Advertisement

Sensitive Periods for the Effect of Childhood Adversity on DNA Methylation: Results From a Prospective, Longitudinal Study

  • Erin C. Dunn
    Correspondence
    Address correspondence to Erin C. Dunn, Sc.D., M.P.H., Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, 185 Cambridge Street, Simches Research Building 6th Floor, Boston, MA 02114.
    [email protected] http://www.thedunnlab.com/
    Affiliations
    Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts

    Department of Psychiatry, Harvard Medical School, Boston, Massachusetts

    Stanley Center for Psychiatric Research, The Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, Massachusetts
    Search for articles by this author
  • Thomas W. Soare
    Affiliations
    Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts

    Department of Psychiatry, Harvard Medical School, Boston, Massachusetts

    Stanley Center for Psychiatric Research, The Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, Massachusetts
    Search for articles by this author
  • Yiwen Zhu
    Affiliations
    Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts
    Search for articles by this author
  • Andrew J. Simpkin
    Affiliations
    Medical Research Council Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
    Search for articles by this author
  • Matthew J. Suderman
    Affiliations
    Medical Research Council Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
    Search for articles by this author
  • Torsten Klengel
    Affiliations
    Department of Psychiatry, Harvard Medical School, Boston, Massachusetts

    Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, Massachusetts

    Department of Psychiatry and Psychotherapy, University Medical Center Gottingen, Germany
    Search for articles by this author
  • Andrew D.A.C. Smith
    Affiliations
    Applied Statistics Group, University of the West of England, Bristol, United Kingdom
    Search for articles by this author
  • Kerry J. Ressler
    Affiliations
    Department of Psychiatry, Harvard Medical School, Boston, Massachusetts

    Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, Massachusetts
    Search for articles by this author
  • Caroline L. Relton
    Affiliations
    Medical Research Council Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom

    Institute of Genetic Medicine, University of Newcastle, Newcastle upon Tyne, United Kingdom
    Search for articles by this author

      Abstract

      Background

      Exposure to early-life adversity is known to predict DNA methylation (DNAm) patterns that may be related to psychiatric risk. However, few studies have investigated whether adversity has time-dependent effects based on the age at exposure.

      Methods

      Using a two-stage structured life course modeling approach, we tested the hypothesis that there are sensitive periods when adversity induces greater DNAm changes. We tested this hypothesis in relation to two alternatives: an accumulation hypothesis, in which the effect of adversity increases with the number of occasions exposed, regardless of timing; and a recency model, in which the effect of adversity is stronger for more proximal events. Data came from the Accessible Resource for Integrated Epigenomic Studies, a subsample of mother–child pairs from the Avon Longitudinal Study of Parents and Children (n = 691–774).

      Results

      After covariate adjustment and multiple testing correction, we identified 38 CpG sites that were differentially methylated at 7 years of age following exposure to adversity. Most loci (n = 35) were predicted by the timing of adversity, namely exposures before 3 years of age. Neither the accumulation nor recency of the adversity explained considerable variability in DNAm. A standard epigenome-wide association study of lifetime exposure (vs. no exposure) failed to detect these associations.

