Advertisement

Accelerated Aging of Functional Brain Networks Supporting Cognitive Function in Psychotic Disorders

      Abstract

      Background

      Across networks, connectivity within the frontoparietal network (FPN) and cingulo-opercular network (CON) exhibits reductions earliest during healthy aging, contributing to cognitive impairment. Individuals with psychotic disorders demonstrate evidence of accelerated aging across multiple biological systems. By leveraging a large sample of patients with psychosis from early to chronic illness stages, this study sought to determine whether the CON and FPN exhibit evidence of accelerated aging in psychotic disorders, confirm associations between network efficiency and cognition, and determine whether reduced network efficiency is observed in early-stage psychosis.

      Methods

      Resting-state functional magnetic resonance imaging and cognitive data were obtained on 240 patients with psychotic disorder and 178 healthy control participants (HCs). Global efficiency, a measure of functional integration, was calculated for the CON, FPN, subcortical network, and visual network. Associations with age and cognition were assessed and compared between groups.

      Results

      Consistent with accelerated aging, significant group by age interactions reflected significantly stronger relationships between efficiency and age in patients with psychosis than in HCs for both the CON (psychosis: r = −.37; HC: r = −.16) and FPN (psychosis: r = −.31; HC: r = −.05). Accelerated aging was not observed in either the subcortical or visual network, suggesting specificity for cognitive networks that decline earliest in healthy aging. Replicating prior findings, efficiency of both the CON and FPN correlated with cognitive function across all participants (rs > .11, ps < .031). Furthermore, patients with chronic psychosis (p = .004), but not patients with early psychosis (p = .553), exhibited significantly lower FPN efficiency compared with HCs.

