Advertisement

Cerebellar Gray Matter Volume Is Associated With Cognitive Function and Psychopathology in Adolescence

  • Torgeir Moberget
    Correspondence
    Address correspondence to Torgeir Moberget, Ph.D., Oslo University Hospital, PO Box 4956 Nydalen, 0424 Oslo, Norway.
    Affiliations
    Norwegian Centre for Mental Disorders Research, K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
    Search for articles by this author
  • Dag Alnæs
    Affiliations
    Norwegian Centre for Mental Disorders Research, K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
    Search for articles by this author
  • Tobias Kaufmann
    Affiliations
    Norwegian Centre for Mental Disorders Research, K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
    Search for articles by this author
  • Nhat Trung Doan
    Affiliations
    Norwegian Centre for Mental Disorders Research, K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
    Search for articles by this author
  • Aldo Córdova-Palomera
    Affiliations
    Norwegian Centre for Mental Disorders Research, K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
    Search for articles by this author
  • Linn Bonaventure Norbom
    Affiliations
    Norwegian Centre for Mental Disorders Research, K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway

    Department of Psychology, University of Oslo, Oslo, Norway
    Search for articles by this author
  • Jaroslav Rokicki
    Affiliations
    Norwegian Centre for Mental Disorders Research, K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway

    Department of Psychology, University of Oslo, Oslo, Norway
    Search for articles by this author
  • Dennis van der Meer
    Affiliations
    Norwegian Centre for Mental Disorders Research, K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
    Search for articles by this author
  • Ole A. Andreassen
    Affiliations
    Norwegian Centre for Mental Disorders Research, K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
    Search for articles by this author
  • Lars T. Westlye
    Affiliations
    Norwegian Centre for Mental Disorders Research, K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway

    Department of Psychology, University of Oslo, Oslo, Norway
    Search for articles by this author

      Abstract

      Background

      Accumulating evidence supports cerebellar involvement in mental disorders, such as schizophrenia, bipolar disorder, depression, anxiety disorders, and attention-deficit/hyperactivity disorder. However, little is known about the cerebellum in developmental stages of these disorders. In particular, whether cerebellar morphology is associated with early expression of specific symptom domains remains unclear.

      Methods

      We used machine learning to test whether cerebellar morphometric features could robustly predict general cognitive function and psychiatric symptoms in a large and well-characterized developmental community sample centered on adolescence (Philadelphia Neurodevelopmental Cohort, n = 1401, age 8–23 years).

      Results

      Cerebellar morphology was associated with both general cognitive function and general psychopathology (mean correlations between predicted and observed values: r = .20 and r = .13; p < .001). Analyses of specific symptom domains revealed significant associations with rates of norm-violating behavior (r = .17; p < .001) as well as psychosis (r = .12; p < .001) and anxiety (r = .09; p = .012) symptoms. In contrast, we observed no associations with attention deficits or depressive, manic, or obsessive-compulsive symptoms. Crucially, across 52 brain-wide anatomical features, cerebellar features emerged as the most important for prediction of general psychopathology, psychotic symptoms, and norm-violating behavior. Moreover, the association between cerebellar volume and psychotic symptoms and, to a lesser extent, norm-violating behavior remained significant when adjusting for several potentially confounding factors.