      Conclusions

      The developmental timing of adversity explains more variability in DNAm than the accumulation or recency of exposure. Very early childhood appears to be a sensitive period when exposure to adversity predicts differential DNAm patterns. Classification of individuals as exposed versus unexposed to early-life adversity may dilute observed effects.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Brooks-Gunn J.
        • Duncan G.J.
        Effects of poverty on children.
        Future Child. 1997; 7: 55-71
        • Slopen N.
        • Koenen K.C.
        • Kubzansky L.D.
        Cumulative adversity in childhood and emergent risk factors for long-term health.
        J Pediatr. 2014; 164: 631-638
        • Widom C.S.
        • Kahn E.E.
        • Kaplow J.B.
        • Sepulveda-Kozakowski S.
        • Wilson H.W.
        Child abuse and neglect: Potential derailment from normal developmental pathways.
        NYS Psychologist. 2007; 19: 2-6
        • Gilman S.E.
        • Kawachi I.
        • Fitzmaurice G.M.
        • Buka S.L.
        Family disruption in childhood and risk of adult depression.
        Am J Psychiatry. 2003; 160: 939-946
        • Repetti R.L.
        • Taylor S.E.
        • Seeman T.E.
        Risky families: Family social environments and the mental and physical health of offspring.
        Psychol Bull. 2002; 128: 330-366
        • Hammen C.
        Stress and depression.
        Annu Rev Clin Psychol. 2005; 1: 293-319
        • Kessler R.C.
        The effects of stressful life events on depression.
        Annu Rev Psychol. 1997; 48: 191-214
        • McLaughlin K.A.
        • Kubzansky L.D.
        • Dunn E.C.
        • Waldinger R.
        • Vaillant G.
        • Koenen K.C.
        Childhood social environment, emotional reactivity to stress, and mood and anxiety disorders across the life course.
        Depress Anxiety. 2010; 27: 1087-1094
        • McLaughlin K.A.
        • Green J.G.
        • Gruber M.J.
        • Sampson N.A.
        • Zaslavsky A.M.
        • Kessler R.C.
        Childhood adversities and first onset of psychiatric disorders in a national sample of US adolescents.
        JAMA Psychiatry. 2012; 69: 1151-1160
        • Norman R.E.
        • Byambaa M.
        • De R.
        • Butchart A.
        • Scott J.
        • Vos T.
        The long-term health consequences of child physical abuse, emotional abuse, and neglect: A systematic review and meta-analysis.
        PLoS Med. 2012; 9: e1001349
        • Klengel T.
        • Mehta D.
        • Anacker C.
        • Rex-Haffner M.
        • Pruessner J.C.
        • Pariante C.M.
        • et al.
        Allele-specific FKBP5 DNA demethylation mediates gene-childhood trauma interactions.
        Nat Neurosci. 2013; 16: 33-41
        • Lewis C.R.
        • Olive M.F.
        Early-life stress interactions with the epigenome: Potential mechanisms driving vulnerability toward psychiatric illness.
        Behav Pharmacol. 2014; 25: 341-351
        • Bagot R.C.
        • Labonte B.
        • Pena C.J.
        • Nestler E.J.
        Epigenetic signaling in psychiatric disorders: Stress and depression.
        Dialogues Clin Neurosci. 2014; 16: 281-295
        • Szyf M.
        • Bick J.
        DNA methylation: A mechanism for embedding early life experiences in the genome.
        Child Dev. 2013; 84: 49-57
        • Zhang L.
        • Hu X.Z.
        • Benedek D.M.
        • Fullerton C.S.
        • Forsten R.D.
        • Naifeh J.A.
        • et al.
        The interaction between stressful life events and leukocyte telomere length is associated with PTSD.
        Mol Psychiatry. 2014; 19: 855-856
        • Essex M.J.
        • Boyce W.T.
        • Hertzman C.
        • Lam L.L.
        • Armstrong J.M.
        • Neumann S.M.
        • et al.
        Epigenetic vestiges of early developmental adversity: Childhood stress exposure and DNA methylation in adolescence.
        Child Dev. 2013; 84: 58-75
        • Yang B.Z.
        • Zhang H.
        • Ge W.
        • Weder N.
        • Douglas-Palumberi H.
        • Perepletchikova F.
        • et al.
        Child abuse and epigenetic mechanisms of disease risk.
        Am J Prev Med. 2013; 44: 101-107
        • Barker E.D.
        • Walton E.
        • Cecil C.A.M.
        Annual research review: DNA methylation as a mediator in the association between risk exposure and child and adolescent psychopathology.
        J Child Psychol Psychiatry. 2017; 59: 303-322
        • Bornstein M.H.
