Advertisement

Domain-Specific Cognitive Impairments in Humans and Flies With Reduced CYFIP1 Dosage

      Abstract

      Background

      Deletions encompassing a four-gene region on chromosome 15 (BP1-BP2 at 15q11.2), seen at a population frequency of 1 in 500, are associated with increased risk for schizophrenia, epilepsy, and other common neurodevelopmental disorders. However, little is known in terms of how these common deletions impact cognition.

      Methods

      We used a Web-based tool to characterize cognitive function in a novel cohort of adult carriers and their noncarrier family members. Results from 31 carrier and 38 noncarrier parents from 40 families were compared with control data from 6530 individuals who self-registered on the Lumosity platform and opted in to participate in research. We then examined aspects of sensory and cognitive function in flies harboring a mutation in Cyfip, the homologue of one of the genes within the deletion. For the fly studies, 10 or more groups of 50 individuals per genotype were included.

      Results

      Our human studies revealed profound deficits in grammatical reasoning, arithmetic reasoning, and working memory in BP1-BP2 deletion carriers. No such deficits were observed in noncarrier spouses. Our fly studies revealed deficits in associative and nonassociative learning despite intact sensory perception.

      Conclusions

      Our results provide new insights into outcomes associated with BP1-BP2 deletions and call for a discussion on how to appropriately communicate these findings to unaffected carriers. Findings also highlight the utility of an online tool in characterizing cognitive function in a geographically distributed population.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Hashemi B.
        • Bassett A.
        • Chitayat D.
        • Chong K.
        • Feldman M.
        • Flanagan J.
        • et al.
        Deletion of 15q11.2(BP1-BP2) region: Further evidence for lack of phenotypic specificity in a pediatric population.
        Am J Med Genet A. 2015; 167: 2098-2102
        • Stefansson H.
        • Rujescu D.
        • Cichon S.
        • Pietiläinen O.P.H.
        • Ingason A.
        • Steinberg S.
        • et al.
        Large recurrent microdeletions associated with schizophrenia.
        Nature. 2008; 455: 232-236
        • Kirov G.
        • Grozeva D.
        • Norton N.
        • Ivanov D.
        • Mantripragada K.K.
        • Holmans P.
        • et al.
        Support for the involvement of large copy number variants in the pathogenesis of schizophrenia.
        Hum Mol Genet. 2009; 18: 1497-1503
        • Grozeva D.
        • Conrad D.F.
        • Barnes C.P.
        • Hurles M.
        • Owen M.J.
        • O’Donovan M.C.
        • et al.
        Independent estimation of the frequency of rare CNVs in the UK population confirms their role in schizophrenia.
        Schizophr Res. 2012; 135: 1-7
        • De Kovel C.G.F.
        • Trucks H.
        • Helbig I.
        • Mefford H.C.
        • Baker C.
        • Leu C.
        • et al.
        Recurrent microdeletions at 15q11.2 and 16p13.11 predispose to idiopathic generalized epilepsies.
        Brain. 2010; 133: 23-32
        • Mefford H.C.
        • Muhle H.
        • Ostertag P.
        • von Spiczak S.
        • Buysse K.
        • Baker C.
        • et al.
        Genome-wide copy number variation in epilepsy: Novel susceptibility loci in idiopathic generalized and focal epilepsies.
        PLoS Genet. 2010; 6: 15
        • Cooper G.M.
        • Coe B.P.
        • Girirajan S.
        • Rosenfeld J.A.
        • Vu T.H.
        • Baker C.
        • et al.
        A copy number variation morbidity map of developmental delay.
        Nat Genet. 2011; 43: 838-846
        • Mefford H.C.
        • Cooper G.M.
        • Zerr T.
        • Smith J.D.
        • Baker C.
        • Shafer N.
        • et al.
        A method for rapid, targeted CNV genotyping identifies rare variants associated with neurocognitive disease.
