Advertisement

Mapping Cortical and Subcortical Asymmetry in Obsessive-Compulsive Disorder: Findings From the ENIGMA Consortium

      Abstract

      Background

      Lateralized dysfunction has been suggested in obsessive-compulsive disorder (OCD). However, it is currently unclear whether OCD is characterized by abnormal patterns of brain structural asymmetry. Here we carried out what is by far the largest study of brain structural asymmetry in OCD.

      Methods

      We studied a collection of 16 pediatric datasets (501 patients with OCD and 439 healthy control subjects), as well as 30 adult datasets (1777 patients and 1654 control subjects) from the OCD Working Group within the ENIGMA (Enhancing Neuro Imaging Genetics through Meta Analysis) Consortium. Asymmetries of the volumes of subcortical structures, and of measures of regional cortical thickness and surface areas, were assessed based on T1-weighted magnetic resonance imaging scans, using harmonized image analysis and quality control protocols. We investigated possible alterations of brain asymmetry in patients with OCD. We also explored potential associations of asymmetry with specific aspects of the disorder and medication status.

      Results

      In the pediatric datasets, the largest case-control differences were observed for volume asymmetry of the thalamus (more leftward; Cohen’s d = 0.19) and the pallidum (less leftward; d = −0.21). Additional analyses suggested putative links between these asymmetry patterns and medication status, OCD severity, or anxiety and depression comorbidities. No significant case-control differences were found in the adult datasets.