        Sensitive periods in development: Structural characteristics and causal interpretations.
        Psychol Bull. 1989; 105: 179-197
        • Knudsen E.
        Sensitive periods in the development of the brain and behavior.
        J Cogn Neurosci. 2004; 16: 1412-1425
        • Curley J.P.
        • Champagne F.A.
        Influence of maternal care on the developing brain: Mechanisms, temporal dynamics and sensitive periods.
        Front Neuroendocrinol. 2016; 40: 52-66
        • Faulk C.
        • Dolinoy D.C.
        Timing is everything: The when and how of environmentally induced changes in the epigenome of animals.
        Epigenetics. 2011; 6: 791-797
        • Morgan H.D.
        • Santos F.
        • Green K.
        • Dean W.
        • Reik W.
        Epigenetic reprogramming in mammals.
        Hum Mol Genet. 2005; 14: R47-R58
        • Pena C.J.
        • Neugut Y.D.
        • Champagne F.A.
        Developmental timing of the effects of maternal care on gene expression and epigenetic regulation of hormone receptor levels in female rats.
        Endocrinology. 2013; 154: 4340-4351
        • Pena C.J.
        • Kronman H.G.
        • Walker D.M.
        • Cates H.M.
        • Bagot R.C.
        • Purushothaman I.
        • et al.
        Early life stress confers lifelong stress susceptibility in mice via ventral tegmental area OTX2.
        Science. 2017; 356: 1185-1188
        • Massart R.
        • Nemoda Z.
        • Suderman M.J.
        • Sutti S.
        • Ruggiero A.M.
        • Dettmer A.M.
        • et al.
        Early life adversity alters normal sex-dependent developmental dynamics of DNA methylation.
        Dev Psychopathol. 2016; 28: 1259-1272
        • van der Knaap L.J.
        • Riese H.
        • Hudziak J.J.
        • Verbiest M.M.
        • Verhulst F.C.
        • Oldehinkel A.J.
        • et al.
        Adverse life events and allele-specific methylation of the serotonin transporter gene (SLC6A4) in adolescents: The TRAILS study.
        Psychosom Med. 2015; 77: 246-255
        • van der Knaap L.J.
        • van Oort F.V.A.
        • Verhulst F.C.
        • Oldehinkel A.J.
        • Riese H.
        Methylation of NR3C1 and SLC6A4 and internalizing problems. The TRAILS study.
        J Affect Disord. 2015; 180: 97-103
        • Non A.L.
        • Hollister B.M.
        • Humphreys K.L.
        • Childebayeva A.
        • Esteves K.
        • Zeanah C.H.
        • et al.
        DNA methylation at stress-related genes is associated with exposure to early life institutionalization.
        Am J Phys Anthropol. 2016; 161: 84-93
        • Borghol N.
        • Suderman M.
        • McArdle W.
        • Racine A.
        • Hallett M.
        • Pembrey M.
        • et al.
        Associations with early-life socio-economic position in adult DNA methylation.
        Int J Epidemiol. 2012; 41: 62-74
        • Esposito E.A.
        • Jones M.J.
        • Doom J.R.
        • MacIsaac J.L.
        • Gunnar M.R.
        • Kobor M.S.
        Differential DNA methylation in peripheral blood mononuclear cells in adolescents exposed to significant early but not later childhood adversity.
        Dev Psychopathol. 2016; 28: 1385-1399
        • Marzi S.J.
        • Sugden K.
        • Arseneault L.
        • Belsky D.W.
        • Burrage J.
        • Corcoran D.L.
        • et al.
        Analysis of DNA methylation in young people: Limited evidence for an association between victimization stress and epigenetic variation in blood.
        Am J Psychiatry. 2018; 175: 517-529
        • Smith A.D.
        • Heron J.
        • Mishra G.
        • Gilthorpe M.S.
        • Ben-Shlomo Y.
        • Tilling K.
        Model selection of the effect of binary exposures over the life course.
        Epidemiology. 2015; 26: 719-726
        • Mishra G.
        • Nitsch D.
        • Black S.
        • De Stavola B.
        • Kuh D.
        • Hardy R.
        A structured approach to modelling the effects of binary exposure variables over the life course.
        Int J Epidemiol. 2009; 38: 528-537
        • Ben-Shlomo Y.
        • Cooper R.
        • Kuh D.
        The last two decades of life course epidemiology and its relevance for research on ageing.
        Int J Epidemiol. 2016; 45: 973-988
        • Kuh D.
        • Ben-Shlomo Y.
        A Life Course Approach to Chronic Disease Epidemiology.
        Oxford University Press, Oxford, UK2004
        • Ben-Shlomo Y.
        • Kuh D.
        A life course approach to chronic disease epidemiology: Conceptual models, empirical challenges, and interdisciplinary perspectives.