      Conclusions

      Functional integration of higher-order cognitive networks is intact in early psychosis but exhibits evidence of accelerated aging, suggesting the potential for intervention targeting cognition within the early psychosis period.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Rapoport J.L.
        • Giedd J.N.
        • Gogtay N.
        Neurodevelopmental model of schizophrenia: Update 2012.
        Mol Psychiatry. 2012; 17: 1228-1238
        • Kavanagh D.H.
        • Tansey K.E.
        • O’Donovan M.C.
        • Owen M.J.
        Schizophrenia genetics: Emerging themes for a complex disorder.
        Mol Psychiatry. 2015; 20: 72-76
        • Brown A.S.
        • Derkits E.J.
        Prenatal infection and schizophrenia: A review of epidemiologic and translational studies.
        Am J Psychiatry. 2010; 167: 261-280
        • Rapoport J.L.
        • Addington A.M.
        • Frangou S.
        • Psych M.R.
        The neurodevelopmental model of schizophrenia: Update 2005.
        Mol Psychiatry. 2005; 10: 434-449
        • Read J.
        • van Os J.
        • Morrison A.P.
        • Ross C.A.
        Childhood trauma, psychosis and schizophrenia: A literature review with theoretical and clinical implications.
        Acta Psychiatr Scand. 2005; 112: 330-350
        • Eyler L.T.
        • Jeste D.V.
        Aging of the body and the brain in schizophrenia.
        Schizophr Res. 2018; 196: 1-3
        • Czepielewski L.S.
        • Massuda R.
        • Panizzutti B.
        • da Rosa E.D.
        • de Lucena D.
        • Macedo D.
        • et al.
        Telomere length in subjects with schizophrenia, their unaffected siblings and healthy controls: Evidence of accelerated aging.
        Schizophr Res. 2016; 174: 39-42
        • Rizzo L.B.
        • Do Prado C.H.
        • Grassi-Oliveira R.
        • Wieck A.
        • Correa B.L.
        • Teixeira A.L.
        • et al.
        Immunosenescence is associated with human cytomegalovirus and shortened telomeres in type I bipolar disorder.
        Bipolar Disord. 2013; 15: 832-838
        • Harvey P.D.
        • Rosenthal J.B.
        Cognitive and functional deficits in people with schizophrenia: Evidence for accelerated or exaggerated aging?.
        Schizophr Res. 2018; 196: 14-21
        • Kochunov P.
        • Glahn D.C.
        • Rowland L.M.
        • Olvera R.L.
        • Winkler A.
        • Yang Y.H.
        • et al.
        Testing the hypothesis of accelerated cerebral white matter aging in schizophrenia and major depression.
        Biol Psychiatry. 2013; 73: 482-491
        • Cropley V.L.
        • Klauser P.
        • Lenroot R.K.
        • Bruggemann J.
        • Sundram S.
        • Bousman C.
        • et al.
        Accelerated gray and white matter deterioration with age in schizophrenia.
        Am J Psychiatry. 2017; 174: 286-295
        • Schnack H.G.
        • van Haren N.E.
        • Nieuwenhuis M.
        • Hulshoff Pol H.E.
        • Cahn W.
        • Kahn R.S.
        Accelerated brain aging in schizophrenia: A longitudinal pattern recognition study.
        Am J Psychiatry. 2016; 173: 607-616
        • Koutsouleris N.
        • Davatzikos C.
        • Borgwardt S.
        • Gaser C.
        • Bottlender R.
        • Frodl T.
        • et al.
        Accelerated brain aging in schizophrenia and beyond: A neuroanatomical marker of psychiatric disorders.
        Schizophr Bull. 2014; 40: 1140-1153
        • Betzel R.F.
        • Byrge L.
        • He Y.
        • Goni J.
        • Zuo X.N.
        • Sporns O.
        Changes in structural and functional connectivity among resting-state networks across the human lifespan.
        NeuroImage. 2014; 102: 345-357
        • Andrews-Hanna J.R.
        • Snyder A.Z.
        • Vincent J.L.
        • Lustig C.
        • Head D.
        • Raichle M.E.
        • et al.
        Disruption of large-scale brain systems in advanced aging.
        Neuron. 2007; 56: 924-935
        • Onoda K.
        • Ishihara M.
        • Yamaguchi S.
        Decreased functional connectivity by aging is associated with cognitive decline.
        J Cogn Neurosci. 2012; 24: 2186-2198
        • Geerligs L.
        • Renken R.J.
        • Saliasi E.
        • Maurits N.M.
        • Lorist M.M.
        A brain-wide study of age-related changes in functional connectivity.
        Cereb Cortex. 2015; 25: 1987-1999
        • Siman-Tov T.
        • Bosak N.
        • Sprecher E.