      Conclusions

      The results suggest subtle changes of the average asymmetry of subcortical structures in pediatric OCD, which are not detectable in adults with the disorder. These findings may reflect altered neurodevelopmental processes in OCD.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ruscio A.M.
        • Stein D.J.
        • Chiu W.T.
        • Kessler R.C.
        The epidemiology of obsessive-compulsive disorder in the National Comorbidity Survey Replication.
        Mol Psychiatry. 2010; 15: 53-63
        • Wittchen H.U.
        • Jacobi F.
        Size and burden of mental disorders in Europe—A critical review and appraisal of 27 studies.
        Eur Neuropsychopharmacol. 2005; 15: 357-376
        • Nestadt G.
        • Samuels J.
        • Riddle M.
        • Bienvenu 3rd, O.J.
        • Liang K.Y.
        • LaBuda M.
        • et al.
        A family study of obsessive-compulsive disorder.
        Arch Gen Psychiatry. 2000; 57: 358-363
        • Pauls D.L.
        • Abramovitch A.
        • Rauch S.L.
        • Geller D.A.
        Obsessive-compulsive disorder: An integrative genetic and neurobiological perspective.
        Nat Rev Neurosci. 2014; 15: 410-424
        • Geschwind D.H.
        • Flint J.
        Genetics and genomics of psychiatric disease.
        Science. 2015; 349: 1489-1494
        • Hugdahl K.
        • Davidson R.J.
        The Asymmetrical Brain.
        MIT Press, Cambridge, MA2004
        • Zago L.
        • Petit L.
        • Jobard G.
        • Hay J.
        • Mazoyer B.
        • Tzourio-Mazoyer N.
        • et al.
        Pseudoneglect in line bisection judgement is associated with a modulation of right hemispheric spatial attention dominance in right-handers.
        Neuropsychologia. 2017; 94: 75-83
        • Zhen Z.
        • Kong X.Z.
        • Huang L.
        • Yang Z.
        • Wang X.
        • Hao X.
        • et al.
        Quantifying the variability of scene-selective regions: Interindividual, interhemispheric, and sex differences.
        Hum Brain Mapp. 2017; 38: 2260-2275
        • Coan J.A.
        • Allen J.J.B.
        Frontal EEG asymmetry as a moderator and mediator of emotion.
        Biol Psychol. 2004; 67: 7-49
        • Wheeler R.E.
        • Davidson R.J.
        • Tomarken A.J.
        Frontal brain asymmetry and emotional reactivity—A biological substrate of affective style.
        Psychophysiology. 1993; 30: 82-89
        • Vigneau M.
        • Beaucousin V.
        • Herve P.Y.
        • Duffau H.
        • Crivello F.
        • Houde O.
        • et al.
        Meta-analyzing left hemisphere language areas: Phonology, semantics, and sentence processing.
        Neuroimage. 2006; 30: 1414-1432
        • Corballis M.C.
        From mouth to hand: Gesture, speech, and the evolution of right-handedness.
        Behav Brain Sci. 2003; 26 (discussion 208–260): 199-208
        • Crow T.J.
        Temporal-Lobe asymmetries as the key to the etiology of schizophrenia.
        Schizophr Bull. 1990; 16: 433-443
        • Yucel M.
        • Stuart G.W.
        • Maruff P.
        • Wood S.J.
        • Savage G.R.
        • Smith D.J.
        • et al.
        Paracingulate morphologic differences in males with established schizophrenia: A magnetic resonance imaging morphometric study.
        Biol Psychiatry. 2002; 52: 15-23
        • Eyler L.T.
        • Pierce K.
        • Courchesne E.
        A failure of left temporal cortex to specialize for language is an early emerging and fundamental property of autism.
        Brain. 2012; 135: 949-960
        • Altarelli I.
        • Leroy F.
        • Monzalvo K.
        • Fluss J.
        • Billard C.
        • Dehaene-Lambertz G.
        • et al.
        Planum temporale asymmetry in developmental dyslexia: Revisiting an old question.
        Hum Brain Mapp. 2014; 35: 5717-5735
        • Kuelz A.K.
        • Hohagen F.
        • Voderholzer U.
        Neuropsychological performance in obsessive-compulsive disorder: A critical review.
        Biol Psychol. 2004; 65: 185-236
        • Abramovitch A.
        • Abramowitz J.S.
        • Mittelman A.
        The neuropsychology of adult obsessive-compulsive disorder: A meta-analysis.