        Int J Epidemiol. 2002; 31: 285-293
        • Sameroff A.J.
        Dialectical Processes in Developmental Psychopathology.
        in: Sameroff A.J. Lewis M. Miller S.M. Handbook of Developmental Psychopathology. Springer US, Boston, MA2000: 23-40
        • Evans G.W.
        • Li D.
        • Whipple S.S.
        Cumulative risk and child development.
        Psychol Bull. 2013; 139: 342-396
        • Rutter M.
        Protective factors in children's responses to stress and disadvantage.
        Ann Acad Med Singapore. 1979; 8: 324-338
        • Shanahan L.
        • Copeland W.E.
        • Costello E.J.
        • Angold A.
        Child-, adolescent- and young adult-onset depressions: Differential risk factors in development?.
        Psychol Med. 2011; 41: 2265-2274
        • Boyd A.
        • Golding J.
        • Macleod J.
        • Lawlor D.A.
        • Fraser A.
        • Henderson J.
        • et al.
        Cohort profile: The ‘children of the 90s’—the index offspring of the Avon Longitudinal Study of Parents and Children.
        Int J Epidemiol. 2012; 42: 111-127
        • Golding J.
        • Pembrey M.
        • Jones R.
        • the ALSPAC Study Team
        ALSPAC: The Avon Longitudinal Study of Parents and Children I. Study methodology.
        Paediatr Perinat Epidemiol. 2001; 15: 74-87
        • Fraser A.
        • Macdonald-Wallis C.
        • Tilling K.
        • Boyd A.
        • Golding J.
        • Davey Smith G.
        • et al.
        Cohort profile: The Avon Longitudinal Study of Parents and Children: ALSPAC mothers cohort.
        Int J Epidemiol. 2013; 42: 97-110
        • Relton C.L.
        • Gaunt T.
        • McArdle W.
        • Ho K.
        • Duggirala A.
        • Shihab H.
        • et al.
        Data resource profile: Accessible Resource for Integrated Epigenomic Studies (ARIES).
        Int J Epidemiol. 2015; 44: 1181-1190
        • Cunliffe V.T.
        The epigenetic impacts of social stress: How does social adversity become biologically embedded?.
        Epigenomics. 2016; 8: 1653-1669
        • Vaiserman A.M.
        • Koliada A.K.
        Early-life adversity and long-term neurobehavioral outcomes: Epigenome as a bridge?.
        Hum Genomics. 2017; 11: 34
        • Eachus H.
        • Cunliffe V.T.
        Biological embedding of psychosocial stress over the life course.
        in: Moskalev A. Vaiserman A.M. Epigenetics of Aging and Longevity. Academic Press, Cambridge, MA2018: 251-270
        • Ramo-Fernández L.
        • Schneider A.
        • Wilker S.
        • Kolassa I.T.
        Epigenetic alterations associated with war trauma and childhood maltreatment.
        Behav Sci Law. 2015; 33: 701-721
        • Provenzi L.
        • Giorda R.
        • Beri S.
        • Montirosso R.
        SLC6A4 methylation as an epigenetic marker of life adversity exposures in humans: A systematic review of literature.
        Neurosci Biobehav Rev. 2016; 71: 7-20
        • Tyrka A.R.
        • Ridout K.K.
        • Parade S.H.
        Childhood adversity and epigenetic regulation of glucocorticoid signaling genes: Associations in children and adults.
        Dev Psychopathol. 2016; 28: 1319-1331
        • Tomassi S.
        • Tosato S.
        Epigenetics and gene expression profile in first-episode psychosis: The role of childhood trauma.
        Neurosci Biobehav Rev. 2017; 83: 226-237
        • Lewis A.J.
        • Austin E.
        • Knapp R.
        • Vaiano T.
        • Galbally M.
        Perinatal maternal mental health, fetal programming and child development.
        Healthcare (Basel). 2015; 3: 1212-1227
        • Newman L.
        • Judd F.
        • Olsson C.A.
        • Castle D.
        • Bousman C.
        • Sheehan P.
        • et al.
        Early origins of mental disorder-risk factors in the perinatal and infant period.
        BMC Psychiatry. 2016; 16: 270
        • Beach S.R.
        • Lei M.K.
        • Brody G.H.
        • Kim S.
        • Barton A.W.
        • Dogan M.V.
        • et al.
        Parenting, SES-risk, and later young adult health: Exploration of opposing indirect effects via DNA methylation.
        Child Dev. 2016; 87: 111-121
        • Naumova O.Y.
        • Lee M.
        • Koposov R.
        • Szyf M.
        • Dozier M.
        • Grigorenko E.L.
        Differential patterns of whole-genome DNA methylation in institutionalized children and children raised by their biological parents.