        Genome Res. 2009; 19: 1579-1585
        • Cafferkey M.
        • Ahn J.W.
        • Flinter F.
        • Ogilvie C.
        Phenotypic features in patients with 15q11.2(BP1-BP2) deletion: Further delineation of an emerging syndrome.
        Am J Med Genet A. 2014; 164A: 1916-1922
        • Murthy S.K.
        • Nygren A.O.
        • El Shakankiry H.M.
        • Schouten J.P.
        • Al Khayat A.I.
        • Ridha A.
        • Al Ali M.T.
        Detection of a novel familial deletion of four genes between BP1 and BP2 of the Prader-Willi/Angelman syndrome critical region by oligo-array CGH in a child with neurological disorder and speech impairment.
        Cytogenet Genome Res. 2007; 116: 135-140
        • Doornbos M.
        • Sikkema-Raddatz B.
        • Ruijvenkamp C.A.L.
        • Dijkhuizen T.
        • Bijlsma E.K.
        • Gijsbers A.C.J.
        • et al.
        Nine patients with a microdeletion 15q11.2 between breakpoints 1 and 2 of the Prader-Willi critical region, possibly associated with behavioural disturbances.
        Eur J Med Genet. 2009; 52: 108-115
        • Von der Lippe C.
        • Rustad C.
        • Heimdal K.
        • Rødningen O.K.
        15q11.2 microdeletion—seven new patients with delayed development and/or behavioural problems.
        Eur J Med Genet. 2011; 54: 357-360
        • Burnside R.D.
        • Pasion R.
        • Mikhail F.M.
        • Carroll A.J.
        • Robin N.H.
        • Youngs E.L.
        • et al.
        Microdeletion/microduplication of proximal 15q11.2 between BP1 and BP2: a susceptibility region for neurological dysfunction including developmental and language delay.
        Hum Genet. 2011; 130: 517-528
        • Abdelmoity A.T.
        • LePichon J.-B.
        • Nyp S.S.
        • Soden S.E.
        • Daniel C.A.
        • Yu S.
        15q11.2 proximal imbalances associated with a diverse array of neuropsychiatric disorders and mild dysmorphic features.
        J Dev Behav Pediatr. 2012; 33: 570-576
        • Vanlerberghe C.
        • Petit F.
        • Malan V.
        • Vincent-Delorme C.
        • Duban B.
        • Vallee L.
        • et al.
        15q11.2 microdeletion (BP1-BP2) and developmental delay, behaviour issues, epilepsy and congenital heart disease: A series of 52 patients.
        Eur J Med Genet. 2015; 58: 140-147
        • Madrigal I.
        • Rodríguez-Revenga L.
        • Xunclà M.
        • Milà M.
        15q11.2 microdeletion and FMR1 premutation in a family with intellectual disabilities and autism.
        Gene. 2012; 508: 92-95
        • Stefansson H.
        • Meyer-Lindenberg A.
        • Steinberg S.
        • Magnusdottir B.
        • Morgen K.
        • Arnarsdottir S.
        • et al.
        CNVs conferring risk of autism or schizophrenia affect cognition in controls.
        Nature. 2014; 505: 361-366
        • Silva A.I.
        • Ulfarsson M.O.
        • Stefansson H.
        • Gustafsson O.
        • Walters G.B.
        • Linden D.E.J.
        • et al.
        Reciprocal white matter changes associated with copy number variation at 15q11.2 BP1-BP2: A diffusion tensor imaging study.
        Biol Psychiatry. 2019; 85: 563-572
        • Kobayashi K.
        • Kuroda S.
        • Fukata M.
        • Nakamura T.
        • Nagase T.
        • Nomura N.
        • et al.
        p140Sra-1 (specifically Rac1-associated protein) is a novel specific target for Rac1 small GTPase.
        J Biol Chem. 1998; 273: 291-2955
        • Schenck A.
        • Bardoni B.
        • Langmann C.
        • Harden N.
        • Mandel J.L.
        • Giangrande A.
        CYFIP/Sra-1 controls neuronal connectivity in Drosophila and links the Rac1 GTPase pathway to the fragile X protein.
        Neuron. 2003; 38: 887-898
        • De Rubeis S.
        • Pasciuto E.
        • Li K.W.
        • Fernández E.
        • Di Marino D.
        • Buzzi A.
        • et al.
        CYFIP1 coordinates mRNA translation and cytoskeleton remodeling to ensure proper dendritic spine formation.
        Neuron. 2013; 79: 1169-1182
        • Schenck A.
