Advertisement

Neonatal Nicotine Exposure Primes Midbrain Neurons to a Dopaminergic Phenotype and Increases Adult Drug Consumption

      Abstract

      Background

      Nicotine intake induces addiction through neuroplasticity of the reward circuitry, altering the activity of dopaminergic neurons of the ventral tegmental area. Prior work demonstrated that altered circuit activity can change neurotransmitter expression in the developing and adult brain. Here we investigated the effects of neonatal nicotine exposure on the dopaminergic system and nicotine consumption in adulthood.

      Methods

      Male and female mice were used for two-bottle-choice test, progressive ratio breakpoint test, immunohistochemistry, RNAscope, quantitative polymerase chain reaction, calcium imaging, and DREADD (designer receptor exclusively activated by designer drugs)-mediated chemogenic activation/inhibition experiments.

      Results

      Neonatal nicotine exposure potentiates drug preference in adult mice, induces alterations in calcium spike activity of midbrain neurons, and increases the number of dopamine-expressing neurons in the ventral tegmental area. Specifically, glutamatergic neurons are first primed to express transcription factor Nurr1, then acquire the dopaminergic phenotype following nicotine re-exposure in adulthood. Enhanced neuronal activity combined with Nurr1 expression is both necessary and sufficient for the nicotine-mediated neurotransmitter plasticity to occur.