        Dev Psychopathol. 2012; 24: 143-155
        • Uddin M.
        • Jansen S.
        • Telzer E.H.
        Adolescent depression linked to socioeconomic status? Molecular approaches for revealing premorbid risk factors.
        Bioessays. 2017; 39
        • Subramanyam M.A.
        • Diez-Roux A.V.
        • Pilsner J.R.
        • Villamor E.
        • Donohue K.M.
        • Liu Y.
        • et al.
        Social factors and leukocyte DNA methylation of repetitive sequences: The multi-ethnic study of atherosclerosis.
        PLoS One. 2013; 8: e54018
        • Jovanovic T.
        • Vance L.A.
        • Cross D.
        • Knight A.K.
        • Kilaru V.
        • Michopoulos V.
        • et al.
        Exposure to violence accelerates epigenetic aging in children.
        Sci Rep. 2017; 7: 8962
        • McLaughlin K.A.
        Future directions in childhood adversity and youth psychopathology.
        J Clin Child Adolesc Psychol. 2016; 45: 361-382
        • Jones R.W.
        • Ring S.
        • Tyfield L.
        • Hamvas R.
        • Simmons H.
        • Pembrey M.
        • et al.
        A new human genetic resource: A human DNA bank established as part of the Avon Longitudinal Study of Pregnancy and Childhood (ALSPAC).
        Eur J Hum Genet. 2000; 8: 653-660
        • Zhuang J.
        • Widschwendter M.
        • Teschendorff A.E.
        A comparison of feature selection and classification methods in DNA methylation studies using the Illumina Infinium platform.
        BMC Bioinformatics. 2012; 13: 59
        • Touleimat N.
        • Tost J.
        Complete pipeline for Infinium® Human Methylation 450K BeadChip data processing using subset quantile normalization for accurate DNA methylation estimation.
        Epigenomics. 2012; 4: 325-341
        • Houseman E.A.
        • Molitor J.
        • Marsit C.J.
        Reference-free cell mixture adjustments in analysis of DNA methylation data.
        Bioinformatics. 2014; 30: 1431-1439
        • Tukey J.W.
        The future of data analysis.
        Ann Math Statist. 1962; 33: 1-67
        • Richmond R.C.
        • Simpkin A.J.
        • Woodward G.
        • Gaunt T.R.
        • Lyttleton O.
        • McArdle W.L.
        • et al.
        Prenatal exposure to maternal smoking and offspring DNA methylation across the lifecourse: Findings from the Avon Longitudinal Study of Parents and Children (ALSPAC).
        Hum Mol Genet. 2015; 24: 2201-2217
        • Smith A.D.
        • Hardy R.
        • Heron J.
        • Joinson C.J.
        • Lawlor D.A.
        • Macdonald-Wallis C.
        • et al.
        A structured approach to hypotheses involving continuous exposures over the life course.
        Int J Epidemiol. 2016; 45: 1271-1279
        • Efron B.
        • Hastie T.
        • Johnstone I.
        • Tibshirani R.
        Least angle regression.
        Ann Stat. 2004; 32: 407-499
        • Lockhart R.
        • Taylor J.
        • Tibshirani R.J.
        • Tibshirani R.
        A significance test for the LASSO.
        Ann Stat. 2014; 42: 413-468
        • Birnie K.
        • Martin R.M.
        • Gallacher J.
        • Bayer A.
        • Gunnell D.
        • Ebrahim S.
        • et al.
        Socio-economic disadvantage from childhood to adulthood and locomotor function in old age: A lifecourse analysis of the Boyd Orr and Caerphilly prospective studies.
        J Epidemiol Community Health. 2011; 65: 1014-1023
        • Murray E.T.
        • Mishra G.D.
        • Kuh D.
        • Guralnik J.
        • Black S.
        • Hardy R.
        Life course models of socioeconomic position and cardiovascular risk factors: 1946 birth cohort.
        Ann Epidemiol. 2011; 21: 589-597
        • Collin S.M.
        • Tilling K.
        • Joinson C.
        • Rimes K.A.
        • Pearson R.M.
        • Hughes R.A.
        • et al.
        Maternal and childhood psychological factors predict chronic disabling fatigue at age 13 years.
        J Adolesc Health. 2015; 56: 181-187
        • Evans J.
        • Melotti R.
        • Heron J.
        • Ramchandani P.
        • Wiles N.
        • Murray L.
        • et al.
        The timing of maternal depressive symptoms and child cognitive development: A longitudinal study.
        J Child Psychol Psychiatry. 2012; 53: 632-640
        • Hannon E.
        • Lunnon K.
        • Schalkwyk L.
        • Mill J.
        Interindividual methylomic variation across blood, cortex, and cerebellum: Implications for epigenetic studies of neurological and neuropsychiatric phenotypes.
