Advertisement

Synapse-to-Nucleus Signaling in Neurodegenerative and Neuropsychiatric Disorders

  • Arnaldo Parra-Damas
    Affiliations
    Institut de Neurociències, Department de Bioquímica i Biologia Molecular, Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas, Universitat Autònoma de Barcelona, Barcelona, Spain
    Search for articles by this author
  • Carlos A. Saura
    Correspondence
    Address correspondence to Carlos A. Saura, Ph.D., Institut de Neurociències, Facultat de Medicina M2-113, Universitat Autònoma de Barcelona, Barcelona 08193, Spain.
    Affiliations
    Institut de Neurociències, Department de Bioquímica i Biologia Molecular, Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas, Universitat Autònoma de Barcelona, Barcelona, Spain
    Search for articles by this author

      Abstract

      Synapse-to-nucleus signaling is critical for converting signals received at synapses into transcriptional programs essential for cognition, memory, and emotion. This neuronal mechanism usually involves activity-dependent translocation of synaptonuclear factors from synapses to the nucleus resulting in regulation of transcriptional programs underlying synaptic plasticity. Acting as synapse-to-nucleus messengers, amyloid precursor protein intracellular domain associated-1 protein, cAMP response element binding protein (CREB)-regulated transcription coactivator-1, Jacob, nuclear factor kappa-light-chain-enhancer of activated B cells, RING finger protein 10, and SH3 and multiple ankyrin repeat domains 3 play essential roles in synapse remodeling and plasticity, which are considered the cellular basis of memory. Other synaptic proteins, such as extracellular signal-regulated kinase, calcium/calmodulin-dependent protein kinase II gamma, and CREB2, translocate from dendrites or cytosol to the nucleus upon synaptic activity, suggesting that they could contribute to synapse-to-nucleus signaling. Notably, some synaptonuclear factors converge on the transcription factor CREB, indicating that CREB signaling is a key hub mediating integration of synaptic signals into transcriptional programs required for neuronal function and plasticity. Although major efforts have been focused on identification and regulatory mechanisms of synaptonuclear factors, the relevance of synapse-to-nucleus communication in brain physiology and pathology is still unclear. Recent evidence, however, indicates that synaptonuclear factors are implicated in neuropsychiatric, neurodevelopmental, and neurodegenerative disorders, suggesting that uncoupling synaptic activity from nuclear signaling may prompt synapse pathology, contributing to a broad spectrum of brain disorders. This review summarizes current knowledge of synapse-to-nucleus signaling in neuron survival, synaptic function and plasticity, and memory. Finally, we discuss how altered synapse-to-nucleus signaling may lead to memory and emotional disturbances, which is relevant for clinical and therapeutic strategies in neurodegenerative and neuropsychiatric diseases.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ramón y Cajal S.
        Consideraciones generales sobre la morfología de la célula nerviosa.
        La Veterinaria Española. 1894; 37: 257-291
        • Hebb D.O.
        The Organization of Behavior: A Neuropsychological Theory.
        Wiley, New York1949
        • Greer P.L.
        • Greenberg M.E.
        From synapse to nucleus: Calcium-dependent gene transcription in the control of synapse development and function.
        Neuron. 2008; 59: 846-860
        • Panayotis N.
        • Karpova A.
        • Kreutz M.R.
        • Fainzilber M.
        Macromolecular transport in synapse to nucleus communication.
        Trends Neurosci. 2015; 38: 108-116
        • Herbst W.A.
        • Martin K.C.
        Regulated transport of signaling proteins from synapse to nucleus.
        Curr Opin Neurobiol. 2017; 45: 78-84
        • Kaushik R.
        • Grochowska K.M.
        • Butnaru I.
        • Kreutz M.R.
        Protein trafficking from synapse to nucleus in control of activity-dependent gene expression.
        Neuroscience. 2014; 280: 340-350
        • Saura C.A.
        • Cardinaux J.R.
        Emerging roles of CREB-regulated transcription coactivators in brain physiology and pathology.
        Trends Neurosci. 2017; 40: 720-733
        • Ch’ng T.H.
        • Uzgil B.
        • Lin P.
        • Avliyakulov N.K.
        • O’Dell T.J.
        • Martin K.C.
        Activity-dependent transport of the transcriptional coactivator CRTC1 from synapse to nucleus.
        Cell. 2012; 150: 207-221
        • Ch’ng T.H.