      Conclusions

      The robust associations with psychiatric symptoms in the age range when these typically emerge highlight the cerebellum as a key brain structure in the development of severe mental disorders.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Moberget T.
        • Doan N.T.
        • Alnaes D.
        • Kaufmann T.
        • Cordova-Palomera A.
        • Lagerberg T.V.
        • et al.
        Cerebellar volume and cerebellocerebral structural covariance in schizophrenia: A multisite mega-analysis of 983 patients and 1349 healthy controls.
        Mol Psychiatry. 2018; 23: 1512-1520
        • Johnson C.P.
        • Follmer R.L.
        • Oguz I.
        • Warren L.A.
        • Christensen G.E.
        • Fiedorowicz J.G.
        • et al.
        Quantitative T1rho mapping links the cerebellum and lithium use in bipolar disorder.
        Mol Psychiatry. 2015; 20: 149
        • Shen Z.
        • Cheng Y.
        • Yang S.
        • Dai N.
        • Ye J.
        • Liu X.
        • et al.
        Changes of grey matter volume in first-episode drug-naive adult major depressive disorder patients with different age-onset.
        Neuroimage Clin. 2016; 12: 492-498
        • Lange I.
        • Kasanova Z.
        • Goossens L.
        • Leibold N.
        • De Zeeuw C.I.
        • van Amelsvoort T.
        • et al.
        The anatomy of fear learning in the cerebellum: A systematic meta-analysis.
        Neurosci Biobehav Rev. 2015; 59: 83-91
        • Lantieri F.
        • Glessner J.T.
        • Hakonarson H.
        • Elia J.
        • Devoto M.
        Analysis of GWAS top hits in ADHD suggests association to two polymorphisms located in genes expressed in the cerebellum.
        Am J Med Genet B Neuropsychiatr Genet. 2010; 153B: 1127-1133
        • Wang S.S.
        • Kloth A.D.
        • Badura A.
        The cerebellum, sensitive periods, and autism.
        Neuron. 2014; 83: 518-532
        • Di Martino A.
        • Fair D.A.
        • Kelly C.
        • Satterthwaite T.D.
        • Castellanos F.X.
        • Thomason M.E.
        • et al.
        Unraveling the miswired connectome: A developmental perspective.
        Neuron. 2014; 83: 1335-1353
        • Kessler R.C.
        • Berglund P.
        • Demler O.
        • Jin R.
        • Merikangas K.R.
        • Walters E.E.
        Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication.
        Arch Gen Psychiatry. 2005; 62: 593-602
        • Phillips J.R.
        • Hewedi D.H.
        • Eissa A.M.
        • Moustafa A.A.
        The cerebellum and psychiatric disorders.
        Front Public Health. 2015; 3: 66
        • Konarski J.Z.
        • McIntyre R.S.
        • Grupp L.A.
        • Kennedy S.H.
        Is the cerebellum relevant in the circuitry of neuropsychiatric disorders?.
        J Psychiatry Neurosci. 2005; 30: 178-186
        • Gowen E.
        • Miall R.C.
        The cerebellum and motor dysfunction in neuropsychiatric disorders.
        Cerebellum. 2007; 6: 268-279
        • Merikangas K.R.
        • He J.P.
        • Burstein M.
        • Swanson S.A.
        • Avenevoli S.
        • Cui L.
        • et al.
        Lifetime prevalence of mental disorders in U.S. adolescents: Results from the National Comorbidity Survey Replication–Adolescent Supplement (NCS-A).
        J Am Acad Child Adolesc Psychiatry. 2010; 49: 980-989
        • McGorry P.D.
        • Purcell R.
        • Goldstone S.
        • Amminger G.P.
        Age of onset and timing of treatment for mental and substance use disorders: Implications for preventive intervention strategies and models of care.
        Curr Opin Psychiatry. 2011; 24: 301-306
        • Millan M.J.
        • Agid Y.
        • Brune M.
        • Bullmore E.T.
        • Carter C.S.
        • Clayton N.S.
        • et al.
