypes of posttraumatic stress disorder: Evidence from endocrine and gene expression studies.
        Arch Gen Psychiatry. 2011; 68: 901-910
        • Miller R.
        • Wankerl M.
        • Stalder T.
        • Kirschbaum C.
        • Alexander N.
        The serotonin transporter gene-linked polymorphic region (5-HTTLPR) and cortisol stress reactivity: A meta-analysis.
        Mol Psychiatry. 2013; 18: 1018-1024
        • Mueller A.
        • Brocke B.
        • Fries E.
        • Lesch K.P.
        • Kirschbaum C.
        The role of the serotonin transporter polymorphism for the endocrine stress response in newborns.
        Psychoneuroendocrinology. 2010; 35: 289-296
        • Sheikh H.I.
        • Kryski K.R.
        • Smith H.J.
        • Hayden E.P.
        • Singh S.M.
        Corticotropin-releasing hormone system polymorphisms are associated with children’s cortisol reactivity.
        Neuroscience. 2013; 229: 1-11
        • Sumner J.A.
        • McLaughlin K.A.
        • Walsh K.
        • Sheridan M.A.
        • Koenen K.C.
        CRHR1 genotype and history of maltreatment predict cortisol reactivity to stress in adolescents.
        Psychoneuroendocrinology. 2014; 43: 71-80
        • Tyrka A.R.
        • Price L.H.
        • Gelernter J.
        • Schepker C.
        • Anderson G.M.
        • Carpenter L.L.
        Interaction of childhood maltreatment with the corticotropin-releasing hormone receptor gene: Effects on hypothalamic-pituitary-adrenal axis reactivity.
        Biol Psychiatry. 2009; 66: 681-685
        • Vermeer H.
        • Hendriks-Stegeman B.I.
        • van der Burg B.
        • van Buul-Offers S.C.
        • Jansen M.
        Glucocorticoid-induced increase in lymphocytic FKBP51 messenger ribonucleic acid expression: A potential marker for glucocorticoid sensitivity, potency, and bioavailability.
        J Clin Endocrinol Metab. 2003; 88: 277-284
        • Shin L.M.
        • Liberzon I.
        The neurocircuitry of fear, stress, and anxiety disorders.
        Neuropsychopharmacology. 2010; 35: 169-191
        • Hamilton J.P.
        • Etkin A.
        • Furman D.J.
        • Lemus M.G.
        • Johnson R.F.
        • Gotlib I.H.
        Functional neuroimaging of major depressive disorder: A meta-analysis and new integration of baseline activation and neural response data.
        Am J Psychiatry. 2012; 169: 693-703
        • Etkin A.
        • Wager T.D.
        Functional neuroimaging of anxiety: A meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia.
        Am J Psychiatry. 2007; 164: 1476-1488
        • Hulvershorn L.A.
        • Karne H.
        • Gunn A.D.
        • Hartwick S.L.
        • Wang Y.
        • Hummer T.A.
        • et al.
        Neural activation during facial emotion processing in unmedicated bipolar depression, euthymia, and mania.
        Biol Psychiatry. 2012; 71: 603-610
        • Demers C.H.
        • Drabant Conley E.
        • Bogdan R.
        • Hariri A.R.
        Interactions between anandamide and corticotropin-releasing factor signaling modulate human amygdala function and risk for anxiety disorders: An imaging genetics strategy for modeling molecular interactions.
        Biol Psychiatry. 2016; 80: 356-362
        • Holz N.E.
        • Buchmann A.F.
        • Boecker R.
        • Blomeyer D.
        • Baumeister S.
        • Wolf I.
        • et al.
        Role of FKBP5 in emotion processing: Results on amygdala activity, connectivity and volume.
        Brain Struct Funct. 2015; 220: 1355-1368
        • Munafò M.R.
        • Brown S.M.
        • Hariri A.R.
        Serotonin transporter (5-HTTLPR) genotype and amygdala activation: A meta-analysis.