        • DeSalvo M.
        • Lin P.
        • Vashisht A.
        • Wohlschlegel J.A.
        • Martin K.C.
        Cell biological mechanisms of activity-dependent synapse to nucleus translocation of CRTC1 in neurons.
        Front Mol Neurosci. 2015; 8: 48
        • Parra-Damas A.
        • Chen M.
        • Enriquez-Barreto L.
        • Ortega L.
        • Acosta S.
        • Perna J.C.
        • et al.
        CRTC1 function during memory encoding is disrupted in neurodegeneration.
        Biol Psychiatry. 2017; 81: 111-123
        • Nonaka M.
        • Kim R.
        • Fukushima H.
        • Sasaki K.
        • Suzuki K.
        • Okamura M.
        • et al.
        Region-specific activation of CRTC1-CREB signaling mediates long-term fear memory.
        Neuron. 2014; 84: 92-106
        • Uchida S.
        • Teubner B.J.W.
        • Hevi C.
        • Hara K.
        • Kobayashi A.
        • Dave R.M.
        • et al.
        CRTC1 nuclear translocation following learning modulates memory strength via exchange of chromatin remodeling complexes on the Fgf1 gene.
        Cell Rep. 2017; 18: 352-366
        • Parra-Damas A.
        • Rubio-Ferrarons L.
        • Shen J.
        • Saura C.A.
        CRTC1 mediates preferential transcription at neuronal activity-regulated CRE/TATA promoters.
        Sci Rep. 2017; 7: 18004
        • Hirano Y.
        • Ihara K.
        • Masuda T.
        • Yamamoto T.
        • Iwata I.
        • Takahashi A.
        • et al.
        Shifting transcriptional machinery is required for long-term memory maintenance and modification in Drosophila mushroom bodies.
        Nat Commun. 2016; 7: 13471
        • Hirano Y.
        • Masuda T.
        • Naganos S.
        • Matsuno M.
        • Ueno K.
        • Miyashita T.
        • et al.
        Fasting launches CRTC to facilitate long-term memory formation in Drosophila.
        Science. 2013; 339: 443-446
        • Sekeres M.J.
        • Mercaldo V.
        • Richards B.
        • Sargin D.
        • Mahadevan V.
        • Woodin M.A.
        • et al.
        Increasing CRTC1 function in the dentate gyrus during memory formation or reactivation increases memory strength without compromising memory quality.
        J Neurosci. 2012; 32: 17857-17868
        • Kovács K.A.
        • Steullet P.
        • Steinmann M.
        • Do K.Q.
        • Magistretti P.J.
        • Halfon O.
        • et al.
        TORC1 is a calcium- and cAMP-sensitive coincidence detector involved in hippocampal long-term synaptic plasticity.
        Proc Natl Acad Sci U S A. 2007; 104: 4700-4705
        • Mendioroz M.
        • Celarain N.
        • Altuna M.
        • Sanchez-Ruiz de Gordoa J.
        • Zelaya M.V.
        • Roldan M.
        • et al.
        CRTC1 gene is differentially methylated in the human hippocampus in Alzheimer’s disease.
        Alzheimers Res Ther. 2016; 8: 15
        • Parra-Damas A.
        • Valero J.
        • Chen M.
        • Espana J.
        • Martin E.
        • Ferrer I.
        • et al.
        Crtc1 activates a transcriptional program deregulated at early Alzheimer’s disease-related stages.
        J Neurosci. 2014; 34: 5776-5787
        • Wilson E.N.
        • Abela A.R.
        • Do Carmo S.
        • Allard S.
        • Marks A.R.
        • Welikovitch L.A.
        • et al.
        Intraneuronal amyloid beta accumulation disrupts hippocampal CRTC1-dependent gene expression and cognitive function in a rat model of Alzheimer disease.
        Cereb Cortex. 2017; 27: 1501-1511
        • España J.
        • Valero J.
        • Minano-Molina A.J.
        • Masgrau R.
        • Martin E.
        • Guardia-Laguarta C.
        • et al.
        β-Amyloid disrupts activity-dependent gene transcription required for memory through the CREB coactivator CRTC1.
        J Neurosci. 2010; 30: 9402-9410
        • Moon M.
        • Jung E.S.
        • Jeon S.G.
        • Cha M.Y.
        • Jang Y.
        • Kim W.
