Advertisement

Connectivity Profile Predictive of Effective Deep Brain Stimulation in Obsessive-Compulsive Disorder

      Abstract

      Background

      Deep brain stimulation for obsessive-compulsive disorder is a rapidly developing treatment strategy for treatment-refractory patients. Both the exact target and impact on distributed brain networks remain a matter of debate. Here, we investigated which regions connected to stimulation sites contribute to clinical improvement effects and whether connectivity is able to predict outcomes.

      Methods

      We analyzed 22 patients (13 female) with treatment-refractory obsessive-compulsive disorder undergoing deep brain stimulation targeting the anterior limb of the internal capsule/nucleus accumbens. We calculated stimulation-dependent optimal connectivity separately for patient-specific connectivity data of 10 patients and for 12 additional patients using normative connectivity. Models of optimal connectivity were subsequently used to predict outcome in both an out-of-sample cross-validation and a leave-one-out cross-validation across the whole group.

      Results

      The resulting models successfully cross-predicted clinical outcomes of the respective other sample, and a leave-one-out cross-validation across the whole group further demonstrated robustness of our findings (r = .630, p < .001). Specifically, the degree of connectivity between stimulation sites and medial and lateral prefrontal cortices significantly predicted clinical improvement. Finally, we delineated a frontothalamic pathway that is crucial to be modulated for beneficial outcome.

