Advertisement

Striatal Dopamine Release in Response to Morphine: A [11C]Raclopride Positron Emission Tomography Study in Healthy Men

      Abstract

      Background

      Preclinical and human positron emission tomography studies have produced inconsistent results regarding the effects of opioids on mesolimbic dopamine (DA). Here, we quantify striatal DA release (measured by [11C]raclopride displacement) in response to an intravenous infusion of morphine, and its relationship with morphine-induced subjective effects, in healthy, nondependent opioid–experienced participants.

      Methods

      Fifteen healthy male participants were initially included. Sessions were on separate days. On session 1, participants received intravenous morphine (10 mg/70 kg) in the clinic to ensure tolerability. Participants without adverse reactions (n = 10) then received intravenous morphine and placebo (saline) sessions, in counterbalanced order, while undergoing [11C]raclopride positron emission tomography scans. Subjective and physiological responses were assessed. Region-of-interest and voxelwise image analyses were used to assess changes in [11C]raclopride nondisplaceable binding potential.

      Results

      Morphine produced marked subjective and physiological effects and induced a significant decrease in [11C]raclopride nondisplaceable binding potential, particularly in the nucleus accumbens and globus pallidus, where the change in [11C]raclopride nondisplaceable binding potential was approximately 9%. However, the subjective effects of morphine did not show a simple pattern of correlation with DA release.