        • et al.
        Nurr1 (NR4A2) regulates Alzheimer’s disease-related pathogenesis and cognitive function in the 5XFAD mouse model.
        Aging Cell. 2019; 18: e12866
        • Won S.Y.
        • Park M.H.
        • You S.T.
        • Choi S.W.
        • Kim H.K.
        • McLean C.
        • et al.
        Nigral dopaminergic PAK4 prevents neurodegeneration in rat models of Parkinson’s disease.
        Sci Transl Med. 2016; 8 (367ra170)
        • Jeong H.
        • Cohen D.E.
        • Cui L.
        • Supinski A.
        • Savas J.N.
        • Mazzulli J.R.
        • et al.
        Sirt1 mediates neuroprotection from mutant huntingtin by activation of the TORC1 and CREB transcriptional pathway.
        Nat Med. 2011; 18: 159-165
        • Chaturvedi R.K.
        • Hennessey T.
        • Johri A.
        • Tiwari S.K.
        • Mishra D.
        • Agarwal S.
        • et al.
        Transducer of regulated CREB-binding proteins (TORCs) transcription and function is impaired in Huntington’s disease.
        Hum Mol Genet. 2012; 21: 3474-3488
        • Giralt A.
        • Puigdellivol M.
        • Carreton O.
        • Paoletti P.
        • Valero J.
        • Parra-Damas A.
        • et al.
        Long-term memory deficits in Huntington’s disease are associated with reduced CBP histone acetylase activity.
        Hum Mol Genet. 2012; 21: 1203-1216
        • Russo S.J.
        • Nestler E.J.
        The brain reward circuitry in mood disorders.
        Nat Rev Neurosci. 2013; 14: 609-625
        • Blendy J.A.
        The role of CREB in depression and antidepressant treatment.
        Biol Psychiatry. 2006; 59: 1144-1150
        • Breuillaud L.
        • Rossetti C.
        • Meylan E.M.
        • Merinat C.
        • Halfon O.
        • Magistretti P.J.
        • et al.
        Deletion of CREB-regulated transcription coactivator 1 induces pathological aggression, depression-related behaviors, and neuroplasticity genes dysregulation in mice.
        Biol Psychiatry. 2012; 72: 528-536
        • Meylan E.M.
        • Halfon O.
        • Magistretti P.J.
        • Cardinaux J.R.
        The HDAC inhibitor SAHA improves depressive-like behavior of CRTC1-deficient mice: Possible relevance for treatment-resistant depression.
        Neuropharmacology. 2016; 107: 111-121
        • Meylan E.M.
        • Breuillaud L.
        • Seredenina T.
        • Magistretti P.J.
        • Halfon O.
        • Luthi-Carter R.
        • et al.
        Involvement of the agmatinergic system in the depressive-like phenotype of the Crtc1 knockout mouse model of depression.
        Transl Psychiatry. 2016; 6: e852
        • Jiang B.
        • Wang H.
        • Wang J.L.
        • Wang Y.J.
        • Zhu Q.
        • Wang C.N.
        • et al.
        Hippocampal salt-inducible kinase 2 plays a role in depression via the CREB-regulated transcription coactivator 1-cAMP response element binding-brain-derived neurotrophic factor pathway.
        Biol Psychiatry. 2019; 85: 650-666
        • Quteineh L.
        • Preisig M.
        • Rivera M.
        • Milaneschi Y.
        • Castelao E.
        • Gholam-Rezaee M.
        • et al.
        Association of CRTC1 polymorphisms with obesity markers in subjects from the general population with lifetime depression.
        J Affect Disord. 2016; 198: 43-49
        • Hollander J.A.
        • Im H.I.
        • Amelio A.L.
        • Kocerha J.
        • Bali P.
        • Lu Q.
        • et al.
        Striatal microRNA controls cocaine intake through CREB signalling.
        Nature. 2010; 466: 197-202
        • Dieterich D.C.
        • Karpova A.
        • Mikhaylova M.
        • Zdobnova I.
        • Konig I.
        • Landwehr M.
        • et al.
        Caldendrin-Jacob: a protein liaison that couples NMDA receptor signalling to the nucleus.
        PLoS Biol. 2008; 6: e34
        • Karpova A.
        • Mikhaylova M.
        • Bera S.
        • Bar J.
        • Reddy P.P.
        • Behnisch T.
        • et al.