        Cognitive dysfunction in psychiatric disorders: Characteristics, causes and the quest for improved therapy.
        Nat Rev Drug Discov. 2012; 11: 141-168
        • Romer A.L.
        • Knodt A.R.
        • Houts R.
        • Brigidi B.D.
        • Moffitt T.E.
        • Caspi A.
        • et al.
        Structural alterations within cerebellar circuitry are associated with general liability for common mental disorders.
        Mol Psychiatry. 2018; 23: 1084-1090
        • Caspi A.
        • Moffitt T.E.
        All for one and one for all: Mental disorders in one dimension.
        Am J Psychiatry. 2018; 175: 831-844
        • Caspi A.
        • Houts R.M.
        • Belsky D.W.
        • Goldman-Mellor S.J.
        • Harrington H.
        • Israel S.
        • et al.
        The p factor: One general psychopathology factor in the structure of psychiatric disorders?.
        Clin Psychol Sci. 2014; 2: 119-137
        • Stoodley C.J.
        Distinct regions of the cerebellum show gray matter decreases in autism, ADHD, and developmental dyslexia.
        Front Syst Neurosci. 2014; 8: 92
        • Satterthwaite T.D.
        • Connolly J.J.
        • Ruparel K.
        • Calkins M.E.
        • Jackson C.
        • Elliott M.A.
        • et al.
        The Philadelphia Neurodevelopmental Cohort: A publicly available resource for the study of normal and abnormal brain development in youth.
        Neuroimage. 2016; 124: 1115-1119
        • Calkins M.E.
        • Merikangas K.R.
        • Moore T.M.
        • Burstein M.
        • Behr M.A.
        • Satterthwaite T.D.
        • et al.
        The Philadelphia Neurodevelopmental Cohort: Constructing a deep phenotyping collaborative.
        J Child Psychol Psychiatry. 2015; 56: 1356-1369
        • Cuthbert B.N.
        • Insel T.R.
        Toward the future of psychiatric diagnosis: The seven pillars of RDoC.
        BMC Med. 2013; 11: 126
        • Wigman J.T.
        • de Vos S.
        • Wichers M.
        • van Os J.
        • Bartels-Velthuis A.A.
        A transdiagnostic network approach to psychosis.
        Schizophr Bull. 2017; 43: 122-132
        • van Os J.
        • Reininghaus U.
        Psychosis as a transdiagnostic and extended phenotype in the general population.
        World Psychiatry. 2016; 15: 118-124
        • Alnaes D.
        • Kaufmann T.
        • Doan N.T.
        • Cordova-Palomera A.
        • Wang Y.
        • Bettella F.
        • et al.
        Association of heritable cognitive ability and psychopathology with white matter properties in children and adolescents.
        JAMA Psychiatry. 2018; 75: 287-295
        • Yarkoni T.
        • Westfall J.
        Choosing prediction over explanation in psychology: Lessons from machine learning.
        Perspect Psychol Sci. 2017; 12: 1100-1122
        • Yoon Y.B.
        • Shin W.G.
        • Lee T.Y.
        • Hur J.W.
        • Cho K.I.K.
        • Sohn W.S.
        • et al.
        Brain structural networks associated with intelligence and visuomotor ability.
        Sci Rep. 2017; 7: 2177
        • Basten U.
        • Hilger K.
        • Fiebach C.J.
        Where smart brains are different: A quantitative meta-analysis of functional and structural brain imaging studies on intelligence.
        Intelligence. 2015; 51: 10-27
        • Rosen A.F.G.
        • Roalf D.R.
        • Ruparel K.
        • Blake J.
        • Seelaus K.
        • Villa L.P.
        • et al.
        Quantitative assessment of structural image quality.
        Neuroimage. 2018; 169: 407-418
        • Noble K.G.
        • Houston S.M.
        • Brito N.H.
        • Bartsch H.
        • Kan E.
        • Kuperman J.M.
        • et al.
        Family income, parental education and brain structure in children and adolescents.
        Nat Neurosci. 2015; 18: 773-778
