Advertisement

Neurobiology of Resilience: Interface Between Mind and Body

  • Flurin Cathomas
    Affiliations
    Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York

    Center for Affective Neuroscience of the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
    Search for articles by this author
  • James W. Murrough
    Affiliations
    Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York

    Center for Affective Neuroscience of the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York

    Mood and Anxiety Disorders Program, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
    Search for articles by this author
  • Eric J. Nestler
    Affiliations
    Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York

    Center for Affective Neuroscience of the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
    Search for articles by this author
  • Ming-Hu Han
    Affiliations
    Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York

    Center for Affective Neuroscience of the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York

    Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
    Search for articles by this author
  • Scott J. Russo
    Correspondence
    Address correspondence to Scott J. Russo, Ph.D., Nash Family Department of Neuroscience, Center for Affective Neuroscience of the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029.
    Affiliations
    Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York

    Center for Affective Neuroscience of the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
    Search for articles by this author

      Abstract

      Stress-related neuropsychiatric disorders, such as major depressive disorder and posttraumatic stress disorder, exact enormous socioeconomic and individual consequences. Resilience, the process of adaptation in the face of adversity, is an important concept that is enabling the field to understand individual differences in stress responses, with the hope of harnessing this information for the development of novel therapeutics that mimic the body’s natural resilience mechanisms. This review provides an update on the current state of research of the neurobiological mechanisms of stress resilience. We focus on physiological and transcriptional adaptations of specific brain circuits, the role of cellular and humoral factors of the immune system, the gut microbiota, and changes at the interface between the brain and the periphery, the blood-brain barrier. We propose viewing resilience as a process that requires the integration of multiple central and peripheral systems and that elucidating the underlying neurobiological mechanisms will ultimately lead to novel therapeutic options.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • American Psychological Association
        The road to resilience.
        (Available at:)
        https://www.apa.org/helpcenter/road-resilience
        Date: 2018
        Date accessed: April 27, 2019
        • Herman J.P.
        • McKlveen J.M.
        • Ghosal S.
        • Kopp B.
        • Wulsin A.
        • Makinson R.
        • et al.
        Regulation of the hypothalamic-pituitary-adrenocortical stress response.
        Compr Physiol. 2016; 6: 603-621
        • Smith S.M.
        • Vale W.W.
        The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress.
        Dialogues Clin Neurosci. 2006; 8: 383-395
        • Ulrich-Lai Y.M.
        • Herman J.P.
        Neural regulation of endocrine and autonomic stress responses.
        Nat Rev Neurosci. 2009; 10: 397-409
        • Hammen C.
        Stress and depression.
        Ann Rev Clin Psychol. 2005; 1: 293-319
        • Yehuda R.
        • LeDoux J.
        Response variation following trauma: A translational neuroscience approach to understanding PTSD.
        Neuron. 2007; 56: 19-32
        • McEwen B.S.
        Stress, adaptation, and disease. Allostasis and allostatic load.
        Ann N Y Acad Sci. 1998; 840: 33-44
        • Charney D.S.
        Psychobiological mechanisms of resilience and vulnerability: Implications for successful adaptation to extreme stress.
        Am J Psychiatry. 2004; 161: 195-216
        • Garmezy N.
        Vulnerability research and the issue of primary prevention.
        Am J Orthopsychiatry. 1971; 41: 101-116
        • Masten A.S.
        Ordinary magic. Resilience processes in development.
        Am Psychol. 2001; 56: 227-238
        • Ozbay F.
        • Fitterling H.
        • Charney D.
        • Southwick S.
        Social support and resilience to stress across the life span: A neurobiologic framework.
        Curr Psychiatry Rep. 2008; 10: 304-310
        • Feder A.
        • Nestler E.J.
        • Charney D.S.
        Psychobiology and molecular genetics of resilience.
        Nat Rev Neurosci. 2009; 10: 446-457
        • Koolhaas J.M.
        • Korte S.M.
        • De Boer S.F.
        • Van Der Vegt B.J.
        • Van Reenen C.G.
        • Hopster H.
        • et al.
        Coping styles in animals: Current status in behavior and stress-physiology.
        Neurosci Biobehav Rev. 1999; 23: 925-935
        • Russo S.J.
        • Murrough J.W.
        • Han M.H.
        • Charney D.S.
        • Nestler E.J.
        Neurobiology of resilience.
        Nat Neurosci. 2012; 15: 1475-1484
        • Wood S.K.
        • Bhatnagar S.
        Resilience to the effects of social stress: Evidence from clinical and preclinical studies on the role of coping strategies.
        Neurobiol Stress. 2014; 1: 164-173
        • Southwick S.M.
        • Vythilingam M.
        • Charney D.S.
        The psychobiology of depression and resilience to stress: Implications for prevention and treatment.
        Ann Rev Clin Psychol. 2005; 1: 255-291
        • Hammels C.
        • Pishva E.
        • De Vry J.
        • van den Hove D.L.
        • Prickaerts J.
        • van Winkel R.