      Conclusions

      This is, to our knowledge, the first study providing in vivo human evidence that DA transmission in the ventral striatum is affected by morphine. Further studies are required to fully delineate the DA contribution to the reinforcing effects of opioids.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • U.S. Department of Health and Human Services, Office of the Surgeon General
        Facing Addiction in America: The Surgeon General’s Report on Alcohol, Drugs, and Health.
        U.S. Department of Health and Human Services, Washington, DC2018
        • Compton W.M.
        • Jones C.M.
        • Baldwin G.T.
        Relationship between nonmedical prescription-opioid use and heroin use.
        N Engl J Med. 2016; 374: 154-163
        • Mello N.K.
        • Negus S.S.
        Preclinical evaluation of pharmacotherapies for treatment of cocaine and opioid abuse using drug self-administration procedures.
        Neuropsychopharmacology. 1996; 14: 375-424
        • Badiani A.
        • Belin D.
        • Epstein D.
        • Calu D.
        • Shaham Y.
        Opiate versus psychostimulant addiction: The differences do matter.
        Nat Rev Neurosci. 2011; 12: 685-700
        • Nutt D.J.
        • Lingford-Hughes A.
        • Erritzoe D.
        • Stokes P.R.
        The dopamine theory of addiction: 40 years of highs and lows.
        Nat Rev Neurosci. 2015; 16: 305-312
        • Di Chiara G.
        • Imperato A.
        Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats.
        Proc Natl Acad Sci U S A. 1988; 85: 5274-5278
        • Johnson S.W.
        • North R.A.
        Opioids excite dopamine neurons by hyperpolarization of local interneurons.
        J Neurosci. 1992; 12: 483-488
        • Spanagel R.
        • Herz A.
        • Shippenberg T.S.
        The effects of opioid peptides on dopamine release in the nucleus accumbens: An in vivo microdialysis study.
        J Neurochem. 1990; 55: 1734-1740
        • Van Ree J.M.
        • Ramsey N.
        The dopamine hypothesis of opiate reward challenged.
        Eur J Pharmacol. 1987; 134: 239-243
        • Gerrits M.A.
        • Ramsey N.F.
        • Wolterink G.
        • van Ree J.M.
        Lack of evidence for an involvement of nucleus accumbens dopamine D1 receptors in the initiation of heroin self-administration in the rat.
        Psychopharmacology (Berl). 1994; 114: 486-494
        • Daglish M.R.
        • Williams T.M.
        • Wilson S.J.
        • Taylor L.G.
        • Eap C.B.
        • Augsburger M.
        • et al.
        Brain dopamine response in human opioid addiction.
        Br J Psychiatry. 2008; 193: 65-72
        • Watson B.J.
        • Taylor L.G.
        • Reid A.G.
        • Wilson S.J.
        • Stokes P.R.
        • Brooks D.J.
        • et al.
        Investigating expectation and reward in human opioid addiction with [(11) C]raclopride PET.
        Addict Biol. 2014; 19: 1032-1040
        • Martinez D.
        • Saccone P.A.
        • Liu F.
        • Slifstein M.
        • Orlowska D.
        • Grassetti A.
        • et al.
        Deficits in dopamine D(2) receptors and presynaptic dopamine in heroin dependence: Commonalities and differences with other types of addiction.
        Biol Psychiatry. 2012; 71: 192-198
        • Martinez D.
        • Gil R.
        • Slifstein M.
        • Hwang D.R.
        • Huang Y.
        • Perez A.
        • et al.
        Alcohol dependence is associated with blunted dopamine transmission in the ventral striatum.
        Biol Psychiatry. 2005; 58: 779-786
        • Martinez D.
        • Narendran R.
        • Foltin R.W.
        • Slifstein M.
        • Hwang D.R.
        • Broft A.
        • et al.
        Amphetamine-induced dopamine release: Markedly blunted in cocaine dependence and predictive of the choice to self-administer cocaine.
        Am J Psychiatry. 2007; 164: 622-629
        • Volkow N.D.
        • Wang G.J.
        • Telang F.
        • Fowler J.S.
        • Logan J.
        • Jayne M.
        • et al.
        Profound decreases in dopamine release in striatum in detoxified alcoholics: Possible orbitofrontal involvement.
        J Neurosci. 2007; 27: 12700-12706
        • Fehr C.
        • Yakushev I.
        • Hohmann N.
        • Buchholz H.G.
        • Landvogt C.
        • Deckers H.
        • et al.
        Association of low striatal dopamine d2 receptor availability with nicotine dependence similar to that seen with other drugs of abuse.