        • Bardoni B.
        • Moro A.
        • Bagni C.
        • Mandel J.L.
        A highly conserved protein family interacting with the fragile X mental retardation protein (FMRP) and displaying selective interactions with FMRP-related proteins FXR1P and FXR2P.
        Proc Natl Acad Sci U S A. 2001; 98: 8844-8849
        • Napoli I.
        • Mercaldo V.
        • Boyl P.P.
        • Eleuteri B.
        • Zalfa F.
        • De Rubeis S.
        • et al.
        The fragile X syndrome protein represses activity-dependent translation through CYFIP1, a new 4E-BP.
        Cell. 2008; 134: 1042-1054
        • Panja D.
        • Kenney J.W.
        • D’Andrea L.
        • Zalfa F.
        • Vedeler A.
        • Wibrand K.
        • et al.
        Two-stage translational control of dentate gyrus LTP consolidation is mediated by sustained BDNF-TrkB signaling to MNK.
        Cell Rep. 2014; 9: 1430-1445
        • Santini E.
        • Huynh T.N.
        • Longo F.
        • Koo S.Y.
        • Mojica E.
        • D’Andrea L.
        • et al.
        Reducing eIF4E-eIF4G interactions restores the balance between protein synthesis and actin dynamics in fragile X syndrome model mice.
        Sci Signal. 2017; 10
        • Oguro-Ando A.
        • Rosensweig C.
        • Herman E.
        • Nishimura Y.
        • Werling D.
        • Bill B.R.
        • et al.
        Increased CYFIP1 dosage alters cellular and dendritic morphology and dysregulates mTOR.
        Mol Psychiatry. 2015; 20: 1069-1078
        • Pathania M.
        • Davenport E.C.
        • Muir J.
        • Sheehan D.F.
        • López-Doménech G.
        • Kittler J.T.
        The autism and schizophrenia associated gene CYFIP1 is critical for the maintenance of dendritic complexity and the stabilization of mature spines.
        Transl Psychiatry. 2014; 4: e374
        • Davenport E.C.
        • Szulc B.R.
        • Drew J.
        • Taylor J.
        • Morgan T.
        • Higgs N.F.
        • et al.
        Autism and schizophrenia-associated CYFIP1 regulates the balance of synaptic excitation and inhibition.
        Cell Rep. 2019; 26: 2037-2051.e6
        • Bozdagi O.
        • Sakurai T.
        • Dorr N.
        • Pilorge M.
        • Takahashi N.
        • Buxbaum J.D.
        Haploinsufficiency of Cyfip1 produces fragile X-like phenotypes in mice.
        PLoS One. 2012; 7: e42422
        • Yoon K.J.
        • Nguyen H.N.
        • Ursini G.
        • Zhang F.
        • Kim N.S.
        • Wen Z.
        • et al.
        Modeling a genetic risk for schizophrenia in iPSCs and mice reveals neural stem cell deficits associated with adherens junctions and polarity.
        Cell Stem Cell. 2014; 15: 79-91
        • Dominguez-Iturza N.
        • Shah D.
        • Vannelli A.
        • Lo A.C.
        • Armendariz M.
        • Li K.W.
        • et al.
        The autism and schizophrenia-associated protein CYFIP1 regulates bilateral brain connectivity.
        bioRxiv. 2018; ([published online ahead of print Nov 22])
        • Silva A.I.
        • Haddon J.E.
        • Trent S.
        • Syed Y.A.
        • Lin T.-C.E.
        • Patel Y.
        • et al.
        Cyfip1 haploinsufficiency is associated with white matter changes, myelin thinning, reduction of mature oligodendrocytes and behavioural inflexibility.
        bioRxiv. 2018; ([published online ahead of print Nov 25])
        • Hirayama-Kurogi M.
        • Takizawa Y.
        • Kunii Y.
        • Matsumoto J.
        • Wada A.
        • Hino M.
        • et al.
        Downregulation of GNA13-ERK network in prefrontal cortex of schizophrenia brain identified by combined focused and targeted quantitative proteomics.
        J Proteomics. 2017; 158: 31-42
        • Noroozi R.
        • Omrani M.D.
        • Sayad A.
        • Taheri M.
        • Ghafouri-Fard S.
        Cytoplasmic FMRP interacting protein 1/2 (CYFIP1/2) expression analysis in autism.
        Metab Brain Dis. 2018; 33: 1353-1358
        • Sayad A.
        • Ranjbaran F.
        • Ghafouri-Fard S.