        • et al.
        Defeat stress in rodents: From behavior to molecules.
        Neurosci Biobehav Rev. 2015; 59: 111-140
        • Seligman M.E.
        • Beagley G.
        Learned helplessness in the rat.
        J Comp Physiol Psychol. 1975; 88: 534-541
        • Cryan J.F.
        • Mombereau C.
        In search of a depressed mouse: Utility of models for studying depression-related behavior in genetically modified mice.
        Mol Psychiatry. 2004; 9: 326-357
        • Nasca C.
        • Bigio B.
        • Zelli D.
        • Nicoletti F.
        • McEwen B.S.
        Mind the gap: Glucocorticoids modulate hippocampal glutamate tone underlying individual differences in stress susceptibility.
        Mol Psychiatry. 2015; 20: 755-763
        • Berton O.
        • McClung C.A.
        • Dileone R.J.
        • Krishnan V.
        • Renthal W.
        • Russo S.J.
        • et al.
        Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress.
        Science. 2006; 311: 864-868
        • Golden S.A.
        • Covington H.E.
        • Berton O.
        • Russo S.J.
        A standardized protocol for repeated social defeat stress in mice.
        Nat Protoc. 2011; 6: 1183-1191
        • Wood S.K.
        • Walker H.E.
        • Valentino R.J.
        • Bhatnagar S.
        Individual differences in reactivity to social stress predict susceptibility and resilience to a depressive phenotype: Role of corticotropin-releasing factor.
        Endocrinology. 2010; 151: 1795-1805
        • Krishnan V.
        • Han M.H.
        • Graham D.L.
        • Berton O.
        • Renthal W.
        • Russo S.J.
        • et al.
        Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions.
        Cell. 2007; 131: 391-404
        • Beery A.K.
        • Zucker I.
        Sex bias in neuroscience and biomedical research.
        Neurosci Biobehav Rev. 2011; 35: 565-572
        • Steinman M.Q.
        • Trainor B.C.
        Sex differences in the effects of social defeat on brain and behavior in the California mouse: Insights from a monogamous rodent.
        Semin Cell Dev Biol. 2017; 61: 92-98
        • Kessler R.C.
        Epidemiology of women and depression.
        J Affect Disord. 2003; 74: 5-13
        • Martin L.A.
        • Neighbors H.W.
        • Griffith D.M.
        The experience of symptoms of depression in men vs women: Analysis of the National Comorbidity Survey Replication.
        JAMA Psychiatry. 2013; 70: 1100-1106
        • Harris A.Z.
        • Atsak P.
        • Bretton Z.H.
        • Holt E.S.
        • Alam R.
        • Morton M.P.
        • et al.
        A novel method for chronic social defeat stress in female mice.
        Neuropsychopharmacology. 2017; 43: 1276
        • Takahashi A.
        • Chung J.R.
        • Zhang S.
        • Zhang H.
        • Grossman Y.
        • Aleyasin H.
        • et al.
        Establishment of a repeated social defeat stress model in female mice.
        Sci Rep. 2017; 7: 12838
        • Bale T.L.
        • Epperson C.N.
        Sex differences and stress across the lifespan.
        Nat Neurosci. 2015; 18: 1413-1420
        • Danese A.
        • Lewis J.
        • S
        Psychoneuroimmunology of early-life stress: The hidden wounds of childhood trauma?.
        Neuropsychopharmacology. 2016; 42: 99
        • Murthy S.
        • Gould E.
        Early life stress in rodents: Animal models of illness or resilience?.
        Front Behav Neurosci. 2018; 12: 157
        • Lupien S.J.
        • McEwen B.S.
        • Gunnar M.R.
        • Heim C.
        Effects of stress throughout the lifespan on the brain, behaviour and cognition.
        Nat Rev Neurosci. 2009; 10: 434-445
        • Tractenberg S.G.
        • Levandowski M.L.
        • de Azeredo L.A.
        • Orso R.
        • Roithmann L.G.
        • Hoffmann E.S.
        • et al.
        An overview of maternal separation effects on behavioural outcomes in mice: Evidence from a four-stage methodological systematic review.
        Neurosci Biobehav Rev. 2016; 68: 489-503
        • Plotsky P.M.
        • Meaney M.J.
        Early, postnatal experience alters hypothalamic corticotropin-releasing factor (CRF) mRNA, median eminence CRF content and stress-induced release in adult rats.
        Brain Res Mol Brain Res. 1993; 18: 195-200
        • Cavigelli S.A.
        • McClintock M.K.
        Fear of novelty in infant rats predicts adult corticosterone dynamics and an early death.
        Proc Natl Acad Sci U S A. 2003; 100: 16131-16136
        • Kautz M.
        • Charney D.S.
        • Murrough J.W.
        Neuropeptide Y, resilience, and PTSD therapeutics.
        Neurosci Lett. 2017; 649: 164-169
        • Yehuda R.
        • Brand S.R.
        • Golier J.A.
        • Yang R.K.
        Clinical correlates of DHEA associated with post-traumatic stress disorder.