        • Moulton E.A.
        • Elman I.
        • Becerra L.R.
        • Goldstein R.Z.
        • Borsook D.
        The cerebellum and addiction: Insights gained from neuroimaging research.
        Addict Biol. 2014; 19: 317-331
        • Barton R.A.
        • Venditti C.
        Rapid evolution of the cerebellum in humans and other great apes.
        Curr Biol. 2014; 24: 2440-2444
        • Hogan M.J.
        • Staff R.T.
        • Bunting B.P.
        • Murray A.D.
        • Ahearn T.S.
        • Deary I.J.
        • et al.
        Cerebellar brain volume accounts for variance in cognitive performance in older adults.
        Cortex. 2011; 47: 441-450
        • Merikangas K.
        • Avenevoli S.
        • Costello J.
        • Koretz D.
        • Kessler R.C.
        National comorbidity survey replication adolescent supplement (NCS-A): I. Background and measures.
        J Am Acad Child Adolesc Psychiatry. 2009; 48: 367-369
        • Miller T.J.
        • McGlashan T.H.
        • Rosen J.L.
        • Cadenhead K.
        • Cannon T.
        • Ventura J.
        • et al.
        Prodromal assessment with the structured interview for prodromal syndromes and the scale of prodromal symptoms: Predictive validity, interrater reliability, and training to reliability.
        Schizophr Bull. 2003; 29: 703-715
        • Kobayashi H.
        • Nemoto T.
        • Koshikawa H.
        • Osono Y.
        • Yamazawa R.
        • Murakami M.
        • et al.
        A self-reported instrument for prodromal symptoms of psychosis: Testing the clinical validity of the PRIME Screen-Revised (PS-R) in a Japanese population.
        Schizophr Res. 2008; 106: 356-362
        • Himberg J.
        • Hyvarinen A.
        • Esposito F.
        Validating the independent components of neuroimaging time series via clustering and visualization.
        Neuroimage. 2004; 22: 1214-1222
        • Wood S.N.
        Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models.
        J R Stat Soc B. 2011; 73: 3-36
        • Satterthwaite T.D.
        • Wolf D.H.
        • Calkins M.E.
        • Vandekar S.N.
        • Erus G.
        • Ruparel K.
        • et al.
        Structural brain abnormalities in youth with psychosis spectrum symptoms.
        JAMA Psychiatry. 2016; 73: 515-524
        • Satterthwaite T.D.
        • Elliott M.A.
        • Ruparel K.
        • Loughead J.
        • Prabhakaran K.
        • Calkins M.E.
        • et al.
        Neuroimaging of the Philadelphia Neurodevelopmental Cohort.
        Neuroimage. 2014; 86: 544-553
        • Buckner R.L.
        • Head D.
        • Parker J.
        • Fotenos A.F.
        • Marcus D.
        • Morris J.C.
        • et al.
        A unified approach for morphometric and functional data analysis in young, old, and demented adults using automated atlas-based head size normalization: Reliability and validation against manual measurement of total intracranial volume.
        Neuroimage. 2004; 23: 724-738
        • Fischl B.
        • Salat D.H.
        • Busa E.
        • Albert M.
        • Dieterich M.
        • Haselgrove C.
        • et al.
        Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain.
        Neuron. 2002; 33: 341-355
        • Desikan R.S.
        • Ségonne F.
        • Fischl B.
        • Quinn B.T.
        • Dickerson B.C.
        • Blacker D.
        • et al.
        An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest.
        Neuroimage. 2006; 31: 968-980
        • Diedrichsen J.
        • Zotow E.
        Surface-based display of volume-averaged cerebellar imaging data.
        PLoS One. 2015; 10: e0133402
        • Diedrichsen J.
        A spatially unbiased atlas template of the human cerebellum.
        Neuroimage. 2006; 33: 127-138
        • Ashburner J.