      Conclusions

      Specific connectivity profiles, encompassing frontothalamic streamlines, can predict clinical outcome of deep brain stimulation for obsessive-compulsive disorder. After further validation, our findings may be used to guide both deep brain stimulation targeting and programming and to inform noninvasive neuromodulation targets for obsessive-compulsive disorder.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ruscio A.M.
        • Stein D.J.
        • Chiu W.T.
        • Kessler R.C.
        The epidemiology of obsessive-compulsive disorder in the National Comorbidity Survey Replication.
        Mol Psychiatry. 2010; 15: 53-63
        • Ahmari S.E.
        • Spellman T.
        • Douglass N.L.
        • Kheirbek M.A.
        • Simpson H.B.
        • Deisseroth K.
        • et al.
        Repeated cortico-striatal stimulation generates persistent OCD-like behavior.
        Science. 2013; 340: 1234-1239
        • Abe Y.
        • Sakai Y.
        • Nishida S.
        • Nakamae T.
        • Yamada K.
        • Fukui K.
        • Narumoto J.
        Hyper-influence of the orbitofrontal cortex over the ventral striatum in obsessive-compulsive disorder.
        Eur Neuropsychopharmacol. 2015; 25: 1898-1905
        • Alonso P.
        • Cuadras D.
        • Gabriëls L.
        • Denys D.
        • Goodman W.
        • Greenberg B.D.
        • et al.
        Deep brain stimulation for obsessive-compulsive disorder: A meta-analysis of treatment outcome and predictors of response.
        PLoS One. 2015; 10: e133591
        • Kohl S.
        • Schönherr D.M.
        • Luigjes J.
        • Denys D.
        • Mueller U.J.
        • Lenartz D.
        • et al.
        Deep brain stimulation for treatment-refractory obsessive compulsive disorder: A systematic review.
        BMC Psychiatry. 2014; 14: 214
        • Bourne S.K.
        • Eckhardt C.A.
        • Sheth S.A.
        • Eskandar E.N.
        Mechanisms of deep brain stimulation for obsessive compulsive disorder: Effects upon cells and circuits.
        Front Integr Neurosci. 2012; 6: 29
        • Figee M.
        • Luigjes J.
        • Smolders R.
        • Valencia-Alfonso C.E.
        • Van Wingen G.
        • De Kwaasteniet B.
        • et al.
        Deep brain stimulation restores frontostriatal network activity in obsessive-compulsive disorder.
        Nat Neurosci. 2013; 16: 386-387
        • Hartmann C.J.
        • Lujan J.L.
        • Chaturvedi A.
        • Goodman W.K.
        • Okun M.S.
        • McIntyre C.C.
        • Haq I.U.
        Tractography activation patterns in dorsolateral prefrontal cortex suggest better clinical responses in OCD DBS.
        Front Neurosci. 2016; 9: 519
        • Zhou D.-D.
        • Wang W.
        • Wang G.-M.
        • Li D.-Q.
        • Kuang L.
        An updated meta-analysis: Short-term therapeutic effects of repeated transcranial magnetic stimulation in treating obsessive-compulsive disorder.
        J Affect Disord. 2017; 215: 187-196
        • Fox M.D.
        • Buckner R.L.
        • Liu H.
        • Chakravarty M.M.
        • Lozano A.M.
        • Pascual-Leone A.
        Resting-state networks link invasive and noninvasive brain stimulation across diverse psychiatric and neurological diseases.
        Proc Natl Acad Sci U S A. 2014; 111: E4367-E4375
        • Horn A.
        • Reich M.
        • Vorwerk J.
        • Li N.
        • Wenzel G.
        • Fang Q.
        • et al.
        Connectivity predicts deep brain stimulation outcome in Parkinson disease.
        Ann Neurol. 2017; 82: 67-78
        • Avants B.B.
        • Tustison N.
        • Song G.
        Advanced Normalization Tools (ANTS).
        Insight J (July–December). 2009; : 1-35
        • Yeh F.C.
        • Tseng W.Y.I.
        NTU-90: A high angular resolution brain atlas constructed by q-space diffeomorphic reconstruction.
        NeuroImage. 2011; 58: 91-99
        • Yeh F.C.
        • Verstynen T.D.
        • Wang Y.
        • Fernández-Miranda J.C.
        • Tseng W.Y.I.
        Deterministic diffusion fiber tracking improved by quantitative anisotropy.
        PLoS One. 2013; 8: e80713
        • Horn A.
        • Neumann W.J.
        • Degen K.
        • Schneider G.H.
        • Kühn A.A.
        Toward an electrophysiological “sweet spot” for deep brain stimulation in the subthalamic nucleus.
        Hum Brain Mapp. 2017; 38: 3377-3390
        • Horn A.
        • Ostwald D.
        • Reisert M.
        • Blankenburg F.
        The structural-functional connectome and the default mode network of the human brain.
        NeuroImage. 2014; 102: 142-151
        • Setsompop K.
        • Kimmlingen R.
        • Eberlein E.
        • Witzel T.
        • Cohen-Adad J.
        • McNab J.A.
        • et al.
        Pushing the limits of in vivo diffusion MRI for the Human Connectome Project.