        Acta Psychiatr Scand. 2006; 114: 187-193
        • Levone B.R.
        • Cryan J.F.
        • O’Leary O.F.
        Role of adult hippocampal neurogenesis in stress resilience.
        Neurobiol Stress. 2015; 1: 147-155
        • Jankord R.
        • Herman J.P.
        Limbic regulation of hypothalamo-pituitary-adrenocortical function during acute and chronic stress.
        Ann N Y Acad Sci. 2008; 1148: 64-73
        • Ming G.L.
        • Song H.
        Adult neurogenesis in the mammalian brain: Significant answers and significant questions.
        Neuron. 2011; 70: 687-702
        • Santarelli L.
        • Saxe M.
        • Gross C.
        • Surget A.
        • Battaglia F.
        • Dulawa S.
        • et al.
        Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants.
        Science. 2003; 301: 805-809
        • Snyder J.S.
        • Soumier A.
        • Brewer M.
        • Pickel J.
        • Cameron H.A.
        Adult hippocampal neurogenesis buffers stress responses and depressive behaviour.
        Nature. 2011; 476: 458-461
        • Lagace D.C.
        • Donovan M.H.
        • DeCarolis N.A.
        • Farnbauch L.A.
        • Malhotra S.
        • Berton O.
        • et al.
        Adult hippocampal neurogenesis is functionally important for stress-induced social avoidance.
        Proc Natl Acad Sci U S A. 2010; 107: 4436-4441
        • Anacker C.
        • Luna V.M.
        • Stevens G.S.
        • Millette A.
        • Shores R.
        • Jimenez J.C.
        • et al.
        Hippocampal neurogenesis confers stress resilience by inhibiting the ventral dentate gyrus.
        Nature. 2018; 559: 98-102
        • Nestler E.J.
        • Carlezon Jr., W.A.
        The mesolimbic dopamine reward circuit in depression.
        Biol Psychiatry. 2006; 59: 1151-1159
        • Lammel S.
        • Lim B.K.
        • Malenka R.C.
        Reward and aversion in a heterogeneous midbrain dopamine system.
        Neuropharmacology. 2014; 76: 351-359
        • Chaudhury D.
        • Walsh J.J.
        • Friedman A.K.
        • Juarez B.
        • Ku S.M.
        • Koo J.W.
        • et al.
        Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons.
        Nature. 2013; 493: 532-536
        • Tye K.M.
        • Mirzabekov J.J.
        • Warden M.R.
        • Ferenczi E.A.
        • Tsai H.C.
        • Finkelstein J.
        • et al.
        Dopamine neurons modulate neural encoding and expression of depression-related behaviour.
        Nature. 2013; 493: 537-541
        • Friedman A.K.
        • Walsh J.J.
        • Juarez B.
        • Ku S.M.
        • Chaudhury D.
        • Wang J.
        • et al.
        Enhancing depression mechanisms in midbrain dopamine neurons achieves homeostatic resilience.
        Science. 2014; 344: 313-319
        • Han M.H.
        • Nestler E.J.
        Neural substrates of depression and resilience.
        Neurotherapeutics. 2017; 14: 677-686
        • Cao J.L.
        • Covington 3rd, H.E.
        • Friedman A.K.
        • Wilkinson M.B.
        • Walsh J.J.
        • Cooper D.C.
        • et al.
        Mesolimbic dopamine neurons in the brain reward circuit mediate susceptibility to social defeat and antidepressant action.
        J Neurosci. 2010; 30: 16453-16458
        • Ku S.M.
        • Han M.H.
        HCN channel targets for novel antidepressant treatment.
        Neurotherapeutics. 2017; 14: 698-715
        • Tan A.
        • Costi S.
        • Morris L.S.
        • Van Dam N.T.
        • Kautz M.
        • Whitton A.E.
        • et al.
        Effects of the KCNQ channel opener ezogabine on functional connectivity of the ventral striatum and clinical symptoms in patients with major depressive disorder.
        Mol Psychiatry. 2018; ([published online ahead of print Nov 1])
        • Russo S.J.
        • Nestler E.J.
        The brain reward circuitry in mood disorders.
        Nat Rev Neurosci. 2013; 14: 609-625
        • Lobo M.K.
        • Covington 3rd, H.E.
        • Chaudhury D.
        • Friedman A.K.
        • Sun H.
        • Damez-Werno D.
        • et al.
        Cell type-specific loss of BDNF signaling mimics optogenetic control of cocaine reward.
        Science. 2010; 330: 385-390
        • Aleyasin H.
        • Flanigan M.E.
        • Golden S.A.
        • Takahashi A.
        • Menard C.
        • Pfau M.L.
        • et al.
        Cell-type-specific role of deltaFosB in nucleus accumbens in modulating intermale aggression.
        J Neurosci. 2018; 38: 5913-5924
        • Stuber G.D.
        • Sparta D.R.
        • Stamatakis A.M.
        • van Leeuwen W.A.
        • Hardjoprajitno J.E.