        A fast diffeomorphic image registration algorithm.
        Neuroimage. 2007; 38: 95-113
        • Buckner R.L.
        • Krienen F.M.
        • Castellanos A.
        • Diaz J.C.
        • Yeo B.T.
        The organization of the human cerebellum estimated by intrinsic functional connectivity.
        J Neurophysiol. 2011; 106: 2322-2345
        • Beckmann C.F.
        • Smith S.M.
        Probabilistic independent component analysis for functional magnetic resonance imaging.
        IEEE Trans Med Imaging. 2004; 23: 137-152
        • Yarkoni T.
        • Poldrack R.A.
        • Nichols T.E.
        • Van Essen D.C.
        • Wager T.D.
        Large-scale automated synthesis of human functional neuroimaging data.
        Nat Methods. 2011; 8: 665-670
        • Lenroot R.K.
        • Gogtay N.
        • Greenstein D.K.
        • Wells E.M.
        • Wallace G.L.
        • Clasen L.S.
        • et al.
        Sexual dimorphism of brain developmental trajectories during childhood and adolescence.
        Neuroimage. 2007; 36: 1065-1073
        • Giedd J.N.
        • Blumenthal J.
        • Jeffries N.O.
        • Castellanos F.X.
        • Liu H.
        • Zijdenbos A.
        • et al.
        Brain development during childhood and adolescence: A longitudinal MRI study.
        Nat Neurosci. 1999; 2: 861-863
        • Vandekar S.N.
        • Shinohara R.T.
        • Raznahan A.
        • Roalf D.R.
        • Ross M.
        • DeLeo N.
        • et al.
        Topologically dissociable patterns of development of the human cerebral cortex.
        J Neurosci. 2015; 35: 599-609
        • de Jong L.W.
        • Vidal J.S.
        • Forsberg L.E.
        • Zijdenbos A.P.
        • Haight T.
        • Alzheimer’s Disease Neuroimaging Initiative
        • et al.
        Allometric scaling of brain regions to intra-cranial volume: An epidemiological MRI study.
        Hum Brain Mapp. 2017; 38: 151-164
        • Mankiw C.
        • Park M.T.M.
        • Reardon P.K.
        • Fish A.M.
        • Clasen L.S.
        • Greenstein D.
        • et al.
        Allometric analysis detects brain size-independent effects of sex and sex chromosome complement on human cerebellar organization.
        J Neurosci. 2017; 37: 5221-5231
        • Schafer J.
        • Strimmer K.
        A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics.
        Stat Appl Genet Mol Biol. 2005; 4 (Article32)
        • Zuber V.
        • Strimmer K.
        High-dimensional regression and variable selection using CAR scores.
        Stat Appl Genet Mol Biol. 2011; 10 (Article 34)
        • Winkler A.M.
        • Ridgway G.R.
        • Webster M.A.
        • Smith S.M.
        • Nichols T.E.
        Permutation inference for the general linear model.
        Neuroimage. 2014; 92: 381-397
        • Hibar D.P.
        • Westlye L.T.
        • Doan N.T.
        • Jahanshad N.
        • Cheung J.W.
        • Ching C.R.K.
        • et al.
        Cortical abnormalities in bipolar disorder: An MRI analysis of 6503 individuals from the ENIGMA Bipolar Disorder Working Group.
        Mol Psychiatry. 2018; 23: 932-942
        • Demyttenaere K.
        • Bruffaerts R.
        • Posada-Villa J.
        • Gasquet I.
        • Kovess V.
        • Lepine J.P.
        • et al.
        Prevalence, severity, and unmet need for treatment of mental disorders in the World Health Organization World Mental Health Surveys.
        JAMA. 2004; 291: 2581-2590
        • Steel Z.
        • Marnane C.
        • Iranpour C.
        • Chey T.
        • Jackson J.W.
        • Patel V.
        • et al.
        The global prevalence of common mental disorders: A systematic review and meta-analysis 1980-2013.
        Int J Epidemiol. 2014; 43: 476-493
        • Schmahmann J.D.
        • Sherman J.C.