        • Paz R.
        • Eran A.
        • Aharon-Peretz J.
        • et al.
        Early age-related functional connectivity decline in high-order cognitive networks.
        Front Aging Neurosci. 2016; 8: 330
        • Sala-Llonch R.
        • Bartres-Faz D.
        • Junque C.
        Reorganization of brain networks in aging: A review of functional connectivity studies.
        Front Psychol. 2015; 6: 663
        • Khadka S.
        • Meda S.A.
        • Stevens M.C.
        • Glahn D.C.
        • Calhoun V.D.
        • Sweeney J.A.
        • et al.
        Is aberrant functional connectivity a psychosis endophenotype? A resting state functional magnetic resonance imaging study.
        Biol Psychiatry. 2013; 74: 458-466
        • Woodward N.D.
        • Heckers S.
        Mapping thalamocortical functional connectivity in chronic and early stages of psychotic disorders.
        Biol Psychiatry. 2016; 79: 1016-1025
        • Woodward N.D.
        • Rogers B.
        • Heckers S.
        Functional resting-state networks are differentially affected in schizophrenia.
        Schizophr Res. 2011; 130: 86-93
        • Rubinov M.
        • Sporns O.
        Complex network measures of brain connectivity: Uses and interpretations.
        NeuroImage. 2010; 52: 1059-1069
        • Power J.D.
        • Schlaggar B.L.
        • Lessov-Schlaggar C.N.
        • Petersen S.E.
        Evidence for hubs in human functional brain networks.
        Neuron. 2013; 79: 798-813
        • Bullmore E.
        • Sporns O.
        The economy of brain network organization.
        Nat Rev Neurosci. 2012; 13: 336-349
        • Achard S.
        • Bullmore E.
        Efficiency and cost of economical brain functional networks.
        PLoS Comput Biol. 2007; 3: e17
        • Sang L.
        • Chen L.
        • Wang L.
        • Zhang J.
        • Zhang Y.
        • Li P.
        • et al.
        Progressively disrupted brain functional connectivity network in subcortical ischemic vascular cognitive impairment patients.
        Front Neurol. 2018; 9: 94
        • Warren D.E.
        • Power J.D.
        • Bruss J.
        • Denburg N.L.
        • Waldron E.J.
        • Sun H.
        • et al.
        Network measures predict neuropsychological outcome after brain injury.
        Proc Natl Acad Sci U S A. 2014; 111: 14247-14252
        • Sheffield J.M.
        • Repovs G.
        • Harms M.P.
        • Carter C.S.
        • Gold J.M.
        • MacDonald 3rd, A.W.
        • et al.
        Evidence for accelerated decline of functional brain network efficiency in schizophrenia.
        Schizophr Bull. 2016; 42: 753-761
        • Ganger S.
        • Hahn A.
        • Kublbock M.
        • Kranz G.S.
        • Spies M.
        • Vanicek T.
        • et al.
        Comparison of continuously acquired resting state and extracted analogues from active tasks.
        Hum Brain Mapp. 2015; 36: 4053-4063
        • Muller R.A.
        • Shih P.
        • Keehn B.
        • Deyoe J.R.
        • Leyden K.M.
        • Shukla D.K.
        Underconnected, but how? A survey of functional connectivity MRI studies in autism spectrum disorders.
        Cereb Cortex. 2011; 21: 2233-2243
        • Simon N.M.
        • Smoller J.W.
        • McNamara K.L.
        • Maser R.S.
        • Zalta A.K.
        • Pollack M.H.
        • et al.
        Telomere shortening and mood disorders: Preliminary support for a chronic stress model of accelerated aging.
        Biol Psychiatry. 2006; 60: 432-435
        • Modabbernia A.
        • Taslimi S.
        • Brietzke E.
        • Ashrafi M.
        Cytokine alterations in bipolar disorder: A meta-analysis of 30 studies.
        Biol Psychiatry. 2013; 74: 15-25
        • Andreazza A.C.
        • Kauer-Sant’anna M.
        • Frey B.N.
        • Bond D.J.
        • Kapczinski F.
        • Young L.T.
        • et al.
        Oxidative stress markers in bipolar disorder: A meta-analysis.
        J Affect Dis. 2008; 111: 135-144
        • First M.B.
        • Spitzer R.L.
        • Gibbon M.
        • Williams J.B.W.
        Structured Clinical Intervew for DSM-IV Axis I Disorders–Non-Patient Edition (SCID-I/NP, Version 2.0).
        Biometrics Research, New York Psychiatric Institute, New York1995
        • Wechsler D.
        Wechsler Test of Adult Reading (WTAR).
        Psychological Corporation, San Antonio, TX2001
        • Purdon S.E.