        Biol Psychiatry. 2008; 63: 852-857
        • Murphy S.E.
        • Norbury R.
        • Godlewska B.R.
        • Cowen P.J.
        • Mannie Z.M.
        • Harmer C.J.
        • et al.
        The effect of the serotonin transporter polymorphism (5-HTTLPR) on amygdala function: A meta-analysis.
        Mol Psychiatry. 2013; 18: 512-520
        • White M.G.
        • Bogdan R.
        • Fisher P.M.
        • Munoz K.E.
        • Williamson D.E.
        • Hariri A.R.
        FKBP5 and emotional neglect interact to predict individual differences in amygdala reactivity.
        Genes Brain Behav. 2012; 11: 869-878
        • Kotov R.
        • Gamez W.
        • Schmidt F.
        • Watson D.
        Linking “big” personality traits to anxiety, depressive, and substance use disorders: A meta-analysis.
        Psychol Bull. 2010; 136: 768-821
        • Ormel J.
        • Jeronimus B.F.
        • Kotov R.
        • Riese H.
        • Bos E.H.
        • Hankin B.
        • et al.
        Neuroticism and common mental disorders: Meaning and utility of a complex relationship.
        Clin Psychol Rev. 2013; 33: 686-697
        • Munafo M.R.
        • Freimer N.B.
        • Ng W.
        • Ophoff R.
        • Veijola J.
        • Miettunen J.
        • et al.
        5-HTTLPR genotype and anxiety-related personality traits: A meta-analysis and new data.
        Am J Med Genet B Neuropsychiatr Genet. 2009; 150B: 271-281
        • Terracciano A.
        • Tanaka T.
        • Sutin A.R.
        • Deiana B.
        • Balaci L.
        • Sanna S.
        • et al.
        BDNF Val66Met is associated with introversion and interacts with 5-HTTLPR to influence neuroticism.
        Neuropsychopharmacology. 2010; 35: 1083-1089
        • DeYoung C.G.
        • Cicchetti D.
        • Rogosch F.A.
        Moderation of the association between childhood maltreatment and neuroticism by the corticotropin-releasing hormone receptor 1 gene.
        J Child Psychol Psychiatry. 2011; 52: 898-906
        • Perez-Perez B.
        • Cristobal-Narvaez P.
        • Sheinbaum T.
        • Kwapil T.R.
        • Ballespi S.
        • Pena E.
        • et al.
        Interaction between FKBP5 variability and recent life events in the anxiety spectrum: Evidence for the differential susceptibility model.
        PLoS One. 2018; 13: e193044
        • Culverhouse R.C.
        • Saccone N.L.
        • Horton A.C.
        • Ma Y.
        • Anstey K.J.
        • Banaschewski T.
        • et al.
        Collaborative meta-analysis finds no evidence of a strong interaction between stress and 5-HTTLPR genotype contributing to the development of depression.
        Mol Psychiatry. 2018; 23: 133-142
        • Risch N.
        • Herrell R.
        • Lehner T.
        • Liang K.Y.
        • Eaves L.
        • Hoh J.
        • et al.
        Interaction between the serotonin transporter gene (5-HTTLPR), stressful life events, and risk of depression: A meta-analysis.
        JAMA. 2009; 301: 2462-2471
        • Karg K.
        • Burmeister M.
        • Shedden K.
        • Sen S.
        The serotonin transporter promoter variant (5-HTTLPR), stress, and depression meta-analysis revisited: Evidence of genetic moderation.
        Arch Gen Psychiatry. 2011; 68: 444-454
        • Bustamante A.C.
        • Aiello A.E.
        • Guffanti G.
        • Galea S.
        • Wildman D.E.
        • Uddin M.
        FKBP5 DNA methylation does not mediate the association between childhood maltreatment and depression symptom severity in the Detroit Neighborhood Health Study.
        J Psychiatr Res. 2018; 96: 39-48
        • Isaksson J.