        Encoding and transducing the synaptic or extrasynaptic origin of NMDA receptor signals to the nucleus.
        Cell. 2013; 152: 1119-1133
        • Melgarejo da Rosa M.
        • Yuanxiang P.
        • Brambilla R.
        • Kreutz M.R.
        • Karpova A.
        Synaptic GluN2B/CaMKII-α signaling induces synapto-nuclear transport of ERK and Jacob.
        Front Mol Neurosci. 2016; 9: 66
        • Spilker C.
        • Nullmeier S.
        • Grochowska K.M.
        • Schumacher A.
        • Butnaru I.
        • Macharadze T.
        • et al.
        A Jacob/Nsmf gene knockout results in hippocampal dysplasia and impaired BDNF signaling in dendritogenesis.
        PLoS Genet. 2016; 12: e1005907
        • Ronicke R.
        • Mikhaylova M.
        • Ronicke S.
        • Meinhardt J.
        • Schroder U.H.
        • Fandrich M.
        • et al.
        Early neuronal dysfunction by amyloid-β oligomers depends on activation of NR2B-containing NMDA receptors.
        Neurobiol Aging. 2011; 32: 2219-2228
        • Pitteloud N.
        • Quinton R.
        • Pearce S.
        • Raivio T.
        • Acierno J.
        • Dwyer A.
        • et al.
        Digenic mutations account for variable phenotypes in idiopathic hypogonadotropic hypogonadism.
        J Clin Invest. 2007; 117: 457-463
        • Meffert M.K.
        • Chang J.M.
        • Wiltgen B.J.
        • Fanselow M.S.
        • Baltimore D.
        NF-kappa B functions in synaptic signaling and behavior.
        Nat Neurosci. 2003; 6: 1072-1078
        • Marcora E.
        • Kennedy M.B.
        The Huntington’s disease mutation impairs Huntingtin’s role in the transport of NF-kappaB from the synapse to the nucleus.
        Hum Mol Genet. 2010; 19: 4373-4384
        • Guerrini L.
        • Blasi F.
        • Denis-Donini S.
        Synaptic activation of NF-kappa B by glutamate in cerebellar granule neurons in vitro.
        Proc Natl Acad Sci U S A. 1995; 92: 9077-9081
        • Bečanović K.
        • Norremolle A.
        • Neal S.J.
        • Kay C.
        • Collins J.A.
        • Arenillas D.
        • et al.
        A SNP in the HTT promoter alters NF-kappaB binding and is a bidirectional genetic modifier of Huntington disease.
        Nat Neurosci. 2015; 18: 807-816
        • Kaltschmidt B.
        • Kaltschmidt C.
        NF-KappaB in long-term memory and structural plasticity in the adult mammalian brain.
        Front Mol Neurosci. 2015; 8: 69
        • Tindi J.O.
        • Chavez A.E.
        • Cvejic S.
        • Calvo-Ochoa E.
        • Castillo P.E.
        • Jordan B.A.
        ANKS1B gene product AIDA-1 controls hippocampal synaptic transmission by regulating GluN2B subunit localization.
        J Neurosci. 2015; 35: 8986-8996
        • Jordan B.A.
        • Fernholz B.D.
        • Khatri L.
        • Ziff E.B.
        Activity-dependent AIDA-1 nuclear signaling regulates nucleolar numbers and protein synthesis in neurons.
        Nat Neurosci. 2007; 10: 427-435
        • Enga R.M.
        • Rice A.C.
        • Weller P.
        • Subler M.A.
        • Lee D.
        • Hall C.P.
        • et al.
        Initial characterization of behavior and ketamine response in a mouse knockout of the post-synaptic effector gene Anks1b.
        Neurosci Lett. 2017; 641: 26-32
        • Fullerton J.M.
        • Donald J.A.
        • Mitchell P.B.
        • Schofield P.R.
        Two-dimensional genome scan identifies multiple genetic interactions in bipolar affective disorder.
        Biol Psychiatry. 2010; 67: 478-486
        • Grunblatt E.
        • Oneda B.
        • Ekici A.B.
        • Ball J.
        • Geissler J.
        • Uebe S.
        • et al.
        High resolution chromosomal microarray analysis in paediatric obsessive-compulsive disorder.
        BMC Med Genomics. 2017; 10: 68
        • McClay J.L.
        • Adkins D.E.
        • Aberg K.