        Am J Psychiatry. 2008; 165: 507-514
        • Fields H.L.
        • Margolis E.B.
        Understanding opioid reward.
        Trends Neurosci. 2015; 38: 217-225
        • Nader K.
        • van der Kooy D.
        Deprivation state switches the neurobiological substrates mediating opiate reward in the ventral tegmental area.
        J Neurosci. 1997; 17: 383-390
        • Laviolette S.R.
        • Gallegos R.A.
        • Henriksen S.J.
        • van der Kooy D.
        Opiate state controls bi-directional reward signaling via GABAA receptors in the ventral tegmental area.
        Nat Neurosci. 2004; 7: 160-169
        • Sellings L.H.
        • Clarke P.B.
        Segregation of amphetamine reward and locomotor stimulation between nucleus accumbens medial shell and core.
        J Neurosci. 2003; 23: 6295-6303
        • Olmstead M.C.
        • Franklin K.B.
        The development of a conditioned place preference to morphine: Effects of microinjections into various CNS sites.
        Behav Neurosci. 1997; 111: 1324-1334
        • Mackey W.B.
        • van der Kooy D.
        Neuroleptics block the positive reinforcing effects of amphetamine but not of morphine as measured by place conditioning.
        Pharmacol Biochem Behav. 1985; 22: 101-105
        • Nader K.
        • Bechara A.
        • Roberts D.C.
        • van der Kooy D.
        Neuroleptics block high- but not low-dose heroin place preferences: Further evidence for a two-system model of motivation.
        Behav Neurosci. 1994; 108: 1128-1138
        • Dworkin S.I.
        • Guerin G.F.
        • Co C.
        • Goeders N.E.
        • Smith J.E.
        Lack of an effect of 6-hydroxydopamine lesions of the nucleus accumbens on intravenous morphine self-administration.
        Pharmacol Biochem Behav. 1988; 30: 1051-1057
        • Ettenberg A.
        • Pettit H.O.
        • Bloom F.E.
        • Koob G.F.
        Heroin and cocaine intravenous self-administration in rats: Mediation by separate neural systems.
        Psychopharmacology (Berl). 1982; 78: 204-209
        • Pettit H.O.
        • Ettenberg A.
        • Bloom F.E.
        • Koob G.F.
        Destruction of dopamine in the nucleus accumbens selectively attenuates cocaine but not heroin self-administration in rats.
        Psychopharmacology (Berl). 1984; 84: 167-173
        • Tzschentke T.M.
        Measuring reward with the conditioned place preference paradigm: A comprehensive review of drug effects, recent progress and new issues.
        Prog Neurobiol. 1998; 56: 613-672
        • Wise R.A.
        • Leone P.
        • Rivest R.
        • Leeb K.
        Elevations of nucleus accumbens dopamine and DOPAC levels during intravenous heroin self-administration.
        Synapse. 1995; 21: 140-148
        • Shippenberg T.S.
        • Bals-Kubik R.
        • Herz A.
        Examination of the neurochemical substrates mediating the motivational effects of opioids: Role of the mesolimbic dopamine system and D-1 vs. D-2 dopamine receptors.
        J Pharmacol Exp Ther. 1993; 265: 53-59
        • Bechara A.
        • Nader K.
        • van der Kooy D.
        A two-separate-motivational-systems hypothesis of opioid addiction.
        Pharmacol Biochem Behav. 1998; 59: 1-17
        • Holdstock L.
        • de Wit H.
        Ethanol impairs saccadic and smooth pursuit eye movements without producing self-reports of sedation.
        Alcohol Clin Exp Res. 1999; 23: 664-672
        • Grace P.M.
        • Stanford T.
        • Gentgall M.
        • Rolan P.E.
        Utility of saccadic eye movement analysis as an objective biomarker to detect the sedative interaction between opioids and sleep deprivation in opioid-naive and opioid-tolerant populations.
        J Psychopharmacol. 2010; 24: 1631-1640
        • Lammertsma A.A.
        • Hume S.P.
        Simplified reference tissue model for PET receptor studies.
        Neuroimage. 1996; 4: 153-158
        • Ramchandani V.A.
        • Umhau J.
        • Pavon F.J.
        • Ruiz-Velasco V.
        • Margas W.
        • Sun H.
        • et al.
        A genetic determinant of the striatal dopamine response to alcohol in men.
        Mol Psychiatry. 2011; 16: 809-817
        • Eklund A.
        • Nichols T.E.
        • Knutsson H.
        Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates.
        Proc Natl Acad Sci U S A. 2016; 113: 7900-7905
        • Patenaude B.
        • Smith S.M.
        • Kennedy D.N.
        • Jenkinson M.
        A Bayesian model of shape and appearance for subcortical brain segmentation.