        Clin Psychol Rev. 2013; 33: 1163-1171
        • Kuskowski M.A.
        • Malone S.M.
        • Kim S.W.
        • Dysken M.W.
        • Okaya A.J.
        • Christensen K.J.
        Quantitative EEG in obsessive-compulsive disorder.
        Biol Psychiatry. 1993; 33: 423-430
        • Maril S.
        • Hermesh H.
        • Gross-Isseroff R.
        • Tomer R.
        Spatial attention and neural asymmetry in obsessive-compulsive disorder.
        Psychiatry Res. 2007; 153: 189-193
        • Rao N.P.
        • Arasappa R.
        • Reddy N.N.
        • Venkatasubramanian G.
        • Reddy Y.C.J.
        Lateralisation abnormalities in obsessive-compulsive disorder: A line bisection study.
        Acta Neuropsychiatr. 2015; 27: 242-247
        • Ischebeck M.
        • Endrass T.
        • Simon D.
        • Kathmann N.
        Altered frontal EEG asymmetry in obsessive-compulsive disorder.
        Psychophysiology. 2014; 51: 596-601
        • Wexler B.E.
        • Goodman W.K.
        Cerebral laterality, perception of emotion, and treatment response in obsessive-compulsive disorder.
        Biol Psychiatry. 1991; 29: 900-908
        • Schienle A.
        • Schafer A.
        • Stark R.
        • Walter B.
        • Vaitl D.
        Neural responses of OCD patients towards disorder-relevant, generally disgust-inducing and fear-inducing pictures.
        Int J Psychophysiol. 2005; 57: 69-77
        • Simon D.
        • Kaufmann C.
        • Musch K.
        • Kischkel E.
        • Kathmann N.
        Fronto-striato-limbic hyperactivation in obsessive-compulsive disorder during individually tailored symptom provocation.
        Psychophysiology. 2010; 47: 728-738
        • Rao N.P.
        • Reddy Y.C.
        • Kumar K.J.
        • Kandavel T.
        • Chandrashekar C.R.
        Are neuropsychological deficits trait markers in OCD?.
        Prog Neuropsychopharmacol Biol Psychiatry. 2008; 32: 1574-1579
        • Shagass C.
        • Roemer R.A.
        • Straumanis J.J.
        • Josiassen R.C.
        Distinctive somatosensory evoked-potential features in obsessive-compulsive disorder.
        Biol Psychiatry. 1984; 19: 1507-1524
        • Tot S.
        • Ozge A.
        • Comelekoglu U.
        • Yazici K.
        • Bal N.
        Association of QEEG findings with clinical characteristics of OCD: Evidence of left frontotemporal dysfunction.
        Can J Psychiatry. 2002; 47: 538-545
        • Shin Y.W.
        • Ha T.H.
        • Kim S.Y.
        • Kwon J.S.
        Association between EEG alpha power and visuospatial function in obsessive-compulsive disorder.
        Clin Neurophysiol. 2004; 58: 16-20
        • Towey J.
        • Bruder G.
        • Tenke C.
        • Leite P.
        • Decaria C.
        • Friedman D.
        • et al.
        Event-related potential and clinical correlates of neurodysfunction in obsessive-compulsive disorder.
        Psychiatry Res. 1993; 49: 167-181
        • Rus O.G.
        • Reess T.J.
        • Wagner G.
        • Zimmer C.
        • Zaudig M.
        • Koch K.
        Functional and structural connectivity of the amygdala in obsessive-compulsive disorder.
        Neuroimage Clin. 2017; 13: 246-255
        • Ahmari S.E.
        • Spellman T.
        • Douglass N.L.
        • Kheirbek M.A.
        • Simpson H.B.
        • Deisseroth K.
        • et al.
        Repeated cortico-striatal stimulation generates persistent OCD-like behavior.
        Science. 2013; 340: 1234-1239
        • Mondino M.
        • Haesebaert F.
        • Poulet E.
        • Saoud M.
        • Brunelin J.
        Efficacy of cathodal transcranial direct current stimulation over the left orbitofrontal cortex in a patient with treatment-resistant obsessive-compulsive disorder.
        J ECT. 2015; 31: 271-272
        • Peng Z.
        • Li G.
        • Shi F.
        • Shi C.
        • Yang Q.
        • Chan R.C.
        • et al.
        Cortical asymmetries in unaffected siblings of patients with obsessive-compulsive disorder.
        Psychiatry Res. 2015; 234: 346-351
        • Garber H.J.
        • Ananth J.V.
        • Chiu L.C.
        • Griswold V.J.
        • Oldendorf W.H.