        The cerebellar cognitive affective syndrome.
        Brain. 1998; 121: 561-579
        • Kaufmann T.
        • Alnaes D.
        • Doan N.T.
        • Brandt C.L.
        • Andreassen O.A.
        • Westlye L.T.
        Delayed stabilization and individualization in connectome development are related to psychiatric disorders.
        Nat Neurosci. 2017; 20: 513-515
        • Kaczkurkin A.N.
        • Moore T.M.
        • Calkins M.E.
        • Ciric R.
        • Detre J.A.
        • Elliott M.A.
        • et al.
        Common and dissociable regional cerebral blood flow differences associate with dimensions of psychopathology across categorical diagnoses.
        Mol Psychiatry. 2018; 23: 1981-1989
        • van Erp T.G.
        • Hibar D.P.
        • Rasmussen J.M.
        • Glahn D.C.
        • Pearlson G.D.
        • Andreassen O.A.
        • et al.
        Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy controls via the ENIGMA consortium.
        Mol Psychiatry. 2016; 21: 585
        • Dosenbach N.U.
        • Fair D.A.
        • Cohen A.L.
        • Schlaggar B.L.
        • Petersen S.E.
        A dual-networks architecture of top-down control.
        Trends Cogn Sci. 2008; 12: 99-105
        • Satterthwaite T.D.
        • Wolf D.H.
        • Erus G.
        • Ruparel K.
        • Elliott M.A.
        • Gennatas E.D.
        • et al.
        Functional maturation of the executive system during adolescence.
        J Neurosci. 2013; 33: 16249-16261
        • Shanmugan S.
        • Wolf D.H.
        • Calkins M.E.
        • Moore T.M.
        • Ruparel K.
        • Hopson R.D.
        • et al.
        Common and dissociable mechanisms of executive system dysfunction across psychiatric disorders in youth.
        Am J Psychiatry. 2016; 173: 517-526
        • Koutsouleris N.
        • Riecher-Rossler A.
        • Meisenzahl E.M.
        • Smieskova R.
        • Studerus E.
        • Kambeitz-Ilankovic L.
        • et al.
        Detecting the psychosis prodrome across high-risk populations using neuroanatomical biomarkers.
        Schizophr Bull. 2015; 41: 471-482
        • Anticevic A.
        • Cole M.W.
        • Repovs G.
        • Murray J.D.
        • Brumbaugh M.S.
        • Winkler A.M.
        • et al.
        Characterizing thalamo-cortical disturbances in schizophrenia and bipolar illness.
        Cerebral Cortex. 2014; 24: 3116-3130
        • Ferri J.
        • Ford J.M.
        • Roach B.J.
        • Turner J.A.
        • van Erp T.G.
        • Voyvodic J.
        • et al.
        Resting-state thalamic dysconnectivity in schizophrenia and relationships with symptoms.
        Psychol Med. 2018; 48: 2492-2499
        • Anticevic A.
        • Haut K.
        • Murray J.D.
        • Repovs G.
        • Yang G.J.
        • Diehl C.
        • et al.
        Association of thalamic dysconnectivity and conversion to psychosis in youth and young adults at elevated clinical risk.
        JAMA Psychiatry. 2015; 72: 882-891
        • Bernard J.A.
        • Orr J.M.
        • Mittal V.A.
        Cerebello-thalamo-cortical networks predict positive symptom progression in individuals at ultra-high risk for psychosis.
        Neuroimage Clin. 2017; 14: 622-628
        • Coesmans M.
        • Röder C.H.
        • Smit A.E.
        • Koekkoek S.K.E.
        • De Zeeuw C.I.
        • Frens M.A.
        • et al.
        Cerebellar motor learning deficits in medicated and medication-free men with recent-onset schizophrenia.
        J Psychiatry Neurosci. 2014; 39: E3-E11
        • Parker K.L.
        • Andreasen N.C.
        • Liu D.
        • Freeman J.H.
        • O’Leary D.S.
        Eyeblink conditioning in unmedicated schizophrenia patients: a positron emission tomography study.
        Psychiatry Res. 2013; 214: 402-409
        • Forsyth J.K.
        • Bolbecker A.R.