        • Stroup S.
        • Perkins D.O.
        • Vladimirov V.I.
        • et al.
        Genome-wide pharmacogenomic analysis of response to treatment with antipsychotics.
        Mol Psychiatry. 2011; 16: 76-85
        • Pinto D.
        • Pagnamenta A.T.
        • Klei L.
        • Anney R.
        • Merico D.
        • Regan R.
        • et al.
        Functional impact of global rare copy number variation in autism spectrum disorders.
        Nature. 2010; 466: 368-372
        • Hu V.W.
        • Addington A.
        • Hyman A.
        Novel autism subtype-dependent genetic variants are revealed by quantitative trait and subphenotype association analyses of published GWAS data.
        PLoS One. 2011; 6: e19067
        • Fromer M.
        • Pocklington A.J.
        • Kavanagh D.H.
        • Williams H.J.
        • Dwyer S.
        • Gormley P.
        • et al.
        De novo mutations in schizophrenia implicate synaptic networks.
        Nature. 2014; 506: 179-184
        • Chang X.
        • Lima L.A.
        • Liu Y.
        • Li J.
        • Li Q.
        • Sleiman P.M.A.
        • et al.
        Common and rare genetic risk factors converge in protein interaction networks underlying schizophrenia.
        Front Genet. 2018; 9: 434
        • Scholz C.J.
        • Weber H.
        • Jungwirth S.
        • Danielczyk W.
        • Reif A.
        • Tragl K.H.
        • et al.
        Explorative results from multistep screening for potential genetic risk loci of Alzheimer’s disease in the longitudinal VITA study cohort.
        J Neural Transm. 2018; 125: 77-87
        • Ghersi E.
        • Noviello C.
        • D’Adamio L.
        Amyloid-β protein precursor (AbetaPP) intracellular domain-associated protein-1 proteins bind to AbetaPP and modulate its processing in an isoform-specific manner.
        J Biol Chem. 2004; 279: 49105-49112
        • Dinamarca M.C.
        • Guzzetti F.
        • Karpova A.
        • Lim D.
        • Mitro N.
        • Musardo S.
        • et al.
        Ring finger protein 10 is a novel synaptonuclear messenger encoding activation of NMDA receptors in hippocampus.
        Elife. 2016; 5: e12430
        • Nadif Kasri N.
        • Van Aelst L.
        Rho-linked genes and neurological disorders.
        Pflugers Arch. 2008; 455: 787-797
        • Ramakers G.J.
        • Wolfer D.
        • Rosenberger G.
        • Kuchenbecker K.
        • Kreienkamp H.J.
        • Prange-Kiel J.
        • et al.
        Dysregulation of Rho GTPases in the αPix/Arhgef6 mouse model of X-linked intellectual disability is paralleled by impaired structural and synaptic plasticity and cognitive deficits.
        Hum Mol Genet. 2012; 21: 268-286
        • Khelfaoui M.
        • Denis C.
        • van Galen E.
        • de Bock F.
        • Schmitt A.
        • Houbron C.
        • et al.
        Loss of X-linked mental retardation gene oligophrenin1 in mice impairs spatial memory and leads to ventricular enlargement and dendritic spine immaturity.
        J Neurosci. 2007; 27: 9439-9450
        • Huang L.
        • Poke G.
        • Gecz J.
        • Gibson K.
        A novel contiguous gene deletion of AVPR2 and ARHGAP4 genes in male dizygotic twins with nephrogenic diabetes insipidus and intellectual disability.
        Am J Med Genet A. 2012; 158A: 2511-2518
        • Kutsche K.
        • Yntema H.
        • Brandt A.
        • Jantke I.
        • Nothwang H.G.
        • Orth U.
        • et al.
        Mutations in ARHGEF6, encoding a guanine nucleotide exchange factor for Rho GTPases, in patients with X-linked mental retardation.
        Nat Genet. 2000; 26: 247-250
        • Mateu-Huertas E.
        • Rodriguez-Revenga L.
        • Alvarez-Mora M.I.
        • Madrigal I.
        • Willemsen R.
        • Mila M.
        • et al.
        Blood expression profiles of fragile X premutation carriers identify candidate genes involved in neurodegenerative and infertility phenotypes.
        Neurobiol Dis. 2014; 65: 43-54
        • Bacalman S.
        • Farzin F.
        • Bourgeois J.A.
        • Cogswell J.