        The Screen for Cognitive Impairment in Psychiatry (SCIP): Administration manual and normative data.
        PNL Inc, Edmonton, Alberta, Canada2005
        • Power J.D.
        • Cohen A.L.
        • Nelson S.M.
        • Wig G.S.
        • Barnes K.A.
        • Church J.A.
        • et al.
        Functional network organization of the human brain.
        Neuron. 2011; 72: 665-678
        • Tsvetanov K.A.
        • Henson R.N.
        • Tyler L.K.
        • Razi A.
        • Geerligs L.
        • Ham T.E.
        • et al.
        Extrinsic and intrinsic brain network connectivity maintains cognition across the lifespan despite accelerated decay of regional brain activation.
        J Neurosci. 2016; 36: 3115-3126
        • Kochunov P.
        • Hong L.E.
        Neurodevelopmental and neurodegenerative models of schizophrenia: White matter at the center stage.
        Schizophr Bull. 2014; 40: 721-728
        • Sheffield J.M.
        • Kandala S.
        • Tamminga C.A.
        • Pearlson G.D.
        • Keshavan M.S.
        • Sweeney J.A.
        • et al.
        Transdiagnostic associations between functional brain network integrity and cognition.
        JAMA Psychiatry. 2017; 74: 605-613
        • van den Heuvel M.P.
        • de Lange S.C.
        • Zalesky A.
        • Seguin C.
        • Yeo B.T.T.
        • Schmidt R.
        Proportional thresholding in resting-state fMRI functional connectivity networks and consequences for patient-control connectome studies: Issues and recommendations.
        NeuroImage. 2017; 152: 437-449
        • Gomez-Ramirez J.
        • Li Y.
        • Wu Q.
        • Wu J.
        A quantitative study of network robustness in resting-state fMRI in young and elder adults.
        Front Aging Neurosci. 2015; 7: 256
        • Nashiro K.
        • Sakaki M.
        • Braskie M.N.
        • Mather M.
        Resting-state networks associated with cognitive processing show more age-related decline than those associated with emotional processing.
        Neurobiol Aging. 2017; 54: 152-162
        • Shim G.
        • Oh J.S.
        • Jung W.H.
        • Jang J.H.
        • Choi C.H.
        • Kim E.
        • et al.
        Altered resting-state connectivity in subjects at ultra-high risk for psychosis: An fMRI study.
        Behav Brain Funct. 2010; 6: 58
        • Wotruba D.
        • Michels L.
        • Buechler R.
        • Metzler S.
        • Theodoridou A.
        • Gerstenberg M.
        • et al.
        Aberrant coupling within and across the default mode, task-positive, and salience network in subjects at risk for psychosis.
        Schizophr Bull. 2014; 40: 1095-1104
        • Anticevic A.
        • Haut K.
        • Murray J.D.
        • Repovs G.
        • Yang G.J.
        • Diehl C.
        • et al.
        Association of thalamic dysconnectivity and conversion to psychosis in youth and young adults at elevated clinical risk.
        JAMA Psychiatry. 2015; 72: 882-891
        • Woodward N.D.
        • Karbasforoushan H.
        • Heckers S.
        Thalamocortical dysconnectivity in schizophrenia.
        Am J Psychiatry. 2012; 169: 1092-1099
        • Mamah D.
        • Barch D.M.
        • Repovs G.
        Resting state functional connectivity of five neural networks in bipolar disorder and schizophrenia.
        J Affect Dis. 2013; 150: 601-609
        • Repovs G.
        • Csernansky J.G.
        • Barch D.M.
        Brain network connectivity in individuals with schizophrenia and their siblings.
        Biol Psychiatry. 2011; 69: 967-973
        • Satterthwaite T.D.
        • Vandekar S.N.
        • Wolf D.H.
        • Bassett D.S.
        • Ruparel K.
        • Shehzad Z.
        • et al.
        Connectome-wide network analysis of youth with psychosis-spectrum symptoms.
        Mol Psychiatry. 2015; 20: 1508-1515
        • Sheffield J.M.
        • Kandala S.
        • Burgess G.C.
        • Harms M.P.
        • Barch D.M.
        Cingulo-opercular network efficiency mediates the association between psychotic-like experiences and cognitive ability in the general population.
        Biol Psychiatry Cogn Neurosci Neuroimaging. 2016; 1: 498-506
        • Guo W.
        • Liu F.
        • Xiao C.
        • Liu J.
        • Yu M.
        • Zhang Z.
        • et al.
        Increased short-range and long-range functional connectivity in first-episode, medication-naive schizophrenia at rest.
        Schizophr Res. 2015; 166: 144-150
        • Anhoj S.
        • Odegaard Nielsen M.