        • Mehta C.S.
        • Klaunig M.J.
        • Steinmetz J.E.
        • O’Donnell B.F.
        • et al.
        Cerebellar-dependent eyeblink conditioning deficits in schizophrenia spectrum disorders.
        Schizophr Bull. 2012; 38: 751-759
        • Bolbecker A.R.
        • Kent J.S.
        • Petersen I.T.
        • Klaunig M.J.
        • Forsyth J.K.
        • Howell J.M.
        • et al.
        Impaired cerebellar-dependent eyeblink conditioning in first-degree relatives of individuals with schizophrenia.
        Schizophr Bull. 2014; 40: 1001-1010
        • Fischl B.
        FreeSurfer. Neuroimage. 2012; 62: 774-781
        • Sarkar S.
        • Dell’Acqua F.
        • Froudist Walsh S.
        • Blackwood N.
        • Scott S.
        • Craig M.C.
        • et al.
        A whole-brain investigation of white matter microstructure in adolescents with conduct disorder.
        PLoS One. 2016; 11: e0155475
        • Wu Q.
        • Zhang X.
        • Dong D.
        • Wang X.
        • Yao S.
        Altered spontaneous brain activity in adolescent boys with pure conduct disorder revealed by regional homogeneity analysis.
        Eur Child Adolesc Psychiatry. 2017; 26: 827-837
        • Sundararajan T.
        • Manzardo A.M.
        • Butler M.G.
        Functional analysis of schizophrenia genes using GeneAnalytics program and integrated databases.
        Gene. 2018; 641: 25-34
        • Brown E.S.
        • Woolston D.J.
        • Frol A.
        • Bobadilla L.
        • Khan D.A.
        • Hanczyc M.
        • et al.
        Hippocampal volume, spectroscopy, cognition, and mood in patients receiving corticosteroid therapy.
        Biol Psychiatry. 2004; 55: 538-545
        • Tam E.W.
        • Chau V.
        • Ferriero D.M.
        • Barkovich A.J.
        • Poskitt K.J.
        • Studholme C.
        • et al.
        Preterm cerebellar growth impairment after postnatal exposure to glucocorticoids.
        Sci Transl Med. 2011; 3: 105ra105
        • Burkhardt T.
        • Ludecke D.
        • Spies L.
        • Wittmann L.
        • Westphal M.
        • Flitsch J.
        Hippocampal and cerebellar atrophy in patients with Cushing’s disease.
        Neurosurg Focus. 2015; 39: E5
        • Fusar-Poli P.
        • Tantardini M.
        • De Simone S.
        • Ramella-Cravaro V.
        • Oliver D.
        • Kingdon J.
        • et al.
        Deconstructing vulnerability for psychosis: Meta-analysis of environmental risk factors for psychosis in subjects at ultra high-risk.
        Eur Psychiatry. 2017; 40: 65-75
        • Guell X.
        • Schmahmann J.D.
        • Gabrieli J.
        • Ghosh S.S.
        Functional gradients of the cerebellum.
        Elife. 2018; 7
        • King M.
        • Hernandez-Castillo C.R.
        • Poldrack R.R.
        • Ivry R.
        • Diedrichsen J.
        A multi-domain task battery reveals functional boundaries in the human cerebellum.
        bioRxiv. 2018; ([published online ahead of print Sep 21])
        • Kipping J.A.
        • Tuan T.A.
        • Fortier M.V.
        • Qiu A.
        Asynchronous development of cerebellar, cerebello-cortical, and cortico-cortical functional networks in infancy, childhood, and adulthood.
        Cereb Cortex. 2017; 27: 5170-5184
        • Kendler K.S.
        • Prescott C.A.
        • Myers J.
        • Neale M.C.
        The structure of genetic and environmental risk factors for common psychiatric and substance use disorders in men and women.
        Arch Gen Psychiatry. 2003; 60: 929-937
        • Matheson S.L.
        • Shepherd A.M.
        • Laurens K.R.
        • Carr V.J.
        A systematic meta-review grading the evidence for non-genetic risk factors and putative antecedents of schizophrenia.
        Schizophr Res. 2011; 133: 133-142