      Conclusions

      Our findings illuminate a new mechanism of neuroplasticity by which early nicotine exposure primes the reward system to display increased susceptibility to drug consumption in adulthood.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Dani J.A.
        Overview of nicotinic receptors and their roles in the central nervous system.
        Biol Psychiatry. 2001; 49: 166-174
        • Heath C.J.
        • Picciotto M.R.
        Nicotine-induced plasticity during development: Modulation of the cholinergic system and long-term consequences for circuits involved in attention and sensory processing.
        Neuropharmacology. 2009; 56: 254-262
        • Luscher C.
        Drug-evoked synaptic plasticity causing addictive behavior.
        J Neurosci. 2013; 33: 17641-17646
        • Ikemoto S.
        • Qin M.
        • Liu Z.H.
        Primary reinforcing effects of nicotine are triggered from multiple regions both inside and outside the ventral tegmental area.
        J Neurosci. 2006; 26: 723-730
        • Mansvelder H.D.
        • McGehee D.S.
        Long-term potentiation of excitatory inputs to brain reward areas by nicotine.
        Neuron. 2000; 27: 349-357
        • Laviolette S.R.
        • Van der Kooy D.
        The neurobiology of nicotine addiction: Bridging the gap from molecules to behaviour.
        Nat Rev Neurosci. 2004; 5: 55-65
        • Weitzman M.
        • Gortmaker S.
        • Sobol A.
        Maternal smoking and behavior problems of children.
        Pediatrics. 1992; 90: 342-349
        • Porath A.J.
        • Fried P.A.
        Effects of prenatal cigarette and marijuana exposure on drug use among offspring.
        Neurotoxicol Teratol. 2005; 27: 267-277
        • Nordberg A.
        • Zhang X.A.
        • Fredriksson A.
        • Eriksson P.
        Neonatal nicotine exposure induces permanent changes in brain nicotinic receptors and behaviour in adult mice.
        Brain Res Dev Brain Res. 1991; 63: 201-207
        • Eppolito A.K.
        • Smith R.F.
        Long-term behavioral and developmental consequences of pre- and perinatal nicotine.
        Pharmacol Biochem Behav. 2006; 85: 835-841
        • Eppolito A.K.
        • Bachus S.E.
        • McDonald C.G.
        • Meador-Woodruff J.H.
        • Smith R.F.
        Late emerging effects of prenatal and early postnatal nicotine exposure on the cholinergic system and anxiety-like behavior.
        Neurotoxicol Teratol. 2010; 32: 336-345
        • Levin E.D.
        • Lawrence S.
        • Petro A.
        • Horton K.
        • Seidler F.J.
        • Slotkin T.A.
        Increased nicotine self-administration following prenatal exposure in female rats.
        Pharmacol Biochem Behav. 2006; 85: 669-674
        • Ernst M.
        • Moolchan E.T.
        • Robinson M.L.
        Behavioral and neural consequences of prenatal exposure to nicotine.
        J Am Acad Child Adolesc Psychiatry. 2001; 40: 630-641
        • Shen J.X.
        • Yakel J.L.
        Nicotinic acetylcholine receptor-mediated calcium signaling in the nervous system.
        Acta Pharmacol Sin. 2009; 30: 673-680
        • Gotti C.
        • Clementi F.
        • Fornari A.
        • Gaimarri A.
        • Guiducci S.
        • Manfredi I.
        • et al.
        Structural and functional diversity of native brain neuronal nicotinic receptors.
        Biochem Pharmacol. 2009; 78: 703-711
        • Tredway T.L.
        • Guo J.Z.
        • Chiappinelli V.A.
        N-type voltage-dependent calcium channels mediate the nicotinic enhancement of GABA release in chick brain.
        J Neurophysiol. 1999; 81: 447-454
        • Dani J.A.
        • Bertrand D.
        Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system.
        Annu Rev Pharmacol Toxicol. 2007; 47: 699-729
        • Katsura M.
        • Shibasaki M.
        • Kurokawa K.
        • Tsujimura A.
        • Ohkuma S.
        Up-regulation of L-type high voltage-gated calcium channel subunits by sustained exposure to 1,4- and 1,5-benzodiazepines in cerebrocortical neurons.
        J Neurochem. 2007; 103: 2518-2528
        • Ziviani E.
        • Lippi G.
        • Bano D.
        • Munarriz E.
        • Guiducci S.
        • Zoli M.
        • et al.
        Ryanodine receptor-2 upregulation and nicotine-mediated plasticity.
        EMBO J. 2011; 30: 194-204
        • Chang K.T.
        • Berg D.K.
        Voltage-gated channels block nicotinic regulation of CREB phosphorylation and gene expression in neurons.
        Neuron. 2001; 32: 855-865
        • Wang J.
        • Gutala R.
        • Hwang Y.Y.
        • Kim J.M.
        • Konu O.
        • Ma J.Z.
        • Li M.D.
        Strain- and region-specific gene expression profiles in mouse brain in response to chronic nicotine treatment.
        Genes Brain Behav. 2008; 7: 78-87
        • West A.E.
        • Griffith E.C.
        • Greenberg M.E.
        Regulation of transcription factors by neuronal activity.