        • Cho S.
        • et al.
        Excitatory transmission from the amygdala to nucleus accumbens facilitates reward seeking.
        Nature. 2011; 475: 377-380
        • Britt J.P.
        • Benaliouad F.
        • McDevitt R.A.
        • Stuber G.D.
        • Wise R.A.
        • Bonci A.
        Synaptic and behavioral profile of multiple glutamatergic inputs to the nucleus accumbens.
        Neuron. 2012; 76: 790-803
        • Bagot R.C.
        • Parise E.M.
        • Pena C.J.
        • Zhang H.X.
        • Maze I.
        • Chaudhury D.
        • et al.
        Ventral hippocampal afferents to the nucleus accumbens regulate susceptibility to depression.
        Nat Commun. 2015; 6: 7062
        • Christoffel D.J.
        • Golden S.A.
        • Walsh J.J.
        • Guise K.G.
        • Heshmati M.
        • Friedman A.K.
        • et al.
        Excitatory transmission at thalamo-striatal synapses mediates susceptibility to social stress.
        Nat Neurosci. 2015; 18: 962-964
        • Christoffel D.J.
        • Golden S.A.
        • Russo S.J.
        Structural and synaptic plasticity in stress-related disorders.
        Rev Neurosci. 2011; 22: 535-549
        • Christoffel D.J.
        • Golden S.A.
        • Dumitriu D.
        • Robison A.J.
        • Janssen W.G.
        • Ahn H.F.
        • et al.
        IkappaB kinase regulates social defeat stress-induced synaptic and behavioral plasticity.
        J Neurosci. 2011; 31: 314-321
        • Golden S.A.
        • Christoffel D.J.
        • Heshmati M.
        • Hodes G.E.
        • Magida J.
        • Davis K.
        • et al.
        Epigenetic regulation of RAC1 induces synaptic remodeling in stress disorders and depression.
        Nat Med. 2013; 19: 337-344
        • Francis T.C.
        • Chandra R.
        • Friend D.M.
        • Finkel E.
        • Dayrit G.
        • Miranda J.
        • et al.
        Nucleus accumbens medium spiny neuron subtypes mediate depression-related outcomes to social defeat stress.
        Biol Psychiatry. 2015; 77: 212-222
        • Khibnik L.A.
        • Beaumont M.
        • Doyle M.
        • Heshmati M.
        • Slesinger P.A.
        • Nestler E.J.
        • et al.
        Stress and cocaine trigger divergent and cell type-specific regulation of synaptic transmission at single spines in nucleus accumbens.
        Biol Psychiatry. 2016; 79: 898-905
        • Wall N.R.
        • De La Parra M.
        • Callaway E.M.
        • Kreitzer A.C.
        Differential innervation of direct- and indirect-pathway striatal projection neurons.
        Neuron. 2013; 79: 347-360
        • Krystal J.H.
        • Neumeister A.
        Noradrenergic and serotonergic mechanisms in the neurobiology of posttraumatic stress disorder and resilience.
        Brain Res. 2009; 1293: 13-23
        • Hermans E.J.
        • van Marle H.J.
        • Ossewaarde L.
        • Henckens M.J.
        • Qin S.
        • van Kesteren M.T.
        • et al.
        Stress-related noradrenergic activity prompts large-scale neural network reconfiguration.
        Science. 2011; 334: 1151-1153
        • Isingrini E.
        • Perret L.
        • Rainer Q.
        • Amilhon B.
        • Guma E.
        • Tanti A.
        • et al.
        Resilience to chronic stress is mediated by noradrenergic regulation of dopamine neurons.
        Nat Neurosci. 2016; 19: 560-563
        • Zhang H.
        • Chaudhury D.
        • Nectow A.R.
        • Friedman A.K.
        • Zhang S.
        • Juarez B.
        • et al.
        α1- and β3-adrenergic receptor-mediated mesolimbic homeostatic plasticity confers resilience to social stress in susceptible mice.
        Biol Psychiatry. 2019; 85: 226-236
        • Nestler E.J.
        Role of the brain’s reward circuitry in depression: Transcriptional mechanisms.
        Int Rev Neurobiol. 2015; 24: 151-170
        • Bagot R.C.
        • Cates H.M.
        • Purushothaman I.
        • Lorsch Z.S.
        • Walker D.M.
        • Wang J.
        • et al.
        Circuit-wide transcriptional profiling reveals brain region-specific gene networks regulating depression susceptibility.
        Neuron. 2016; 90: 969-983
        • Bagot R.C.
        • Cates H.M.
        • Purushothaman I.
        • Vialou V.
        • Heller E.A.
        • Yieh L.
        • et al.
        Ketamine and imipramine reverse transcriptional signatures of susceptibility and induce resilience-specific gene expression profiles.
        Biol Psychiatry. 2017; 81: 285-295
        • Perrotti L.I.
        • Hadeishi Y.
        • Ulery P.G.
        • Barrot M.
        • Monteggia L.
        • Duman R.S.
        • et al.