        Epigenetics. 2015; 10: 1024-1032
        • Huang D.W.
        • Sherman B.T.
        • Lempicki R.A.
        Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources.
        Nat Protoc. 2008; 4: 44-57
        • Lek M.
        • Karczewski K.J.
        • Minikel E.V.
        • Samocha K.E.
        • Banks E.
        • Fennell T.
        • et al.
        Analysis of protein-coding genetic variation in 60,706 humans.
        Nature. 2016; 536: 285-291
        • Gaunt T.R.
        • Shihab H.A.
        • Hemani G.
        • Min J.L.
        • Woodward G.
        • Lyttleton O.
        • et al.
        Systematic identification of genetic influences on methylation across the human life course.
        Genome Biol. 2016; 17: 61
        • Breeze C.E.
        • Paul D.S.
        • van Dongen J.
        • Butcher L.M.
        • Ambrose J.C.
        • Barrett J.E.
        • et al.
        EFORGE: A tool for identifying cell type-specific signal in epigenomic data.
        Cell Rep. 2016; 17: 2137-2150
        • Simpkin A.J.
        • Suderman M.
        • Gaunt T.R.
        • Lyttleton O.
        • McArdle W.L.
        • Ring S.M.
        • et al.
        Longitudinal analysis of DNA methylation associated with birth weight and gestational age.
        Hum Mol Genet. 2015; 24: 3752-3763
        • Holt S.
        • Buckley H.
        • Whelan S.
        The impact of exposure to domestic violence on children and young people: A review of the literature.
        Child Abuse Negl. 2008; 32: 797-810
        • Holden G.W.
        Children exposed to domestic violence and child abuse: Terminology and taxonomy.
        Clin Child Fam Psychol Rev. 2003; 6: 151-160
        • Graham-Bermann S.A.
        • Seng J.
        Violence exposure and traumatic stress symptoms as additional predictors of health problems in high-risk children.
        J Pediatr. 2005; 146: 349-354
        • Gilbert R.
        • Widom C.S.
        • Browne K.
        • Fergusson D.
        • Webb E.
        • Janson S.
        Burden and consequences of child maltreatment in high-income countries.
        Lancet. 2009; 373: 68-81
        • Smith A.K.
        • Kilaru V.
        • Klengel T.
        • Mercer K.B.
        • Bradley B.
        • Conneely K.N.
        • et al.
        DNA extracted from saliva for methylation studies of psychiatric traits: Evidence tissue specificity and relatedness to brain.
        Am J Med Genet B Neuropsychiatr Genet. 2015; 168B: 36-44
        • Tibshirani R.J.
        • Taylor J.
        • Lockhart R.
        • Tibshirani R.
        Exact post-selection inference for sequential regression procedures.
        J Am Stat Assoc. 2016; 111: 600-620
        • Naeem H.
        • Wong N.C.
        • Chatterton Z.
        • Hong M.K.H.
        • Pedersen J.S.
        • Corcoran N.M.
        • et al.
        Reducing the risk of false discovery enabling identification of biologically significant genome-wide methylation status using the HumanMethylation450 array.
        BMC Genomics. 2014; 15: 51
        • Chen Y.-A.
        • Lemire M.
        • Choufani S.
        • Butcher D.T.
        • Grafodatskaya D.
        • Zanke B.W.
        • et al.
        Discovery of cross-reactive probes and polymorphic CpGs in the Illumina Infinium HumanMethylation450 microarray.
        Epigenetics. 2013; 8: 203-209

      Linked Article

      • Do Sensitive Periods Exist for Exposure to Adversity?
        Biological PsychiatryVol. 85Issue 10
        • Preview
          Early environmental experiences exert a profound influence on brain development, with lasting effects on emotion, cognition, and behavior throughout the lifespan. However, knowledge of how environmental experiences become embedded biologically to shape neurocognitive development in humans remains remarkably limited. In this issue of Biological Psychiatry, Dunn et al. (1) test several accounts of how adversity influences peripheral DNA methylation patterns from birth through middle childhood. This work is innovative in empirically evaluating different conceptual models of adversity effects with longitudinal data on multiple forms of adversity.
        • Full-Text
        • PDF
      • Erratum
        Biological PsychiatryVol. 86Issue 1
        • Preview
          Erratum to: “Sensitive Periods for the Effect of Childhood Adversity on DNA Methylation: Results From a Prospective, Longitudinal Study,” by Dunn et al. (Biol Psychiatry 2019; 85:838–849); 10.1016/j.biopsych.2018.12.023 .
        • Full-Text
        • PDF