        Nat Rev Neurosci. 2002; 3: 921-931
        • Borodinsky L.N.
        • Root C.M.
        • Cronin J.A.
        • Sann S.B.
        • Gu X.
        • Spitzer N.C.
        Activity-dependent homeostatic specification of transmitter expression in embryonic neurons.
        Nature. 2004; 429: 523-530
        • Dulcis D.
        • Spitzer N.C.
        Reserve pool neuron transmitter respecification: Novel neuroplasticity.
        Dev Neurobiol. 2012; 72: 465-474
        • Dulcis D.
        • Spitzer N.C.
        Illumination controls differentiation of dopamine neurons regulating behaviour.
        Nature. 2008; 456: 195-201
        • Dulcis D.
        • Jamshidi P.
        • Leutgeb S.
        • Spitzer N.C.
        Neurotransmitter switching in the adult brain regulates behavior.
        Science. 2013; 340: 449-453
        • Dulcis D.
        • Lippi G.
        • Stark C.J.
        • Do L.H.
        • Berg D.K.
        • Spitzer N.C.
        Neurotransmitter switching regulated by miRNAs controls changes in social preference.
        Neuron. 2017; 95: 1319-1333.e5
        • Aumann T.D.
        Environment- and activity-dependent dopamine neurotransmitter plasticity in the adult substantia nigra.
        J Chem Neuroanat. 2016; 73: 21-32
        • Dela Cruz J.A.D.
        • Hescham S.
        • Adriaanse B.
        • Campos F.L.
        • Steinbusch H.W.M.
        • Rutten B.P.F.
        • et al.
        Increased number of TH-immunoreactive cells in the ventral tegmental area after deep brain stimulation of the anterior nucleus of the thalamus.
        Brain Struct Funct. 2015; 220: 3061-3066
        • Greenberg G.D.
        • Steinman M.Q.
        • Doig I.E.
        • Hao R.
        • Trainor B.C.
        Effects of social defeat on dopamine neurons in the ventral tegmental area in male and female California mice.
        Eur J Neurosci. 2015; 42: 3081-3094
        • Kesby J.P.
        • Najera J.A.
        • Romoli B.
        • Fang Y.
        • Basova L.
        • Birmingham A.
        • et al.
        HIV-1 TAT protein enhances sensitization to methamphetamine by affecting dopaminergic function.
        Brain Behav Immun. 2017; 65: 210-221
        • Luo Y.
        The function and mechanisms of Nurr1 action in midbrain dopaminergic neurons, from development and maintenance to survival.
        Int Rev Neurobiol. 2012; 102: 1-22
        • Smits S.M.
        • Ponnio T.
        • Conneely O.M.
        • Burbach J.P.H.
        • Smidt M.P.
        Involvement of Nurr1 in specifying the neurotransmitter identity of ventral midbrain dopaminergic neurons.
        Eur J Neurosci. 2003; 18: 1731-1738
        • Kadkhodaei B.
        • Ito T.
        • Joodmardi E.
        • Mattsson B.
        • Rouillard C.
        • Carta M.
        • et al.
        Nurr1 is required for maintenance of maturing and adult midbrain dopamine neurons.
        J Neurosci. 2009; 9: 15923-15932
        • Paliga D.
        • Raudzus F.
        • Leppla S.H.
        • Heumann R.
        Lethal factor domain-mediated delivery of Nurr1 transcription factor enhances tyrosine hydroxylase activity and protects from neurotoxin-induced degeneration of dopaminergic cells.
        Mol Neurobiol. 2019; 56: 3393-3403
        • Liu N.
        • Baker H.
        Activity-dependent Nurr1 and NGFI-B gene expression in adult mouse olfactory bulb.
        Neuroreport. 1999; 10: 747-751
        • Tokuoka H.
        • Hatanaka T.
        • Metzger D.
        • Ichinose H.
        Nurr1 expression is regulated by voltage-dependent calcium channels and calcineurin in cultured hippocampal neurons.
        Neurosci Lett. 2014; 559: 50-55
        • Lippi G.
        • Fernandes C.C.
        • Ewell L.A.
        • John D.
        • Romoli B.
        • Curia G.
        • et al.
        MicroRNA-101 regulates multiple developmental programs to constrain excitation in adult neural networks.
        Neuron. 2016; 92: 1337-1351
        • Lammel S.
        • Lim B.K.
        • Ran C.
        • Huang K.W.
        • Betley M.J.
        • Tye K.M.
        • et al.
        Input-specific control of reward and aversion in the ventral tegmental area.
        Nature. 2012; 491: 212-217
        • Tritsch N.X.
        • Ding J.B.
        • Sabatini B.L.
        Dopaminergic neurons inhibit striatal output through non-canonical release of GABA.
        Nature. 2012; 490: 262-266
        • Hnasko T.S.
        • Chuhma N.
        • Zhang H.
        • Goh G.Y.
        • Sulzer D.
        • Palmiter R.D.
        • et al.
        Vesicular glutamate transport promotes dopamine storage and glutamate corelease in vivo.
        Neuron. 2010; 65: 643-656
        • Narayanan U.
        • Birru S.
        • Vaglenova J.
        • Breese C.R.
        Nicotinic receptor expression following nicotine exposure via maternal milk.
        Neuroreport. 2002; 13: 961-963
        • Taylor S.R.
        • Badurek S.
        • Dileone R.J.
        • Nashmi R.
        • Minichiello L.
        • Picciotto M.R.