        Induction of deltaFosB in reward-related brain structures after chronic stress.
        J Neurosci. 2004; 24: 10594-10602
        • Nestler E.J.
        FosB: A transcriptional regulator of stress and antidepressant responses.
        Eur J Pharmacol. 2015; 753: 66-72
        • Vialou V.
        • Robison A.J.
        • Laplant Q.C.
        • Covington 3rd, H.E.
        • Dietz D.M.
        • Ohnishi Y.N.
        • et al.
        DeltaFosB in brain reward circuits mediates resilience to stress and antidepressant responses.
        Nat Neurosci. 2010; 13: 745-752
        • Lobo M.K.
        • Zaman S.
        • Damez-Werno D.M.
        • Koo J.W.
        • Bagot R.C.
        • DiNieri J.A.
        • et al.
        DeltaFosB induction in striatal medium spiny neuron subtypes in response to chronic pharmacological, emotional, and optogenetic stimuli.
        J Neurosci. 2013; 33: 18381-18395
        • Donahue R.J.
        • Muschamp J.W.
        • Russo S.J.
        • Nestler E.J.
        • Carlezon Jr., W.A.
        Effects of striatal DeltaFosB overexpression and ketamine on social defeat stress-induced anhedonia in mice.
        Biol Psychiatry. 2014; 76: 550-558
        • Hamilton P.J.
        • Burek D.J.
        • Lombroso S.I.
        • Neve R.L.
        • Robison A.J.
        • Nestler E.J.
        • et al.
        Cell-type-specific epigenetic editing at the Fosb gene controls susceptibility to social defeat stress.
        Neuropsychopharmacology. 2018; 43: 272-284
        • Wilkinson M.B.
        • Dias C.
        • Magida J.
        • Mazei-Robison M.
        • Lobo M.
        • Kennedy P.
        • et al.
        A novel role of the WNT-dishevelled-GSK3beta signaling cascade in the mouse nucleus accumbens in a social defeat model of depression.
        J Neurosci. 2011; 31: 9084-9092
        • Dias C.
        • Feng J.
        • Sun H.
        • Shao N.Y.
        • Mazei-Robison M.S.
        • Damez-Werno D.
        • et al.
        beta-catenin mediates stress resilience through Dicer1/microRNA regulation.
        Nature. 2014; 516: 51-55
        • Lorsch Z.S.
        • Hamilton P.J.
        • Ramakrishnan A.
        • Parise E.M.
        • Wright W.J.
        • Salery M.
        • et al.
        Zfp189 mediates stress resilience through a CREB-regulated transcriptional network in prefrontal cortex.
        bioRxiv. 2018; ([published online ahead of print Sep 7])
        • Covington 3rd, H.E.
        • Maze I.
        • LaPlant Q.C.
        • Vialou V.F.
        • Ohnishi Y.N.
        • Berton O.
        • et al.
        Antidepressant actions of histone deacetylase inhibitors.
        J Neurosci. 2009; 29: 11451-11460
        • Tsankova N.M.
        • Berton O.
        • Renthal W.
        • Kumar A.
        • Neve R.L.
        • Nestler E.J.
        Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action.
        Nat Neurosci. 2006; 9: 519-525
        • Renthal W.
        • Maze I.
        • Krishnan V.
        • Covington 3rd, H.E.
        • Xiao G.
        • Kumar A.
        • et al.
        Histone deacetylase 5 epigenetically controls behavioral adaptations to chronic emotional stimuli.
        Neuron. 2007; 56: 517-529
        • Uchida S.
        • Hara K.
        • Kobayashi A.
        • Otsuki K.
        • Yamagata H.
        • Hobara T.
        • et al.
        Epigenetic status of Gdnf in the ventral striatum determines susceptibility and adaptation to daily stressful events.
        Neuron. 2011; 69: 359-372
        • Fuks F.
        DNA methylation and histone modifications: Teaming up to silence genes.
        Curr Opin Genet Dev. 2005; 15: 490-495
        • Hodes G.E.
        • Pfau M.L.
        • Purushothaman I.
        • Ahn H.F.
        • Golden S.A.
        • Christoffel D.J.
        • et al.
        Sex differences in nucleus accumbens transcriptome profiles associated with susceptibility versus resilience to subchronic variable stress.
        J Neurosci. 2015; 35: 16362-16376
        • LaPlant Q.
        • Vialou V.
        • Covington 3rd, H.E.
        • Dumitriu D.
        • Feng J.
        • Warren B.L.
        • et al.
        Dnmt3a regulates emotional behavior and spine plasticity in the nucleus accumbens.
        Nat Neurosci. 2010; 13: 1137-1143
        • Issler O.
        • Chen A.
        Determining the role of microRNAs in psychiatric disorders.
        Nat Rev Neurosci. 2015; 16: 201-212
        • Pfau M.L.
        • Purushothaman I.
        • Feng J.
        • Golden S.A.
        • Aleyasin H.
        • Lorsch Z.S.
        • et al.
        Integrative analysis of sex-specific microRNA networks following stress in mouse nucleus accumbens.