        Neuroimage. 2011; 56: 907-922
        • Mitsis G.D.
        • Iannetti G.D.
        • Smart T.S.
        • Tracey I.
        • Wise R.G.
        Regions of interest analysis in pharmacological fMRI: How do the definition criteria influence the inferred result?.
        Neuroimage. 2008; 40: 121-132
        • Salas-Gonzalez D.
        • Gorriz J.M.
        • Ramirez J.
        • Illan I.A.
        • Lopez M.
        • Segovia F.
        • et al.
        Feature selection using factor analysis for Alzheimer's diagnosis using 18F-FDG PET images.
        Med Phys. 2010; 37: 6084-6095
        • Veronese M.
        • Bertoldo A.
        • Tomasi G.
        • Smith C.B.
        • Schmidt K.C.
        Impact of tissue kinetic heterogeneity on PET quantification: Case study with the L-[1-(11)C]leucine PET method for cerebral protein synthesis rates.
        Sci Rep. 2018; 8: 931
        • Bentourkia M.
        A flexible image segmentation prior to parametric estimation.
        Comput Med Imaging Graph. 2001; 25: 501-506
        • Mohy-Ud-Din H.
        • Lodge M.A.
        • Rahmim A.
        Quantitative myocardial perfusion PET parametric imaging at the voxel-level.
        Phys Med Biol. 2015; 60: 6013-6037
        • Volkow N.D.
        • Wang G.J.
        • Fowler J.S.
        • Logan J.
        • Gatley S.J.
        • Gifford A.
        • et al.
        Prediction of reinforcing responses to psychostimulants in humans by brain dopamine D2 receptor levels.
        Am J Psychiatry. 1999; 156: 1440-1443
        • Drevets W.C.
        • Price J.C.
        • Kupfer D.J.
        • Kinahan P.E.
        • Lopresti B.
        • Holt D.
        • et al.
        PET measures of amphetamine-induced dopamine release in ventral versus dorsal striatum.
        Neuropsychopharmacology. 1999; 21: 694-709
        • Martinez D.
        • Slifstein M.
        • Broft A.
        • Mawlawi O.
        • Hwang D.R.
        • Huang Y.
        • et al.
        Imaging human mesolimbic dopamine transmission with positron emission tomography. Part II: Amphetamine-induced dopamine release in the functional subdivisions of the striatum.
        J Cereb Blood Flow Metab. 2003; 23: 285-300
        • Tsukada H.
        • Nishiyama S.
        • Kakiuchi T.
        • Ohba H.
        • Sato K.
        • Harada N.
        Is synaptic dopamine concentration the exclusive factor which alters the in vivo binding of [11C]raclopride?: PET studies combined with microdialysis in conscious monkeys.
        Brain Res. 1999; 841: 160-169
        • Boileau I.
        • Assaad J.M.
        • Pihl R.O.
        • Benkelfat C.
        • Leyton M.
        • Diksic M.
        • et al.
        Alcohol promotes dopamine release in the human nucleus accumbens.
        Synapse. 2003; 49: 226-231
        • Aalto S.
        • Ingman K.
        • Alakurtti K.
        • Kaasinen V.
        • Virkkala J.
        • Nagren K.
        • et al.
        Intravenous ethanol increases dopamine release in the ventral striatum in humans: PET study using bolus-plus-infusion administration of [(11)C]raclopride.
        J Cereb Blood Flow Metab. 2015; 35: 424-431
        • Yoder K.K.
        • Albrecht D.S.
        • Dzemidzic M.
        • Normandin M.D.
        • Federici L.M.
        • Graves T.
        • et al.
        Differences in IV alcohol-induced dopamine release in the ventral striatum of social drinkers and nontreatment-seeking alcoholics.
        Drug Alcohol Depend. 2016; 160: 163-169
        • Brody A.L.
        • Olmstead R.E.
        • London E.D.
        • Farahi J.
        • Meyer J.H.
        • Grossman P.
        • et al.
        Smoking-induced ventral striatum dopamine release.
        Am J Psychiatry. 2004; 161: 1211-1218
        • Montgomery A.J.
        • Asselin M.C.
        • Farde L.
        • Grasby P.M.
        Measurement of methylphenidate-induced change in extrastriatal dopamine concentration using [11C]FLB 457 PET.
        J Cereb Blood Flow Metab. 2007; 27: 369-377
        • Le Foll B.
        • Guranda M.
        • Wilson A.A.
        • Houle S.
        • Rusjan P.M.
        • Wing V.C.
        • et al.
        Elevation of dopamine induced by cigarette smoking: Novel insights from a [11C]-+-PHNO PET study in humans.
        Neuropsychopharmacology. 2014; 39: 415-424
        • Brody A.L.
        • Mandelkern M.A.
        • Olmstead R.E.
        • Scheibal D.
        • Hahn E.
        • Shiraga S.
        • et al.