        NeuroImage. 2013; 80: 220-233
        • van Albada S.J.
        • Robinson P.A.
        Transformation of arbitrary distributions to the normal distribution with application to EEG test-retest reliability.
        J Neurosci Methods. 2007; 161: 205-211
        • Ewert S.
        • Plettig P.
        • Li N.
        • Chakravarty M.M.
        • Collins D.L.
        • Herrington T.M.
        • et al.
        Toward defining deep brain stimulation targets in MNI space: A subcortical atlas based on multimodal MRI, histology and structural connectivity.
        NeuroImage. 2018; 170: 271-282
        • Darby R.R.
        • Horn A.
        • Cushman F.
        • Fox M.D.
        Lesion network localization of criminal behavior.
        Proc Natl Acad Sci U S A. 2017; 115: 601-606
        • Tzourio-Mazoyer N.
        • Landeau B.
        • Papathanassiou D.
        • Crivello F.
        • Etard O.
        • Delcroix N.
        • et al.
        Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain.
        NeuroImage. 2002; 15: 273-289
        • Hautzinger M.
        • Bailer M, H. W&
        • Keller F.
        Beck-Depressions-Inventar (BDI): Bearbeitung der deutschen Ausgabe.
        Huber, Bern, Switzerland1994
        • Pinhal C.M.
        • van den Boom B.J.G.
        • Santana-Kragelund F.
        • Fellinger L.
        • Bech P.
        • Hamelink R.
        • et al.
        Differential effects of deep-brain stimulation of the internal capsule and the striatum on excessive grooming in Sapap3 mutant mice.
        Biol Psychiatry. 2018; 84: 917-925
        • Luyten L.
        • Hendrickx S.
        • Raymaekers S.
        • Gabriëls L.
        • Nuttin B.
        Electrical stimulation in the bed nucleus of the stria terminalis alleviates severe obsessive-compulsive disorder.
        Mol Psychiatry. 2016; 21: 1272-1280
        • Kohl S.
        • Baldermann J.C.
        • Kuhn J.
        The bed nucleus: A future hot spot in obsessive compulsive disorder research.
        Mol Psychiatry. 2016; 21: 990-991
        • Jiménez F.
        • Nicolini H.
        • Lozano A.M.
        • Piedimonte F.
        • Salín R.
        • Velasco F.
        Electrical stimulation of the inferior thalamic peduncle in the treatment of major depression and obsessive compulsive disorders.
        World Neurosurg. 2013; 80: S30.e17-S30.e25
        • Mallet L.
        • Polosan M.
        • Jaafari N.
        • Baup N.
        • Welter M.-L.
        • Fontaine D.
        • et al.
        Subthalamic nucleus stimulation in severe obsessive-compulsive disorder.
        N Engl J Med. 2008; 359: 2121-2134
        • Noecker A.M.
        • Choi K.S.
        • Riva-Posse P.
        • Gross R.E.
        • Mayberg H.S.
        • McIntyre C.C.
        StimVision software: Examples and applications in subcallosal cingulate deep brain stimulation for depression.
        Neuromodulation. 2018; 21: 191-196
        • Joutsa J.
        • Horn A.
        • Hsu J.
        • Fox M.D.
        Localizing parkinsonism based on focal brain lesions.
        Brain. 2018; 141: 2445-2456
        • Joutsa J.
        • Shih L.C.
        • Horn A.
        • Reich M.M.
        • Wu O.
        • Rost N.S.
        • Fox M.D.
        Identifying therapeutic targets from spontaneous beneficial brain lesions.
        Ann Neurol. 2018; 84: 153-157
        • Whitwell J.L.
        • Shiung M.M.
        • Przybelski S.A.
        • Weigand S.D.
        • Knopman D.S.
        • Boeve B.F.
        • et al.
        MRI patterns of atrophy associated with progression to AD in amnestic mild cognitive impairment.
        Neurology. 2008; 70: 512-520
        • Petersen M.V.
        • Lund T.E.
        • Sunde N.
        • Frandsen J.
        • Rosendal F.
        • Juul N.
        • Østergaard K.
        Probabilistic versus deterministic tractography for delineation of the cortico-subthalamic hyperdirect pathway in patients with Parkinson disease selected for deep brain stimulation.
        J Neurosurg. 2017; 126: 1657-1668
        • Nanda P.
        • Banks G.P.
        • Pathak Y.J.
        • Sheth S.A.
        Connectivity-based parcellation of the anterior limb of the internal capsule.
        Hum Brain Mapp. 2017; 38: 6107-6117
        • Gunalan K.
        • Chaturvedi A.
        • Howell B.
        • Duchin Y.
        • Lempka S.F.
        • Patriat R.
        • et al.
        Creating and parameterizing patient-specific deep brain stimulation pathway-activation models using the hyperdirect pathway as an example.
        PLoS One. 2017; 12: 176132
        • Maier-Hein K.H.
        • Neher P.F.
        • Houde J.-C.
        • Côté M.-A.
        • Garyfallidis E.
        • Zhong J.
        • et al.
        The challenge of mapping the human connectome based on diffusion tractography.
        Nat Commun. 2017; 8: 1349

      Linked Article