        GABAergic and glutamatergic efferents of the mouse ventral tegmental area.
        J Comp Neurol. 2014; 522: 3308-3334
        • Thompson B.L.
        • Levitt P.
        • Stanwood G.D.
        Prenatal exposure to drugs: Effects on brain development and implications for policy and education.
        Nat Rev Neurosci. 2009; 10: 303-312
        • Yan Y.
        • Peng C.
        • Arvin M.C.
        • Jin X.T.
        • Kim V.J.
        • Ramsey M.D.
        • et al.
        Nicotinic cholinergic receptors in VTA glutamate neurons modulate excitatory transmission.
        Cell Rep. 2018; 23: 2236-2244
        • Velazquez-Ulloa N.A.
        • Spitzer N.C.
        • Dulcis D.
        Contexts for dopamine specification by calcium spike activity in the CNS.
        J Neurosci. 2011; 31: 78-88
        • Chakrabarty K.
        • Von Oerthel L.
        • Hellemons A.
        • Clotman F.
        • Espana A.
        • Groot Koerkamp M.
        • et al.
        Genome wide expression profiling of the mesodiencephalic region identifies novel factors involved in early and late dopaminergic development.
        Biol Open. 2012; 1: 693-704
        • D’Souza M.S.
        Glutamatergic transmission in drug reward: Implications for drug addiction.
        Front Neurosci. 2015; 9: 404
        • Li X.
        • Semenova S.
        • D’Souza M.S.
        • Stoker A.K.
        • Markou A.
        Involvement of glutamatergic and GABAergic systems in nicotine dependence: Implications for novel pharmacotherapies for smoking cessation.
        Neuropharmacology. 2014; 76: 554-565
        • Steinkellner T.
        • Zell V.
        • Farino Z.J.
        • Sonders M.S.
        • Villeneuve M.
        • Freyberg R.J.
        • et al.
        Role for VGLUT2 in selective vulnerability of midbrain dopamine neurons.
        J Clin Invest. 2018; 128: 774-788
        • Nisell M.
        • Nomikos G.G.
        • Svensson T.H.
        Systemic nicotine-induced dopamine release in the rat nucleus accumbens is regulated by nicotinic receptors in the ventral tegmental area.
        Synapse. 1994; 16: 36-44
        • Wang L.
        • Shang S.
        • Kang X.
        • Teng S.
        • Zhu F.
        • Liu B.
        • et al.
        Modulation of dopamine release in the striatum by physiologically relevant levels of nicotine.
        Nat Commun. 2014; 5: 3925
        • Serova L.
        • Sabban E.L.
        Involvement of alpha 7 nicotinic acetylcholine receptors in gene expression of dopamine biosynthetic enzymes in rat brain.
        J Pharmacol Exp Ther. 2002; 303: 896-903
        • Pinheiro C.R.
        • Oliveira E.
        • Manhães A.C.
        • Fraga M.C.
        • Claudio-Neto S.
        • Younes-Rapozo V.
        • et al.
        Exposure to nicotine increases dopamine receptor content in the mesocorticolimbic pathway of rat dams and offspring during lactation.
        Pharmacol Biochem Behav. 2015; 136: 87-101
        • Stolerman I.P.
        • Jarvis M.J.
        The scientific case that nicotine is addictive.
        Psychopharmacology (Berl). 1995; 117: 2-10
        • Azam L.
        • Chen Y.
        • Leslie F.M.
        Developmental regulation of nicotinic acetylcholine receptors within midbrain dopamine neurons.
        Neuroscience. 2007; 144: 1347-1360
        • Dobbing J.
        • Sands J.
        Comparative aspects of the brain growth spurt.
        Early Hum Dev. 1979; 3: 79-83
        • Kapaya M.
        • Tong V.
        • Ding H.
        Nicotine replacement therapy and other interventions for pregnant smokers: Pregnancy Risk Assessment Monitoring System, 2009–2010.
        Prev. 2015; Med78: 92-100
        • DiFranza J.R.
        • Aligne C.A.
        • Weitzman M.
        Prenatal and postnatal environmental tobacco smoke exposure and children’s health.
        Pediatrics. 2004; 113: 1007-1015
        • Dwyer J.B.
        • McQuown S.C.
        • Leslie F.M.
        The dynamic effects of nicotine on the developing brain.
        Pharmacol Ther. 2009; 122: 125-139
        • Fergusson D.M.
        • Woodward L.J.
        • Horwood L.J.
        Maternal smoking during pregnancy and psychiatric adjustment in late adolescence.
        Arch Gen Psychiatry. 1998; 55: 721-727

      Linked Article

      • A Warning for Smoking Parents
        Biological PsychiatryVol. 86Issue 5
        • Preview
          Drug addiction is a psychiatric disorder that affects millions of people worldwide and poses a challenge for current neuroscience research. Nicotine, commonly consumed by smoking tobacco, is considered one of the most commonly used addictive drugs. The mesolimbic dopamine (DA) system is a key brain circuit targeted by nicotine to induce behavioral changes. Upon acute exposure, nicotine binds and stimulates nicotinic acetylcholine receptors (nAChRs), resulting in an overall enhancement of DA signaling from the ventral tegmental area (VTA) to the nucleus accumbens (NAc) (1).
        • Full-Text
        • PDF