        • Jensen M.H.
        • Ford K.
        • Fagerlund B.
        • Williamson P.
        • et al.
        Alterations of intrinsic connectivity networks in antipsychotic-naive first-episode schizophrenia.
        Schizophr Bull. 2018; 44: 1332-1340
        • Ganella E.P.
        • Seguin C.
        • Pantelis C.
        • Whittle S.
        • Baune B.T.
        • Olver J.
        • et al.
        Resting-state functional brain networks in first-episode psychosis: A 12-month follow-up study.
        Aust N Z J Psychiatry. 2018; 52: 864-875
        • Fornito A.
        • Yoon J.
        • Zalesky A.
        • Bullmore E.T.
        • Carter C.S.
        General and specific functional connectivity disturbances in first-episode schizophrenia during cognitive control performance.
        Biol Psychiatry. 2011; 70: 64-72
        • Kirkpatrick B.
        • Messias E.
        • Harvey P.D.
        • Fernandez-Egea E.
        • Bowie C.R.
        Is schizophrenia a syndrome of accelerated aging?.
        Schizophr Bull. 2008; 34: 1024-1032
        • Kirkpatrick B.
        • Kennedy B.K.
        Accelerated aging in schizophrenia and related disorders: Future research.
        Schizophr Res. 2018; 196: 4-8
        • Kirkpatrick B.
        • Miller B.J.
        • Garcia-Rizo C.
        • Fernandez-Egea E.
        • Bernardo M.
        Is abnormal glucose tolerance in antipsychotic-naive patients with nonaffective psychosis confounded by poor health habits?.
        Schizophr Bull. 2012; 38: 280-284
        • Fernandez-Egea E.
        • Bernardo M.
        • Donner T.
        • Conget I.
        • Parellada E.
        • Justicia A.
        • et al.
        Metabolic profile of antipsychotic-naive individuals with non-affective psychosis.
        Br J Psychiatry. 2009; 194: 434-438
        • Kochunov P.
        • Ganjgahi H.
        • Winkler A.
        • Kelly S.
        • Shukla D.K.
        • Du X.
        • et al.
        Heterochronicity of white matter development and aging explains regional patient control differences in schizophrenia.
        Hum Brain Mapp. 2016; 37: 4673-4688
        • Abbott C.C.
        • Jaramillo A.
        • Wilcox C.E.
        • Hamilton D.A.
        Antipsychotic drug effects in schizophrenia: A review of longitudinal FMRI investigations and neural interpretations.
        Curr Med Chem. 2013; 20: 428-437
        • Chiodo L.A.
        • Bunney B.S.
        Typical and atypical neuroleptics: Differential effects of chronic administration on the activity of A9 and A10 midbrain dopaminergic neurons.
        J Neurosci. 1983; 3: 1607-1619
        • Dosenbach N.U.
        • Fair D.A.
        • Miezin F.M.
        • Cohen A.L.
        • Wenger K.K.
        • Dosenbach R.A.
        • et al.
        Distinct brain networks for adaptive and stable task control in humans.
        Proc Natl Acad Sci U S A. 2007; 104: 11073-11078
        • Sheffield J.M.
        • Repovs G.
        • Harms M.P.
        • Carter C.S.
        • Gold J.M.
        • MacDonald 3rd, A.W.
        • et al.
        Fronto-parietal and cingulo-opercular network integrity and cognition in health and schizophrenia.
        Neuropsychologia. 2015; 73: 82-93
        • Albert M.S.
        • Moss M.B.
        Geriatric Neuropsychology.
        Guilford, New York1988
        • Lee E.E.
        • Liu J.
        • Tu X.
        • Palmer B.W.
        • Eyler L.T.
        • Jeste D.V.
        A widening longevity gap between people with schizophrenia and general population: A literature review and call for action.
        Schizophr Res. 2018; 196: 9-13
        • Weng T.B.
        • Pierce G.L.
        • Darling W.G.
        • Falk D.
        • Magnotta V.A.
        • Voss M.W.
        The acute effects of aerobic exercise on the functional connectivity of human brain networks.
        Brain Plast. 2017; 2: 171-190
        • Cao W.
        • Cao X.
        • Hou C.
        • Li T.
        • Cheng Y.
        • Jiang L.
        • et al.
        Effects of cognitive training on resting-state functional connectivity of default mode, salience, and central executive networks.
        Front Aging Neurosci. 2016; 8: 70
        • Firth J.
        • Stubbs B.
        • Rosenbaum S.
        • Vancampfort D.
        • Malchow B.
        • Schuch F.
        • et al.
        Aerobic exercise improves cognitive functioning in people with schizophrenia: A systematic review and meta-analysis.
        Schizophr Bull. 2017; 43: 546-556