        Nuclear magnetic resonance study of obsessive-compulsive disorder.
        Am J Psychiatry. 1989; 146: 1001-1005
        • Button K.S.
        • Ioannidis J.P.A.
        • Mokrysz C.
        • Nosek B.A.
        • Flint J.
        • Robinson E.S.J.
        • et al.
        Power failure: Why small sample size undermines the reliability of neuroscience.
        Nat Rev Neurosci. 2013; 14: 365-376
        • Thompson P.M.
        • Stein J.L.
        • Medland S.E.
        • Hibar D.P.
        • Vasquez A.A.
        • Renteria M.E.
        • et al.
        The ENIGMA Consortium: Large-scale collaborative analyses of neuroimaging and genetic data.
        Brain Imaging Behav. 2014; 8: 153-182
        • Boedhoe P.
        • Schmaal L.
        • Abe Y.
        • Alonso P.
        • Ameis S.H.
        • Anticevic A.
        • et al.
        Cortical abnormalities associated with pediatric and adult obsessive-compulsive disorder: Findings from the ENIGMA Obsessive-Compulsive Disorder Working Group.
        Am J Psychiatry. 2018; 175: 453-462
        • Boedhoe P.
        • Schmaal L.
        • Abe Y.
        • Ameis S.H.
        • Arnold P.D.
        • Batistuzzo M.C.
        • et al.
        Distinct subcortical volume alterations in pediatric and adult OCD: A worldwide meta- and mega-analysis.
        Am J Psychiatry. 2017; 174: 60-69
        • Kong X.-Z.
        • Mathias S.R.
        • Guadalupe T.
        • ENIGMA Laterality Working Group
        • Glahn D.C.
        • Franke B.
        • et al.
        Mapping cortical brain asymmetry in 17,141 healthy individuals worldwide via the ENIGMA Consortium.
        Proc Natl Acad Sci U S A. 2018; 115: E5154-E5163
        • Kurth F.
        • Gaser C.
        • Luders E.
        A 12-step user guide for analyzing voxel-wise gray matter asymmetries in statistical parametric mapping (SPM).
        Nat Protoc. 2015; 10: 293-304
        • Leroy F.
        • Cai Q.
        • Bogart S.L.
        • Dubois J.
        • Coulon O.
        • Monzalvo K.
        • et al.
        New human-specific brain landmark: The depth asymmetry of superior temporal sulcus.
        Proc Natl Acad Sci U S A. 2015; 112: 1208-1213
        • Guadalupe T.
        • Mathias S.R.
        • vanErp T.G.
        • Whelan C.D.
        • Zwiers M.P.
        • Abe Y.
        • et al.
        Human subcortical brain asymmetries in 15,847 people worldwide reveal effects of age and sex.
        Brain Imaging Behav. 2016; 11: 1497-1514
        • van den Heuvel O.A.
        • van Wingen G.
        • Soriano-Mas C.
        • Alonso P.
        • Chamberlain S.R.
        • Nakamae T.
        • et al.
        Brain circuitry of compulsivity.
        Eur Neuropsychopharmacol. 2016; 26: 810-827
        • Desikan R.S.
        • Segonne F.
        • Fischl B.
        • Quinn B.T.
        • Dickerson B.C.
        • Blacker D.
        • et al.
        An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest.
        Neuroimage. 2006; 31: 968-980
        • Zhong S.
        • He Y.
        • Shu H.
        • Gong G.
        Developmental changes in topological asymmetry between hemispheric brain white matter networks from adolescence to young adulthood.
        Cereb Cortex. 2017; 27: 2560-2570
        • Schmaal L.
        • Hibar D.P.
        • Samann P.G.
        • Hall G.B.
        • Baune B.T.
        • Jahanshad N.
        • et al.
        Cortical abnormalities in adults and adolescents with major depression based on brain scans from 20 cohorts worldwide in the ENIGMA Major Depressive Disorder Working Group.
        Mol Psychiatry. 2017; 22: 900-909
        • Schmaal L.
        • Veltman D.J.
        • van Erp T.G.
        • Samann P.G.
        • Frodl T.
        • Jahanshad N.
        • et al.
        Subcortical brain alterations in major depressive disorder: Findings from the ENIGMA Major Depressive Disorder working group.
        Mol Psychiatry. 2016; 21: 806-812
        • van Erp T.G.M.
        • Walton E.
        • Hibar D.P.
        • Schmaal L.
        • Jiang W.
        • Glahn D.C.
        • et al.
        Cortical brain abnormalities in 4474 individuals with schizophrenia and 5098 control subjects via the Enhancing Neuro Imaging Genetics Through Meta Analysis (ENIGMA) Consortium.