        • Arsang-Jang S.
        • Taheri M.
        Expression analysis of CYFIP1 and CAMKK2 genes in the blood of epileptic and schizophrenic patients.
        J Mol Neurosci. 2018; 65: 336-342
        • Zhao Q.
        • Li T.
        • Zhao X.
        • Huang K.
        • Wang T.
        • Li Z.
        • et al.
        Rare CNVs and Tag SNPs at 15q11.2 are associated with schizophrenia in the Han Chinese population.
        Schizophr Bull. 2013; 39: 712-719
        • Wang J.
        • Tao Y.
        • Song F.
        • Sun Y.
        • Ott J.
        • Saffen D.
        Common regulatory variants of CYFIP1 contribute to susceptibility for autism spectrum disorder (ASD) and classical autism.
        Ann Hum Genet. 2015; 79: 329-340
        • Nebel R.A.
        • Zhao D.
        • Pedrosa E.
        • Kirschen J.
        • Lachman H.M.
        • Zheng D.
        • Abrahams B.S.
        Reduced CYFIP1 in human neural progenitors results in dysregulation of schizophrenia and epilepsy gene networks.
        PLoS One. 2016; 11: e0148039
        • Murphy S.M.
        • Preble A.M.
        • Patel U.K.
        • O’Connell K.L.
        • Dias D.P.
        • Moritz M.
        • et al.
        GCP5 and GCP6: Two new members of the human gamma-tubulin complex.
        Mol Biol Cell. 2001; 12: 3340-3352
        • Izumi N.
        • Fumoto K.
        • Izumi S.
        • Kikuchi A.
        GSK-3β regulates proper mitotic spindle formation in cooperation with a component of the γ-tubulin ring complex, GCP5.
        J Biol Chem. 2008; 283: 12981-12991
        • Xiong Y.
        • Oakley B.R.
        In vivo analysis of the functions of gamma-tubulin-complex proteins.
        J Cell Sci. 2009; 122: 4218-4227
        • Emamian E.S.
        • Hall D.
        • Birnbaum M.J.
        • Karayiorgou M.
        • Gogos J.A.
        Convergent evidence for impaired AKT1-GSK3beta signaling in schizophrenia.
        Nat Genet. 2004; 36: 131-137
        • Freyberg Z.
        • Ferrando S.J.
        • Javitch J.A.
        Roles of the Akt/GSK-3 and Wnt signaling pathways in schizophrenia and antipsychotic drug action.
        Am J Psychiatry. 2010; 167: 388-396
        • Hur E.M.
        • Zhou F.Q.
        GSK3 signalling in neural development.
        Nat Rev Neurosci. 2010; 11: 539-551
        • Maver A.
        • Čuturilo G.
        • Kovanda A.
        • Miletić A.
        • Peterlin B.
        Rare missense TUBGCP5 gene variant in a patient with primary microcephaly.
        Eur J Med Genet. 2018; ([published online ahead of print Dec 10])
        • Goytain A.
        • Hines R.M.
        • El-Husseini A.
        • Quamme G.A.
        NIPA1(SPG6), the basis for autosomal dominant form of hereditary spastic paraplegia, encodes a functional Mg2+ transporter.
        J Biol Chem. 2007; 282: 8060-8068
        • Rainier S.
        • Chai J.H.
        • Tokarz D.
        • Nicholls R.D.
        • Fink J.K.
        NIPA1 gene mutations cause autosomal dominant hereditary spastic paraplegia (SPG6).
        Am J Hum Genet. 2003; 73: 967-971
        • Dekker A.M.
        • Seelen M.
        • van Doormaal P.T.C.
        • van Rheenen W.
        • Bothof R.J.P.
        • van Riessen T.
        • et al.
        Large-scale screening in sporadic amyotrophic lateral sclerosis identifies genetic modifiers in C9orf72 repeat carriers.
        Neurobiol Aging. 2016; 39 (220.e9–220.e15)
        • Tazelaar G.H.P.
        • Dekker A.M.
        • van Vugt J.J.F.A.
        • van der Spek R.A.
        • Westeneng H.J.
        • Kool L.J.B.G.
        • et al.
        Association of NIPA1 repeat expansions with amyotrophic lateral sclerosis in a large international cohort.
        Neurobiol Aging. 2019; 74 (234.e9-234.e15)
        • Jiang Y.
        • Zhang Y.
        • Zhang P.
        • Sang T.
        • Zhang F.
        • Ji T.
        • et al.
        NIPA2 located in 15q11.2 is mutated in patients with childhood absence epilepsy.
        Hum Genet. 2012; 131: 1217-1224
        • Xie H.
        • Zhang Y.
        • Zhang P.