        • Goodlin-Jones B.L.
        • Gane L.W.
        • et al.
        Psychiatric phenotype of the fragile X-associated tremor/ataxia syndrome (FXTAS) in males: newly described fronto-subcortical dementia.
        J Clin Psychiatry. 2006; 67: 87-94
        • Jiang Y.H.
        • Ehlers M.D.
        Modeling autism by SHANK gene mutations in mice.
        Neuron. 2013; 78: 8-27
        • Grabrucker S.
        • Proepper C.
        • Mangus K.
        • Eckert M.
        • Chhabra R.
        • Schmeisser M.J.
        • et al.
        The PSD protein ProSAP2/Shank3 displays synapto-nuclear shuttling which is deregulated in a schizophrenia-associated mutation.
        Exp Neurol. 2014; 253: 126-137
        • Proepper C.
        • Johannsen S.
        • Liebau S.
        • Dahl J.
        • Vaida B.
        • Bockmann J.
        • et al.
        Abelson interacting protein 1 (Abi-1) is essential for dendrite morphogenesis and synapse formation.
        EMBO J. 2007; 26: 1397-1409
        • Durand C.M.
        • Betancur C.
        • Boeckers T.M.
        • Bockmann J.
        • Chaste P.
        • Fauchereau F.
        • et al.
        Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders.
        Nat Genet. 2007; 39: 25-27
        • Peça J.
        • Feliciano C.
        • Ting J.T.
        • Wang W.
        • Wells M.F.
        • Venkatraman T.N.
        • et al.
        Shank3 mutant mice display autistic-like behaviours and striatal dysfunction.
        Nature. 2011; 472: 437-442
        • Durand C.M.
        • Perroy J.
        • Loll F.
        • Perrais D.
        • Fagni L.
        • Bourgeron T.
        • et al.
        SHANK3 mutations identified in autism lead to modification of dendritic spine morphology via an actin-dependent mechanism.
        Mol Psychiatry. 2012; 17: 71-84
        • Arons M.H.
        • Thynne C.J.
        • Grabrucker A.M.
        • Li D.
        • Schoen M.
        • Cheyne J.E.
        • et al.
        Autism-associated mutations in ProSAP2/Shank3 impair synaptic transmission and neurexin-neuroligin-mediated transsynaptic signaling.
        J Neurosci. 2012; 32: 14966-14978
        • Han K.
        • Holder Jr., J.L.
        • Schaaf C.P.
        • Lu H.
        • Chen H.
        • Kang H.
        • et al.
        SHANK3 overexpression causes manic-like behaviour with unique pharmacogenetic properties.
        Nature. 2013; 503: 72-77
        • Cochoy D.M.
        • Kolevzon A.
        • Kajiwara Y.
        • Schoen M.
        • Pascual-Lucas M.
        • Lurie S.
        • et al.
        Phenotypic and functional analysis of SHANK3 stop mutations identified in individuals with ASD and/or ID.
        Mol Autism. 2015; 6: 23
        • Verpelli C.
        • Dvoretskova E.
        • Vicidomini C.
        • Rossi F.
        • Chiappalone M.
        • Schoen M.
        • et al.
        Importance of Shank3 protein in regulating metabotropic glutamate receptor 5 (mGluR5) expression and signaling at synapses.
        J Biol Chem. 2011; 286: 34839-34850
        • Pym E.
        • Sasidharan N.
        • Thompson-Peer K.L.
        • Simon D.J.
        • Anselmo A.
        • Sadreyev R.
        • et al.
        Shank is a dose-dependent regulator of Cav1 calcium current and CREB target expression.
        Elife. 2017; 6: e18931
        • Chen A.
        • Muzzio I.A.
        • Malleret G.
        • Bartsch D.
        • Verbitsky M.
        • Pavlidis P.
        • et al.
        Inducible enhancement of memory storage and synaptic plasticity in transgenic mice expressing an inhibitor of ATF4 (CREB-2) and C/EBP proteins.
        Neuron. 2003; 39: 655-669
        • Pasini S.
        • Corona C.
        • Liu J.
        • Greene L.A.
        • Shelanski M.L.
        Specific downregulation of hippocampal ATF4 reveals a necessary role in synaptic plasticity and memory.
        Cell Rep. 2015; 11: 183-191
        • Lai K.O.
        • Zhao Y.
        • Ch’ng T.H.