        Biol Psychiatry. 2018; 84: 644-654
        • Logue M.W.
        • van Rooij S.J.H.
        • Dennis E.L.
        • Davis S.L.
        • Hayes J.P.
        • Stevens J.S.
        • et al.
        Smaller hippocampal volume in posttraumatic stress disorder: A multisite ENIGMA-PGC study: Subcortical volumetry results from posttraumatic stress disorder consortia.
        Biol Psychiatry. 2018; 83: 244-253
        • van Rooij D.
        • Anagnostou E.
        • Arango C.
        • Auzias G.
        • Behrmann M.
        • Busatto G.F.
        • et al.
        Cortical and subcortical brain morphometry differences between patients with autism spectrum disorder and healthy individuals across the lifespan: Results from the ENIGMA ASD Working Group.
        Am J Psychiatry. 2018; 175: 359-369
        • Ojemann G.A.
        Asymmetric function of the thalamus in man.
        Ann N Y Acad Sci. 1977; 299: 380-396
        • Behrens T.E.J.
        • Johansen-Berg H.
        • Woolrich M.W.
        • Smith S.M.
        • Wheeler-Kingshott C.A.M.
        • Boulby P.A.
        • et al.
        Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging.
        Nat Neurosci. 2003; 6: 750-757
        • Mataix-Cols D.
        • Frost R.O.
        • Pertusa A.
        • Clark L.A.
        • Saxena S.
        • Leckman J.F.
        • et al.
        Hoarding disorder: A new diagnosis for DSM-V?.
        Depress Anxiety. 2010; 27: 556-572
        • Smith K.S.
        • Tindell A.J.
        • Aldridge J.W.
        • Berridge K.C.
        Ventral pallidum roles in reward and motivation.
        Behav Brain Res. 2009; 196: 155-167
        • Mataix-Cols D.
        • Boman M.
        • Monzani B.
        • Ruck C.
        • Serlachius E.
        • Langstrom N.
        • et al.
        Population-based, multigenerational family clustering study of obsessive-compulsive disorder.
        JAMA Psychiatry. 2013; 70: 709-717
        • Hibar D.P.
        • Cheung J.W.
        • Medland S.E.
        • Mufford M.S.
        • Jahanshad N.
        • Dalvie S.
        • et al.
        Significant concordance of genetic variation that increases both the risk for obsessive-compulsive disorder and the volumes of the nucleus accumbens and putamen.
        Br J Psychiatry. 2018; 213: 430-436
        • International Obsessive Compulsive Disorder Foundation Genetics Collaborative, OCD Collaborative Genetics Association Studies
        Revealing the complex genetic architecture of obsessive-compulsive disorder using meta-analysis.
        Mol Psychiatry. 2018; 23: 1181-1188
        • Johansen-Berg H.
        • Behrens T.E.J.
        • Sillery E.
        • Ciccarelli O.
        • Thompson A.J.
        • Smith S.M.
        • et al.
        Functional-anatomical validation and individual variation of diffusion tractography-based segmentation of the human thalamus.
        Cereb Cortex. 2005; 15: 31-39
        • Maingault S.
        • Tzourio-Mazoyer N.
        • Mazoyer B.
        • Crivello F.
        Regional correlations between cortical thickness and surface area asymmetries: A surface-based morphometry study of 250 adults.
        Neuropsychologia. 2016; 93: 350-364
        • Van Essen D.C.
        • Glasser M.F.
        • Dierker D.L.
        • Harwell J.
        • Coalson T.
        Parcellations and hemispheric asymmetries of human cerebral cortex analyzed on surface-based atlases.
        Cereb Cortex. 2012; 22: 2241-2262

      Linked Article

      • Clinical Implication of Brain Asymmetries in Psychiatric Disorders
        Biological PsychiatryVol. 87Issue 12
        • Preview
          Laterality refers to the dominance of one hemisphere of the brain in controlling particular activities or functions. Cerebral dominance for handedness and language processing are highly prevalent in the general population. Laterality is essential for optimal cognitive and emotional processing. The asymmetry index (AI) or the laterality index is commonly used to measure cerebral asymmetry. A positive value of AI indicates left hemispheric dominance, while a negative value indicates right hemispheric dominance.
        • Full-Text
        • PDF