        • Comasco E.
        • Aslund C.
        • Rehn M.
        • Tuvblad C.
        • Andershed H.
        • et al.
        Associations between the FKBP5 haplotype, exposure to violence and anxiety in females.
        Psychoneuroendocrinology. 2016; 72: 196-204
        • Kranzler H.R.
        • Feinn R.
        • Nelson E.C.
        • Covault J.
        • Anton R.F.
        • Farrer L.
        • et al.
        A CRHR1 haplotype moderates the effect of adverse childhood experiences on lifetime risk of major depressive episode in African-American women.
        Am J Med Genet B Neuropsychiatr Genet. 2011; 156B: 960-968
        • Caspi A.
        • Hariri A.R.
        • Holmes A.
        • Uher R.
        • Moffitt T.E.
        Genetic sensitivity to the environment: The case of the serotonin transporter gene and its implications for studying complex diseases and traits.
        Am J Psychiatry. 2010; 167: 509-527
        • Uher R.
        • McGuffin P.
        The moderation by the serotonin transporter gene of environmental adversity in the aetiology of mental illness: Review and methodological analysis.
        Mol Psychiatry. 2008; 13: 131-146
        • Kolassa I.T.
        • Ertl V.
        • Eckart C.
        • Onyut L.P.
        • Kolassa S.
        • Elbert T.
        Spontaneous remission from PTSD depends on the number of traumatic event types experienced.
        Psychol Trauma. 2010; 2: 169-174
        • Conrad D.
        • Wilker S.
        • Pfeiffer A.
        • Lingenfelder B.
        • Ebalu T.
        • Lanzinger H.
        • et al.
        Does trauma event type matter in the assessment of traumatic load?.
        Eur J Psychotraumatol. 2017; 8: 1344079
        • Wilker S.
        • Pfeiffer A.
        • Kolassa S.
        • Koslowski D.
        • Elbert T.
        • Kolassa I.T.
        How to quantify exposure to traumatic stress? Reliability and predictive validity of measures for cumulative trauma exposure in a post-conflict population.
        Eur J Psychotraumatol. 2015; 6: 28306
        • Aschard H.
        • Lutz S.
        • Maus B.
        • Duell E.J.
        • Fingerlin T.E.
        • Chatterjee N.
        • et al.
        Challenges and opportunities in genome-wide environmental interaction (GWEI) studies.
        Hum Genet. 2012; 131: 1591-1613
        • Aschard H.
        • Tobin M.D.
        • Hancock D.B.
        • Skurnik D.
        • Sood A.
        • James A.
        • et al.
        Evidence for large-scale gene-by-smoking interaction effects on pulmonary function.
        Int J Epidemiol. 2017; 46: 894-904
        • Molfino N.A.
        • Coyle A.J.
        Gene-environment interactions in chronic obstructive pulmonary disease.
        Int J Chron Obstruct Pulmon Dis. 2008; 3: 491-497
        • Arnau-Soler A.
        • Macdonald-Dunlop E.
        • Adams M.J.
        • Clarke T.
        • MacIntyre D.J.
        • Milburn K.
        • et al.
        Genome-wide by environment interaction studies (GWEIS) of depressive symptoms and psychosocial stress in UK Biobank and Generation Scotland.
        Transl Psychiatry. 2019; 9: 14
        • Coleman J.R.I.
        • Peyrot W.J.
        • Purves K.L.
        • Davis K.A.S.
        • Rayner C.
        • Choi S.W.
        • et al.
        Genome-wide gene-environment analyses of major depressive disorder and reported lifetime traumatic experiences in UK Biobank.
        BioRxiv. 2018; ([published online ahead of print Nov 1])
        • Dunn E.C.
        • Wiste A.
        • Radmanesh F.
        • Almli L.M.
        • Gogarten S.M.
        • Sofer T.
        • et al.