        Gene variants of brain dopamine pathways and smoking-induced dopamine release in the ventral caudate/nucleus accumbens.
        Arch Gen Psychiatry. 2006; 63: 808-816
        • Breier A.
        • Su T.P.
        • Saunders R.
        • Carson R.E.
        • Kolachana B.S.
        • de Bartolomeis A.
        • et al.
        Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: Evidence from a novel positron emission tomography method.
        Proc Natl Acad Sci U S A. 1997; 94: 2569-2574
        • Laruelle M.
        • Abi-Dargham A.
        • van Dyck C.
        • Gil R.
        • D'Souza D.C.
        • Krystal J.
        • et al.
        Dopamine and serotonin transporters in patients with schizophrenia: An imaging study with [(123)I]beta-CIT.
        Biol Psychiatry. 2000; 47: 371-379
        • Schiffer W.K.
        • Volkow N.D.
        • Fowler J.S.
        • Alexoff D.L.
        • Logan J.
        • Dewey S.L.
        Therapeutic doses of amphetamine or methylphenidate differentially increase synaptic and extracellular dopamine.
        Synapse. 2006; 59: 243-251
        • Volkow N.D.
        • Wang G.J.
        • Fowler J.S.
        • Logan J.
        • Gatley S.J.
        • Hitzemann R.
        • et al.
        Decreased striatal dopaminergic responsiveness in detoxified cocaine-dependent subjects.
        Nature. 1997; 386: 830-833
        • Wang G.J.
        • Volkow N.D.
        • Fowler J.S.
        • Logan J.
        • Abumrad N.N.
        • Hitzemann R.J.
        • et al.
        Dopamine D2 receptor availability in opiate-dependent subjects before and after naloxone-precipitated withdrawal.
        Neuropsychopharmacology. 1997; 16: 174-182
        • Zijlstra F.
        • Booij J.
        • van den Brink W.
        • Franken I.H.
        Striatal dopamine D2 receptor binding and dopamine release during cue-elicited craving in recently abstinent opiate-dependent males.
        Eur Neuropsychopharmacol. 2008; 18: 262-270
        • Georges F.
        • Stinus L.
        • Bloch B.
        • Le Moine C.
        Chronic morphine exposure and spontaneous withdrawal are associated with modifications of dopamine receptor and neuropeptide gene expression in the rat striatum.
        Eur J Neurosci. 1999; 11: 481-490
        • Sanchez-Cardoso P.
        • Higuera-Matas A.
        • Martin S.
        • Miguens M.
        • Del Olmo N.
        • Garcia-Lecumberri C.
        • et al.
        Strain differences between Lewis and Fischer 344 rats in the modulation of dopaminergic receptors after morphine self-administration and during extinction.
        Neuropharmacology. 2009; 57: 8-17
        • Martinez D.
        • Carpenter K.M.
        • Liu F.
        • Slifstein M.
        • Broft A.
        • Friedman A.C.
        • et al.
        Imaging dopamine transmission in cocaine dependence: Link between neurochemistry and response to treatment.
        Am J Psychiatry. 2011; 168: 634-641
        • Narendran R.
        • Martinez D.
        Cocaine abuse and sensitization of striatal dopamine transmission: A critical review of the preclinical and clinical imaging literature.
        Synapse. 2008; 62: 851-869
        • Schrantee A.
        • Vaclavu L.
        • Heijtel D.F.
        • Caan M.W.
        • Gsell W.
        • Lucassen P.J.
        • et al.
        Dopaminergic system dysfunction in recreational dexamphetamine users.
        Neuropsychopharmacology. 2015; 40: 1172-1180
        • Trifilieff P.
        • Martinez D.
        Imaging addiction: D2 receptors and dopamine signaling in the striatum as biomarkers for impulsivity.
        Neuropharmacology. 2014; 76 Pt B: 498-509
        • Wang G.J.
        • Smith L.
        • Volkow N.D.
        • Telang F.
        • Logan J.
        • Tomasi D.
        • et al.
        Decreased dopamine activity predicts relapse in methamphetamine abusers.
        Mol Psychiatry. 2012; 17: 918-925
        • Koob G.F.
        • Le Moal M.
        Plasticity of reward neurocircuitry and the ‘dark side' of drug addiction.
        Nat Neurosci. 2005; 8: 1442-1444
        • Lynd-Balta E.
        • Haber S.N.
        The organization of midbrain projections to the striatum in the primate: Sensorimotor-related striatum versus ventral striatum.
        Neuroscience. 1994; 59: 625-640
        • Mawlawi O.
        • Martinez D.
        • Slifstein M.
        • Broft A.
        • Chatterjee R.
        • Hwang D.R.
        • et al.
        Imaging human mesolimbic dopamine transmission with positron emission tomography: I. Accuracy and precision of D(2) receptor parameter measurements in ventral striatum.