        • Wang J.
        • Wu Y.
        • Wu X.
        • et al.
        Functional study of NIPA2 mutations identified from the patients with childhood absence epilepsy.
        PLoS One. 2014; 9: e109749
        • Morrison G.E.
        • Simone C.M.
        • Ng N.F.
        • Hardy J.L.
        Reliability and validity of the NeuroCognitive Performance Test, a web-based neuropsychological assessment.
        Front Psychol. 2015; 6: 1-15
        • Nyholt D.R.
        A simple correction for multiple testing for single-nucleotide polymorphisms in linkage disequilibrium with each other.
        Am J Hum Genet. 2004; 74: 765-769
        • Pavlopoulos E.
        • Anezaki M.
        • Skoulakis E.M.C.
        Neuralized is expressed in the alpha/beta lobes of adult Drosophila mushroom bodies and facilitates olfactory long-term memory formation.
        Proc Natl Acad Sci U S A. 2008; 105: 14674-14679
        • Moressis A.
        • Friedrich A.R.
        • Pavlopoulos E.
        • Davis R.L.
        • Skoulakis E.M.C.
        A dual role for the adaptor protein DRK in Drosophila olfactory learning and memory.
        J Neurosci. 2009; 29: 2611-2625
        • Kanellopoulos A.K.
        • Semelidou O.
        • Kotini A.G.
        • Anezaki M.
        • Skoulakis E.M.C.
        Learning and memory deficits consequent to reduction of the fragile X mental retardation protein result from metabotropic glutamate receptor-mediated inhibition of cAMP signaling in Drosophila.
        J Neurosci. 2012; 32: 13111-13124
        • Acevedo S.F.
        • Froudarakis E.I.
        • Tsiorva A.A.
        • Skoulakis E.M.C.
        Distinct neuronal circuits mediate experience-dependent, non-associative osmotactic responses in Drosophila.
        Mol Cell Neurosci. 2007; 34: 378-389
        • Acevedo S.F.
        • Froudarakis E.I.
        • Kanellopoulos A.
        • Skoulakis E.M.C.
        Protection from premature habituation requires functional mushroom bodies in Drosophila.
        Learn Mem. 2007; 14: 376-384
        • Rosenthal D.G.
        • Learned N.
        • Liu Y.H.
        • Weitzman M.
        Characteristics of fathers with depressive symptoms.
        Matern Child Health J. 2013; 17: 119-128
        • Taylor J.L.
        • Warren Z.E.
        Maternal depressive symptoms following autism spectrum diagnosis.
        J Autism Dev Disord. 2012; 42: 1411-1418
        • Bjornsdottir G.
        • Halldorsson J.G.
        • Steinberg S.
        • Hansdottir I.
        • Kristjansson K.
        • Stefansson H.
        • Stefansson K.
        The Adult Reading History Questionnaire (ARHQ) in Icelandic: Psychometric properties and factor structure.
        J Learn Disabil. 2014; 47: 532-542
        • Woo Y.J.
        • Wang T.
        • Guadalupe T.
        • Nebel R.A.
        • Vino A.
        • Del Bene V.A.
        • et al.
        A common CYFIP1 variant at the 15q11.2 disease locus is associated with structural variation at the language-related left supramarginal gyrus.
        PLoS One. 2016; 11: e0158036
        • Ruscio J.
        • Mullen T.
        Confidence intervals for the probability of superiority effect size measure and the area under a receiver operating characteristic curve.
        Multivariate Behav Res. 2012; 47: 201-223
        • Kemper M.B.
        • Hagerman R.J.
        • Ahmad R.S.
        • Mariner R.
        Cognitive profiles and the spectrum of clinical manifestations in heterozygous fra (X) females.
        Am J Med Genet. 1986; 23: 139-156
        • Miezejeski C.M.
        • Jenkins E.C.
        • Hill A.L.
        • Wisniewski K.
        • French J.H.
        • Brown W.T.
        A profile of cognitive deficit in females from fragile X families.
        Neuropsychologia. 1986; 24: 405-409
        • Rivera S.M.
        • Menon V.
        • White C.D.
        • Glaser B.
        • Reiss A.L.
        Functional brain activation during arithmetic processing in females with fragile X syndrome is related to FMR1 protein expression.
        Hum Brain Mapp. 2002; 16: 206-218