        Genome-wide association study (GWAS) and genome-wide by environment interaction study (GWEIS) of depressive symptoms in African American and Hispanic/Latina women.
        Depress Anxiety. 2016; 33: 265-280
        • Ikeda M.
        • Shimasaki A.
        • Takahashi A.
        • Kondo K.
        • Saito T.
        • Kawase K.
        • et al.
        Genome-wide environment interaction between depressive state and stressful life events.
        J Clin Psychiatry. 2016; 77: e29-e30
        • Otowa T.
        • Kawamura Y.
        • Tsutsumi A.
        • Kawakami N.
        • Kan C.
        • Shimada T.
        • et al.
        The first pilot genome-wide gene-environment study of depression in the Japanese population.
        PLoS One. 2016; 11: e160823
        • Maier R.M.
        • Visscher P.M.
        • Robinson M.R.
        • Wray N.R.
        Embracing polygenicity: A review of methods and tools for psychiatric genetics research.
        Psychol Med. 2018; 48: 1055-1067
        • Schizophrenia Working Group of the Psychiatric Genomics Consortium
        Biological insights from 108 schizophrenia-associated genetic loci.
        Nature. 2014; 511: 421-427
        • Peyrot W.J.
        • Van der Auwera S.
        • Milaneschi Y.
        • Dolan C.V.
        • Madden P.A.F.
        • Sullivan P.F.
        • et al.
        Does childhood trauma moderate polygenic risk for depression? A meta-analysis of 5765 subjects from the Psychiatric Genomics Consortium.
        Biol Psychiatry. 2018; 84: 138-147
        • Mullins N.
        • Power R.A.
        • Fisher H.L.
        • Hanscombe K.B.
        • Euesden J.
        • Iniesta R.
        • et al.
        Polygenic interactions with environmental adversity in the aetiology of major depressive disorder.
        Psychol Med. 2016; 46: 759-770
        • Halldorsdottir T.
        • Piechaczek C.
        • Soares de Matos A.P.
        • Czamara D.
        • Pehl V.
        • Wagenbuechler P.
        • et al.
        Polygenic risk: Predicting depression outcomes in clinical and epidemiological cohorts of youths.
        Am J Psychiatry. 2019; 176: 615-625
        • Engelman C.D.
        • Baurley J.W.
        • Chiu Y.F.
        • Joubert B.R.
        • Lewinger J.P.
        • Maenner M.J.
        • et al.
        Detecting gene-environment interactions in genome-wide association data.
        Genet Epidemiol. 2009; 33: S68-S73
        • Gray J.D.
        • Kogan J.F.
        • Marrocco J.
        • McEwen B.S.
        Genomic and epigenomic mechanisms of glucocorticoids in the brain.
        Nat Rev Endocrinol. 2017; 13: 661-673
        • Grontved L.
        • John S.
        • Baek S.
        • Liu Y.
        • Buckley J.R.
        • Vinson C.
        • et al.
        C/EBP maintains chromatin accessibility in liver and facilitates glucocorticoid receptor recruitment to steroid response elements.
        EMBO J. 2013; 32: 1568-1583
        • Kress C.
        • Thomassin H.
        • Grange T.
        Active cytosine demethylation triggered by a nuclear receptor involves DNA strand breaks.
        Proc Natl Acad Sci U S A. 2006; 103: 11112-11117
        • Jaaskelainen T.
        • Makkonen H.
        • Palvimo J.J.
        Steroid up-regulation of FKBP51 and its role in hormone signaling.
        Curr Opin Pharmacol. 2011; 11: 326-331
        • Binder E.B.
        • Salyakina D.
        • Lichtner P.
        • Wochnik G.M.
        • Ising M.
        • Putz B.
        • et al.
        Polymorphisms in FKBP5 are associated with increased recurrence of depressive episodes and rapid response to antidepressant treatment.
        Nat Genet. 2004; 36: 1319-1325
        • Gassen N.C.
        • Hartmann J.