        • Martin K.C.
        Importin-mediated retrograde transport of CREB2 from distal processes to the nucleus in neurons.
        Proc Natl Acad Sci U S A. 2008; 105: 17175-17180
        • Baleriola J.
        • Walker C.A.
        • Jean Y.Y.
        • Crary J.F.
        • Troy C.M.
        • Nagy P.L.
        • et al.
        Axonally synthesized ATF4 transmits a neurodegenerative signal across brain regions.
        Cell. 2014; 158: 1159-1172
        • Segev Y.
        • Barrera I.
        • Ounallah-Saad H.
        • Wibrand K.
        • Sporild I.
        • Livne A.
        • et al.
        PKR inhibition rescues memory deficit and ATF4 oerexpression in ApoE ε4 human replacement mice.
        J Neurosci. 2015; 35: 12986-12993
        • Sun X.
        • Liu J.
        • Crary J.F.
        • Malagelada C.
        • Sulzer D.
        • Greene L.A.
        • et al.
        ATF4 protects against neuronal death in cellular Parkinson’s disease models by maintaining levels of parkin.
        J Neurosci. 2013; 33: 2398-2407
        • Ma H.
        • Groth R.D.
        • Cohen S.M.
        • Emery J.F.
        • Li B.
        • Hoedt E.
        • et al.
        γCaMKII shuttles Ca2+/CaM to the nucleus to trigger CREB phosphorylation and gene expression.
        Cell. 2014; 159: 281-294
        • Cohen S.M.
        • Suutari B.
        • He X.
        • Wang Y.
        • Sanchez S.
        • Tirko N.N.
        • et al.
        Calmodulin shuttling mediates cytonuclear signaling to trigger experience-dependent transcription and memory.
        Nat Commun. 2018; 9: 2451
        • Cohen S.M.
        • Ma H.
        • Kuchibhotla K.V.
        • Watson B.O.
        • Buzsaki G.
        • Froemke R.C.
        • et al.
        Excitation-transcription coupling in parvalbumin-positive interneurons employs a novel CaM kinase-dependent pathway distinct from excitatory neurons.
        Neuron. 2016; 90: 292-307
        • Bayes A.
        • Collins M.O.
        • Galtrey C.M.
        • Simonnet C.
        • Roy M.
        • Croning M.D.
        • et al.
        Human post-mortem synapse proteome integrity screening for proteomic studies of postsynaptic complexes.
        Mol Brain. 2014; 7: 88
        • de Ligt J.
        • Willemsen M.H.
        • van Bon B.W.
        • Kleefstra T.
        • Yntema H.G.
        • Kroes T.
        • et al.
        Diagnostic exome sequencing in persons with severe intellectual disability.
        N Engl J Med. 2012; 367: 1921-1929
        • de Quervain D.J.
        • Papassotiropoulos A.
        Identification of a genetic cluster influencing memory performance and hippocampal activity in humans.
        Proc Natl Acad Sci U S A. 2006; 103: 4270-4274
        • Zhang M.
        • Mu H.
        • Shang Z.
        • Kang K.
        • Lv H.
        • Duan L.
        • et al.
        Genome-wide pathway-based association analysis identifies risk pathways associated with Parkinson’s disease.
        Neuroscience. 2017; 340: 398-410
        • Grupe A.
        • Abraham R.
        • Li Y.
        • Rowland C.
        • Hollingworth P.
        • Morgan A.
        • et al.
        Evidence for novel susceptibility genes for late-onset Alzheimer’s disease from a genome-wide association study of putative functional variants.
        Hum Mol Genet. 2007; 16: 865-873
        • Morgan A.R.
        • Turic D.
        • Jehu L.
        • Hamilton G.
        • Hollingworth P.
        • Moskvina V.
        • et al.
        Association studies of 23 positional/functional candidate genes on chromosome 10 in late-onset Alzheimer’s disease.
        Am J Med Genet B Neuropsychiatr Genet. 2007; 144B: 762-770
        • Tan M.G.
        • Chua W.T.
        • Esiri M.M.
        • Smith A.D.
        • Vinters H.V.
        • Lai M.K.
        Genome wide profiling of altered gene expression in the neocortex of Alzheimer’s disease.
        J Neurosci Res. 2010; 88: 1157-1169
        • Voineagu I.
        • Wang X.
        • Johnston P.
        • Lowe J.K.