        J Cereb Blood Flow Metab. 2001; 21: 1034-1057
        • Spreckelmeyer K.N.
        • Paulzen M.
        • Raptis M.
        • Baltus T.
        • Schaffrath S.
        • Van Waesberghe J.
        • et al.
        Opiate-induced dopamine release is modulated by severity of alcohol dependence: An [(18)F]fallypride positron emission tomography study.
        Biol Psychiatry. 2011; 70: 770-776
        • Selley D.E.
        • Cao C.C.
        • Sexton T.
        • Schwegel J.A.
        • Martin T.J.
        • Childers S.R.
        Mu opioid receptor-mediated G-protein activation by heroin metabolites: Evidence for greater efficacy of 6-monoacetylmorphine compared with morphine.
        Biochem Pharmacol. 2001; 62: 447-455
        • Comer S.D.
        • Sullivan M.A.
        • Whittington R.A.
        • Vosburg S.K.
        • Kowalczyk W.J.
        Abuse liability of prescription opioids compared with heroin in morphine-maintained heroin abusers.
        Neuropsychopharmacology. 2008; 33: 1179-1191
        • Wightman R.
        • Perrone J.
        • Portelli I.
        • Nelson L.
        Likeability and abuse liability of commonly prescribed opioids.
        J Med Toxicol. 2012; 8: 335-340
        • Vander Weele C.M.
        • Porter-Stransky K.A.
        • Mabrouk O.S.
        • Lovic V.
        • Singer B.F.
        • Kennedy R.T.
        • et al.
        Rapid dopamine transmission within the nucleus accumbens: Dramatic difference between morphine and oxycodone delivery.
        Eur J Neurosci. 2014; 40: 3041-3054
        • Gottas A.
        • Boix F.
        • Oiestad E.L.
        • Vindenes V.
        • Morland J.
        Role of 6-monoacetylmorphine in the acute release of striatal dopamine induced by intravenous heroin.
        Int J Neuropsychopharmacol. 2014; 17: 1357-1365
        • Farde L.
        • Pauli S.
        • Hall H.
        • Eriksson L.
        • Halldin C.
        • Hogberg T.
        • et al.
        Stereoselective binding of 11C-raclopride in living human brain--a search for extrastriatal central D2-dopamine receptors by PET.
        Psychopharmacology (Berl). 1988; 94: 471-478
        • Black K.J.
        • Piccirillo M.L.
        • Koller J.M.
        • Hseih T.
        • Wang L.
        • Mintun M.A.
        Levodopa effects on [ (11)C]raclopride binding in the resting human brain.
        F1000Res. 2015; 4: 23
        • Ballanger B.
        • Beaudoin-Gobert M.
        • Neumane S.
        • Epinat J.
        • Metereau E.
        • Duperrier S.
        • et al.
        Imaging dopamine and serotonin systems on MPTP monkeys: A longitudinal PET investigation of compensatory mechanisms.
        J Neurosci. 2016; 36: 1577-1589
        • Frouin V.
        • Comtat C.
        • Reilhac A.
        • Gregoire M.C.
        Correction of partial-volume effect for PET striatal imaging: Fast implementation and study of robustness.
        J Nucl Med. 2002; 43: 1715-1726
        • Volkow N.D.
        • Wang G.J.
        • Fowler J.S.
        • Thanos P.P.
        • Logan J.
        • Gatley S.J.
        • et al.
        Brain DA D2 receptors predict reinforcing effects of stimulants in humans: Replication study.
        Synapse. 2002; 46: 79-82
        • Urban N.B.
        • Slifstein M.
        • Thompson J.L.
        • Xu X.
        • Girgis R.R.
        • Raheja S.
        • et al.
        Dopamine release in chronic cannabis users: A [11c]raclopride positron emission tomography study.
        Biol Psychiatry. 2012; 71: 677-683
        • Casey K.F.
        • Benkelfat C.
        • Cherkasova M.V.
        • Baker G.B.
        • Dagher A.
        • Leyton M.
        Reduced dopamine response to amphetamine in subjects at ultra-high risk for addiction.
        Biol Psychiatry. 2014; 76: 23-30
        • Leyton M.
        • Boileau I.
        • Benkelfat C.
        • Diksic M.
        • Baker G.
        • Dagher A.
        Amphetamine-induced increases in extracellular dopamine, drug wanting, and novelty seeking: A PET/[11C]raclopride study in healthy men.
        Neuropsychopharmacology. 2002; 27: 1027-1035
        • Volkow N.D.
        • Wang G.J.
        • Fowler J.S.
        • Logan J.
        • Angrist B.
        • Hitzemann R.
        • et al.
        Effects of methylphenidate on regional brain glucose metabolism in humans: Relationship to dopamine D2 receptors.
        Am J Psychiatry. 1997; 154: 50-55

      Linked Article