        • Zannas A.S.
        • Kretzschmar A.
        • Zschocke J.
        • Maccarrone G.
        • et al.
        FKBP51 inhibits GSK3β and augments the effects of distinct psychotropic medications.
        Mol Psychiatry. 2016; 21: 277-289
        • Young K.A.
        • Thompson P.M.
        • Cruz D.A.
        • Williamson D.E.
        • Selemon L.D.
        BA11 FKBP5 expression levels correlate with dendritic spine density in postmortem PTSD and controls.
        Neurobiol Stress. 2015; 2: 67-72
        • Hartmann J.
        • Wagner K.V.
        • Liebl C.
        • Scharf S.H.
        • Wang X.-D.
        • Wolf M.
        • et al.
        The involvement of FK506-binding protein 51 (FKBP5) in the behavioral and neuroendocrine effects of chronic social defeat stress.
        Neuropharmacology. 2012; 62: 332-339
        • Touma C.
        • Gassen N.C.
        • Herrmann L.
        • Cheung-Flynn J.
        • Bull D.R.
        • Ionescu I.A.
        • et al.
        FK506 binding protein 5 shapes stress responsiveness: Modulation of neuroendocrine reactivity and coping behavior.
        Biol Psychiatry. 2011; 70: 928-936
        • McAllister K.
        • Mechanic L.E.
        • Amos C.
        • Aschard H.
        • Blair I.A.
        • Chatterjee N.
        • et al.
        Current challenges and new opportunities for gene-environment interaction studies of complex diseases.
        Am J Epidemiol. 2017; 186: 753-761
        • Argos M.
        • Tong L.
        • Roy S.
        • Sabarinathan M.
        • Ahmed A.
        • Islam M.T.
        • et al.
        Screening for gene-environment (G×E) interaction using omics data from exposed individuals: An application to gene-arsenic interaction.
        Mamm Genome. 2018; 29: 101-111
        • Arloth J.
        • Bogdan R.
        • Weber P.
        • Frishman G.
        • Menke A.
        • Wagner Klaus V.
        • et al.
        Genetic differences in the immediate transcriptome response to stress predict risk-related brain function and psychiatric disorders.
        Neuron. 2015; 86: 1189-1202
        • Elbau I.G.
        • Brucklmeier B.
        • Uhr M.
        • Arloth J.
        • Czamara D.
        • Spoormaker V.I.
        • et al.
        The brain’s hemodynamic response function rapidly changes under acute psychosocial stress in association with genetic and endocrine stress response markers.
        Proc Natl Acad Sci U S A. 2018; 115: E10206-E10215
        • Longden T.A.
        • Dabertrand F.
        • Hill-Eubanks D.C.
        • Hammack S.E.
        • Nelson M.T.
        Stress-induced glucocorticoid signaling remodels neurovascular coupling through impairment of cerebrovascular inwardly rectifying K+ channel function.
        Proc Natl Acad Sci U S A. 2014; 111: 7462-7467
        • Goodkind M.
        • Eickhoff S.B.
        • Oathes D.J.
        • Jiang Y.
        • Chang A.
        • Jones-Hagata L.B.
        • et al.
        Identification of a common neurobiological substrate for mental illness.
        JAMA Psychiatry. 2015; 72: 305-315
        • Bale T.L.
        Epigenetic and transgenerational reprogramming of brain development.
        Nat Rev Neurosci. 2015; 16: 332-344
        • Binder E.B.
        Dissecting the molecular mechanisms of gene × environment interactions: Implications for diagnosis and treatment of stress-related psychiatric disorders.
        Eur J Psychotraumatol. 2017; 8: 1412745
        • Demetriou C.A.
        • van Veldhoven K.
        • Relton C.
        • Stringhini S.
        • Kyriacou K.
        • Vineis P.
        Biological embedding of early-life exposures and disease risk in humans: A role for DNA methylation.