        • Tian Y.
        • Horvath S.
        • et al.
        Transcriptomic analysis of autistic brain reveals convergent molecular pathology.
        Nature. 2011; 474: 380-384
        • Zhang Y.
        • Fan M.
        • Wang Q.
        • He G.
        • Fu Y.
        • Li H.
        • et al.
        Polymorphisms in microRNA genes and genes involving in NMDAR signaling and schizophrenia: a case-control study in Chinese Han population.
        Sci Rep. 2015; 5: 12984
        • Zhai S.
        • Ark E.D.
        • Parra-Bueno P.
        • Yasuda R.
        Long-distance integration of nuclear ERK signaling triggered by activation of a few dendritic spines.
        Science. 2013; 342: 1107-1111
        • Tang S.
        • Yasuda R.
        Imaging ERK and PKA activation in single dendritic spines during structural plasticity.
        Neuron. 2017; 93: 1315-1324.e1313
        • Tyssowski K.M.
        • DeStefino N.R.
        • Cho J.H.
        • Dunn C.J.
        • Poston R.G.
        • Carty C.E.
        • et al.
        Different neuronal activity patterns induce different gene expression programs.
        Neuron. 2018; 98: 530-546.e511
        • España J.
        • Gimenez-Llort L.
        • Valero J.
        • Minano A.
        • Rabano A.
        • Rodriguez-Alvarez J.
        • et al.
        Intraneuronal β-amyloid accumulation in the amygdala enhances fear and anxiety in Alzheimer’s disease transgenic mice.
        Biol Psychiatry. 2010; 67: 513-521
        • Chong Y.H.
        • Shin Y.J.
        • Lee E.O.
        • Kayed R.
        • Glabe C.G.
        • Tenner A.J.
        ERK1/2 activation mediates Abeta oligomer-induced neurotoxicity via caspase-3 activation and tau cleavage in rat organotypic hippocampal slice cultures.
        J Biol Chem. 2006; 281: 20315-20325
        • Li C.
        • Gotz J.
        Somatodendritic accumulation of tau in Alzheimer’s disease is promoted by Fyn-mediated local protein translation.
        EMBO J. 2017; 36: 3120-3138
        • Gines S.
        • Paoletti P.
        • Alberch J.
        Impaired TrkB-mediated ERK1/2 activation in Huntington disease knock-in striatal cells involves reduced p52/p46 Shc expression.
        J Biol Chem. 2010; 285: 21537-21548
        • Sarantos M.R.
        • Papanikolaou T.
        • Ellerby L.M.
        • Hughes R.E.
        Pizotifen activates ERK and provides neuroprotection in vitro and in vivo in models of Huntington’s disease.
        J Huntingtons Dis. 2012; 1: 195-210
        • Rupprecht R.
        • Di Benedetto B.
        Extracellular signal-regulated kinases: A role for mood disorders and the emotional component of pain?.
        Biol Psychiatry. 2017; 81: 639-641
        • Einat H.
        • Yuan P.
        • Gould T.D.
        • Li J.
        • Du J.
        • Zhang L.
        • et al.
        The role of the extracellular signal-regulated kinase signaling pathway in mood modulation.
        J Neurosci. 2003; 23: 7311-7316
        • Hu Y.
        • Hong W.
        • Smith A.
        • Yu S.
        • Li Z.
        • Wang D.
        • et al.
        Association analysis between mitogen-activated protein/extracellular signal-regulated kinase (MEK) gene polymorphisms and depressive disorder in the Han Chinese population.
        J Affect Disord. 2017; 222: 120-125
        • Lisman J.
        • Cooper K.
        • Sehgal M.
        • Silva A.J.
        Memory formation depends on both synapse-specific modifications of synaptic strength and cell-specific increases in excitability.
        Nat Neurosci. 2018; 21: 309-314
        • Silva A.J.
        • Zhou Y.
        • Rogerson T.
        • Shobe J.
        • Balaji J.
        Molecular and cellular approaches to memory allocation in neural circuits.
        Science. 2009; 326: 391-395
        • Kaneda M.
        • Sakagami H.
        • Hida Y.
        • Ohtsuka T.
        • Satou N.
        • Ishibashi Y.
        • et al.
        Synaptic localisation of SRF coactivators, MKL1 and MKL2, and their role in dendritic spine morphology.
        Sci Rep. 2018; 8: 727