        Front Mol Neurosci. 2016; 9: 144
        • Torres-Berrio A.
        • Lopez J.P.
        • Bagot R.C.
        • Nouel D.
        • Dal Bo G.
        • Cuesta S.
        • et al.
        DCC Confers susceptibility to depression-like behaviors in humans and mice and is regulated by miR-218.
        Biol Psychiatry. 2017; 81: 306-315
        • Higuchi F.
        • Uchida S.
        • Yamagata H.
        • Abe-Higuchi N.
        • Hobara T.
        • Hara K.
        • et al.
        Hippocampal microRNA-124 enhances chronic stress resilience in mice.
        J Neurosci. 2016; 36: 7253-7267
        • Heller E.A.
        • Cates H.M.
        • Pena C.J.
        • Sun H.
        • Shao N.
        • Feng J.
        • et al.
        Locus-specific epigenetic remodeling controls addiction- and depression-related behaviors.
        Nat Neurosci. 2014; 17: 1720-1727
        • Lee H.B.
        • Sundberg B.N.
        • Sigafoos A.N.
        • Clark K.J.
        Genome engineering with TALE and CRISPR systems in neuroscience.
        Front Genet. 2016; 7: 47
        • Dantzer R.
        Neuroimmune interactions: From the brain to the immune system and vice versa.
        Physiol Rev. 2018; 98: 477-504
        • Steptoe A.
        • Hamer M.
        • Chida Y.
        The effects of acute psychological stress on circulating inflammatory factors in humans: A review and meta-analysis.
        Brain Behav Immun. 2007; 21: 901-912
        • Dowlati Y.
        • Herrmann N.
        • Swardfager W.
        • Liu H.
        • Sham L.
        • Reim E.K.
        • et al.
        A meta-analysis of cytokines in major depression.
        Biol Psychiatry. 2010; 67: 446-457
        • Kohler C.A.
        • Freitas T.H.
        • Maes M.
        • de Andrade N.Q.
        • Liu C.S.
        • Fernandes B.S.
        • et al.
        Peripheral cytokine and chemokine alterations in depression: A meta-analysis of 82 studies.
        Acta Psychiatr Scand. 2017; 135: 373-387
        • Chan K.L.
        • Cathomas F.
        • Russo S.J.
        Central and peripheral inflammation link metabolic syndrome and major depressive disorder.
        Physiology (Bethesda). 2019; 34: 123-133
        • Iwata M.
        • Ota K.T.
        • Duman R.S.
        The inflammasome: Pathways linking psychological stress, depression, and systemic illnesses.
        Brain Behav Immun. 2013; 31: 105-114
        • Dunn J.H.
        • Ellis L.Z.
        • Fujita M.
        Inflammasomes as molecular mediators of inflammation and cancer: Potential role in melanoma.
        Cancer Lett. 2012; 314: 24-33
        • Kohler O.
        • Benros M.E.
        • Nordentoft M.
        • Farkouh M.E.
        • Iyengar R.L.
        • Mors O.
        • et al.
        Effect of anti-inflammatory treatment on depression, depressive symptoms, and adverse effects: A systematic review and meta-analysis of randomized clinical trials.
        JAMA Psychiatry. 2014; 71: 1381-1391
        • Hannestad J.
        • DellaGioia N.
        • Bloch M.
        The effect of antidepressant medication treatment on serum levels of inflammatory cytokines: A meta-analysis.
        Neuropsychopharmacology. 2011; 36: 2452-2459
        • Tan S.
        • Wang Y.
        • Chen K.
        • Long Z.
        • Zou J.
        Ketamine alleviates depressive-like behaviors via down-regulating inflammatory cytokines induced by chronic restraint stress in mice.
        Biol Pharm Bull. 2017; 40: 1260-1267
        • Chen M.H.
        • Li C.T.
        • Lin W.C.
        • Hong C.J.
        • Tu P.C.
        • Bai Y.M.
        • et al.
        Rapid inflammation modulation and antidepressant efficacy of a low-dose ketamine infusion in treatment-resistant depression: A randomized, double-blind control study.
        Psychiatry Res. 2018; 269: 207-211
        • Mogensen T.H.
        Pathogen recognition and inflammatory signaling in innate immune defenses.
        Clin Microbiol Rev. 2009; 22: 240-273
        • Medzhitov R.
        • Janeway Jr., C.
        Innate immunity.
        N Engl J Med. 2000; 343: 338-344
        • Powell N.D.
        • Sloan E.K.
        • Bailey M.T.
        • Arevalo J.M.
        • Miller G.E.
        • Chen E.
        • et al.
        Social stress up-regulates inflammatory gene expression in the leukocyte transcriptome via beta-adrenergic induction of myelopoiesis.
        Proc Natl Acad Sci U S A. 2013; 110: 16574-16579
        • Heidt T.
        • Sager H.B.
        • Courties G.
        • Dutta P.
        • Iwamoto Y.
        • Zaltsman A.
        • et al.