        Eur J Clin Invest. 2015; 45: 303-332
        • Klengel T.
        • Binder E.B.
        Epigenetics of stress-related psychiatric disorders and gene × environment interactions.
        Neuron. 2015; 86: 1343-1357
        • Zannas A.S.
        • West A.E.
        Epigenetics and the regulation of stress vulnerability and resilience.
        Neuroscience. 2014; 264: 157-170
        • Klengel T.
        • Binder E.B.
        Allele-specific epigenetic modification: A molecular mechanism for gene-environment interactions in stress-related psychiatric disorders?.
        Epigenomics. 2013; 5: 109-112
        • Gluckman P.D.
        • Hanson M.A.
        • Cooper C.
        • Thornburg K.L.
        Effect of in utero and early-life conditions on adult health and disease.
        N Engl J Med. 2008; 359: 61-73
        • Teh A.L.
        • Pan H.
        • Chen L.
        • Ong M.L.
        • Dogra S.
        • Wong J.
        • et al.
        The effect of genotype and in utero environment on interindividual variation in neonate DNA methylomes.
        Genome Res. 2014; 24: 1064-1074
        • Czamara D.
        • Eraslan G.
        • Lahti J.
        • Page C.M.
        • Lahti-Pulkkinen M.
        • Hämäläinen E.
        • et al.
        Variably methylated regions in the newborn epigenome: Environmental, genetic and combined influences.
        BioRxiv. 2018; ([published online ahead of print Oct 17])
        • Baldwin J.R.
        • Reuben A.
        • Newbury J.B.
        • Danese A.
        Agreement between prospective and retrospective measures of childhood maltreatment: A systematic review and meta-analysis.
        JAMA Psychiatry. 2019; 76: 584-593
        • Wild C.P.
        The exposome: From concept to utility.
        Int J Epidemiol. 2012; 41: 24-32
        • Wright R.O.
        • Teitelbaum S.
        • Thompson C.
        • Balshaw D.
        The Child Health Exposure Analysis Resource as a vehicle to measure environment in the Environmental Influences on Child Health Outcomes program.
        Curr Opin Pediatr. 2018; 30: 285-291
        • Turner M.C.
        • Nieuwenhuijsen M.
        • Anderson K.
        • Balshaw D.
        • Cui Y.
        • Dunton G.
        • et al.
        Assessing the exposome with external measures: Commentary on the state of the science and research recommendations.
        Annu Rev Public Health. 2017; 38: 215-239
        • Network and Pathway Analysis Subgroup of Psychiatric Genomics Consortium
        Psychiatric genome-wide association study analyses implicate neuronal, immune and histone pathways.
        Nat Neurosci. 2015; 18: 199-209
        • Brennand K.J.
        • Simone A.
        • Tran N.
        • Gage F.H.
        Modeling psychiatric disorders at the cellular and network levels.
        Mol Psychiatry. 2012; 17: 1239-1253
        • Pasca S.P.
        The rise of three-dimensional human brain cultures.
        Nature. 2018; 553: 437-445
        • Schwartzentruber J.
        • Foskolou S.
        • Kilpinen H.
        • Rodrigues J.
        • Alasoo K.
        • Knights A.J.
        • et al.
        Molecular and functional variation in iPSC-derived sensory neurons.
        Nat Genet. 2018; 50: 54-61
        • Sharon E.
        • Chen S.A.
        • Khosla N.M.
        • Smith J.D.
        • Pritchard J.K.
        • Fraser H.B.
        Functional genetic variants revealed by massively parallel precise genome editing.
        Cell. 2018; 175: 544-557
        • Ma L.
        • Boucher J.I.
        • Paulsen J.
        • Matuszewski S.
        • Eide C.A.
        • Ou J.
        • et al.
        CRISPR-Cas9-mediated saturated mutagenesis screen predicts clinical drug resistance with improved accuracy.
        Proc Natl Acad Sci U S A. 2017; 114: 11751-11756