        Chronic variable stress activates hematopoietic stem cells.
        Nat Med. 2014; 20: 754
        • Hodes G.E.
        • Pfau M.L.
        • Leboeuf M.
        • Golden S.A.
        • Christoffel D.J.
        • Bregman D.
        • et al.
        Individual differences in the peripheral immune system promote resilience versus susceptibility to social stress.
        Proc Natl Acad Sci U S A. 2014; 111: 16136-16141
        • Pfau M.L.
        • Menard C.
        • Cathomas F.
        • Desland F.
        • Kana V.
        • Chan K.L.
        • et al.
        Role of monocyte-derived microRNA106b∼25 in resilience to social stress.
        Biol Psychiatry. 2019; 86: 474-482
        • Wang J.
        • Hodes G.E.
        • Zhang H.
        • Zhang S.
        • Zhao W.
        • Golden S.A.
        • et al.
        Epigenetic modulation of inflammation and synaptic plasticity promotes resilience against stress in mice.
        Nat Commun. 2018; 9: 477
        • Bonilla F.A.
        • Oettgen H.C.
        Adaptive immunity.
        J Allergy Clin Immunol. 2010; 125: S33-S40
        • Miller A.H.
        Depression and immunity: A role for T cells?.
        Brain Behav Immun. 2010; 24: 1-8
        • Zorrilla E.P.
        • Luborsky L.
        • McKay J.R.
        • Rosenthal R.
        • Houldin A.
        • Tax A.
        • et al.
        The relationship of depression and stressors to immunological assays: A meta-analytic review.
        Brain Behav Immun. 2001; 15: 199-226
        • Lewitus G.M.
        • Schwartz M.
        Behavioral immunization: Immunity to self-antigens contributes to psychological stress resilience.
        Mol Psychiatry. 2009; 14: 532-536
        • Lewitus G.M.
        • Wilf-Yarkoni A.
        • Ziv Y.
        • Shabat-Simon M.
        • Gersner R.
        • Zangen A.
        • et al.
        Vaccination as a novel approach for treating depressive behavior.
        Biol Psychiatry. 2009; 65: 283-288
        • Lewitus G.M.
        • Cohen H.
        • Schwartz M.
        Reducing post-traumatic anxiety by immunization.
        Brain Behav Immun. 2008; 22: 1108-1114
        • Brachman R.A.
        • Lehmann M.L.
        • Maric D.
        • Herkenham M.
        Lymphocytes from chronically stressed mice confer antidepressant-like effects to naive mice.
        J Neurosci. 2015; 35: 1530-1538
        • Toben C.
        • Baune B.T.
        An act of balance between adaptive and maladaptive immunity in depression: A role for T lymphocytes.
        J Neuroimmune Pharmacol. 2015; 10: 595-609
        • Dantzer R.
        • Cohen S.
        • Russo S.J.
        • Dinan T.G.
        Resilience and immunity.
        Brain Behav Immun. 2018; 74: 28-42
        • Clemente J.C.
        • Ursell L.K.
        • Parfrey L.W.
        • Knight R.
        The impact of the gut microbiota on human health: An integrative view.
        Cell. 2012; 148: 1258-1270
        • Cryan J.F.
        • Dinan T.G.
        Mind-altering microorganisms: The impact of the gut microbiota on brain and behaviour.
        Nat Rev Neurosci. 2012; 13: 701-712
        • Mayer E.A.
        • Knight R.
        • Mazmanian S.K.
        • Cryan J.F.
        • Tillisch K.
        Gut microbes and the brain: Paradigm shift in neuroscience.
        J Neurosci. 2014; 34: 15490-15496
        • Jiang H.
        • Ling Z.
        • Zhang Y.
        • Mao H.
        • Ma Z.
        • Yin Y.
        • et al.
        Altered fecal microbiota composition in patients with major depressive disorder.
        Brain Behav Immun. 2015; 48: 186-194
        • Naseribafrouei A.
        • Hestad K.
        • Avershina E.
        • Sekelja M.
        • Linlokken A.
        • Wilson R.
        • et al.
        Correlation between the human fecal microbiota and depression.
        Neurogastroenterol Motil. 2014; 26: 1155-1162
        • Diaz Heijtz R.
        • Wang S.
        • Anuar F.
        • Qian Y.
        • Bjorkholm B.
        • Samuelsson A.
        • et al.
        Normal gut microbiota modulates brain development and behavior.
        Proc Natl Acad Sci U S A. 2011; 108: 3047-3052
        • Bercik P.
        • Denou E.
        • Collins J.
        • Jackson W.
        • Lu J.
        • Jury J.
        • et al.
        The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice.
        Gastroenterology. 2011; 141 (609.e591–593): 599-609
        • Zheng P.
        • Zeng B.
        • Zhou C.
        • Liu M.
        • Fang Z.
        • Xu X.
        • et al.
        Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism.
        Mol Psychiatry. 2016; 21: 786-796
        • Yang C.
        • Fujita Y.
        • Ren Q.
        • Ma M.
        • Dong C.
        • Hashimoto K.
        Bifidobacterium in the gut microbiota confer resilience to chronic social defeat stress in mice.
        Sci Rep. 2017; 7: 45942
        • Bharwani A.
        • Mian M.F.
        • Surette M.G.
        • Bienenstock J.
        • Forsythe P.
        Oral treatment with Lactobacillus rhamnosus attenuates behavioural deficits and immune changes in chronic social stress.
        BMC Med. 2017; 15: 7
        • Abbott N.J.
        • Patabendige A.A.K.
        • Dolman D.E.M.
        • Yusof S.R.
        • Begley D.J.
        Structure and function of the blood-brain barrier.
        Neurobiol Dis. 2010; 37: 13-25
        • Banks W.A.
        Blood-brain barrier transport of cytokines: A mechanism for neuropathology.
        Curr Pharm Des. 2005; 11: 973-984
        • Friedman A.
        • Kaufer D.
        • Shemer J.
        • Hendler I.
        • Soreq H.
        • Tur-Kaspa I.
        Pyridostigmine brain penetration under stress enhances neuronal excitability and induces early immediate transcriptional response.
        Nat Med. 1996; 2: 1382-1385
        • Niklasson F.
        • Agren H.
        Brain energy metabolism and blood-brain barrier permeability in depressive patients: Analyses of creatine, creatinine, urate, and albumin in CSF and blood.
        Biol Psychiatry. 1984; 19: 1183-1206
        • Menard C.
        • Pfau M.L.
        • Hodes G.E.
        • Kana V.
        • Wang V.X.
        • Bouchard S.
        • et al.
        Social stress induces neurovascular pathology promoting depression.
        Nat Neurosci. 2017; 20: 1752-1760
        • Pearson-Leary J.
        • Eacret D.
        • Chen R.
        • Takano H.
        • Nicholas B.
        • Bhatnagar S.
        Inflammation and vascular remodeling in the ventral hippocampus contributes to vulnerability to stress.
        Transl Psychiatry. 2017; 7: e1160
        • Cheng Y.
        • Desse S.
        • Martinez A.
        • Worthen R.J.
        • Jope R.S.
        • Beurel E.
        TNFalpha disrupts blood brain barrier integrity to maintain prolonged depressive-like behavior in mice.
        Brain Behav Immun. 2018; 69: 556-567
        • McKim D.B.
        • Weber M.D.
        • Niraula A.
        • Sawicki C.M.
        • Liu X.
        • Jarrett B.L.
        • et al.
        Microglial recruitment of IL-1beta-producing monocytes to brain endothelium causes stress-induced anxiety.
        Mol Psychiatry. 2018; 23: 1421-1431
        • Rajkowska G.
        • Miguel-Hidalgo J.J.
        Gliogenesis and glial pathology in depression.
        CNS Neurol Disord Drug Targets. 2007; 6: 219-233
        • Wohleb E.S.
        • Franklin T.
        • Iwata M.
        • Duman R.S.
        Integrating neuroimmune systems in the neurobiology of depression.
        Nat Rev Neurosci. 2016; 17: 497-511
        • Wohleb E.S.
        • Hanke M.L.
        • Corona A.W.
        • Powell N.D.
        • Stiner L.M.
        • Bailey M.T.
        • et al.
        beta-Adrenergic receptor antagonism prevents anxiety-like behavior and microglial reactivity induced by repeated social defeat.
        J Neurosci. 2011; 31: 6277-6288
        • Steiner J.
        • Bielau H.
        • Brisch R.
        • Danos P.
        • Ullrich O.
        • Mawrin C.
        • et al.
        Immunological aspects in the neurobiology of suicide: Elevated microglial density in schizophrenia and depression is associated with suicide.
        J Psychiatr Res. 2008; 42: 151-157
        • Setiawan E.
        • Wilson A.A.
        • Mizrahi R.
        • Rusjan P.M.
        • Miler L.
        • Rajkowska G.
        • et al.
        Role of translocator protein density, a marker of neuroinflammation, in the brain during major depressive episodes.
        JAMA Psychiatry. 2015; 72: 268-275
        • Kreisel T.
        • Frank M.G.
        • Licht T.
        • Reshef R.
        • Ben-Menachem-Zidon O.
        • Baratta M.V.
        • et al.
        Dynamic microglial alterations underlie stress-induced depressive-like behavior and suppressed neurogenesis.
        Mol Psychiatry. 2014; 19: 699-709
        • Rothhammer V.
        • Borucki D.M.
        • Tjon E.C.
        • Takenaka M.C.
        • Chao C.C.
        • Ardura-Fabregat A.
        • et al.
        Microglial control of astrocytes in response to microbial metabolites.
        Nature. 2018; 557: 724-728
        • Braniste V.
        • Al-Asmakh M.
        • Kowal C.
        • Anuar F.
        • Abbaspour A.
        • Toth M.
        • et al.
        The gut microbiota influences blood-brain barrier permeability in mice.
        Sci Transl Med. 2014; 6: 263ra158