Advertisement

Common Dysfunction of Large-Scale Neurocognitive Networks Across Psychiatric Disorders

  • Zhiqiang Sha
    Affiliations
    National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China

    Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China

    IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
    Search for articles by this author
  • Tor D. Wager
    Affiliations
    Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado

    Institute of Cognitive Science, University of Colorado, Boulder, Colorado
    Search for articles by this author
  • Andrea Mechelli
    Affiliations
    Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
    Search for articles by this author
  • Yong He
    Correspondence
    Address correspondence to Yong He, Ph.D., National Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China.
    Affiliations
    National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China

    Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China

    IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
    Search for articles by this author
Published:November 22, 2018DOI:https://doi.org/10.1016/j.biopsych.2018.11.011

      Abstract

      Background

      Cognitive dysfunction is one of the most prominent characteristics of psychiatric disorders. Currently, the neural correlates of cognitive dysfunction across psychiatric disorders are poorly understood. The aim of this study was to investigate functional connectivity and structural perturbations across psychiatric diagnoses in three neurocognitive networks of interest: the default mode network (DMN), the frontoparietal network (FPN), and the salience network (SN).

      Methods

      We performed meta-analyses of resting-state functional magnetic resonance imaging whole-brain seed-based functional connectivity in 8298 patients (involving eight disorders) and 8165 healthy control subjects and a voxel-based morphometry analysis of structural magnetic resonance imaging data in 14,027 patients (involving eight disorders) and 14,504 healthy control subjects. To aid the interpretation of the results, we examined neurocognitive function in 776 healthy participants from the Human Connectome Project.

      Results

      We found that the three neurocognitive networks of interest were characterized by shared alterations of functional connectivity architecture across psychiatric disorders. More specifically, hypoconnectivity was expressed between the DMN and ventral SN and between the SN and FPN, whereas hyperconnectivity was evident between the DMN and FPN and between the DMN and dorsal SN. This pattern of network alterations was associated with gray matter reductions in patients and was localized in regions that subserve general cognitive performance.

      Conclusions

      This study is the first to provide meta-analytic evidence of common alterations of functional connectivity within and between neurocognitive networks. The findings suggest a shared mechanism of network interactions that may associate with the generalized cognitive deficits observed in psychiatric disorders.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Merikangas K.R.
        • He J.P.
        • Burstein M.
        • Swanson S.A.
        • Avenevoli S.
        • Cui L.
        • et al.
        Lifetime prevalence of mental disorders in U.S. adolescents: Results from the National Comorbidity Survey Replication–Adolescent Supplement (NCS-A).
        J Am Acad Child Adolesc Psychiatry. 2010; 49: 980-989
        • Insel T.
        • Cuthbert B.
        • Garvey M.
        • Heinssen R.
        • Pine D.S.
        • Quinn K.
        • et al.
        Research domain criteria (RDoC): Toward a new classification framework for research on mental disorders.
        Am J Psychiatry. 2010; 167: 748-751
        • Sanislow C.A.
        • Pine D.S.
        • Quinn K.J.
        • Kozak M.J.
        • Garvey M.A.
        • Heinssen R.K.
        • et al.
        Developing constructs for psychopathology research: Research domain criteria.
        J Abnorm Psychol. 2010; 119: 631-639
        • Zald D.H.
        • Lahey B.B.
        Implications of the hierarchical structure of psychopathology for psychiatric neuroimaging.
        Biol Psychiatry Cogn Neurosci Neuroimaging. 2017; 2: 310-317
        • Caspi A.
        • Houts R.M.
        • Belsky D.W.
        • Goldman-Mellor S.J.
        • Harrington H.
        • Israel S.
        • et al.
        The p factor: One general psychopathology factor in the structure of psychiatric disorders?.
        Clin Psychol Sci. 2014; 2: 119-137
        • Kim H.
        • Eaton N.R.
        The hierarchical structure of common mental disorders: Connecting multiple levels of comorbidity, bifactor models, and predictive validity.
        J Abnorm Psychol. 2015; 124: 1064-1078
        • Shanmugan S.
        • Wolf D.H.
        • Calkins M.E.
        • Moore T.M.
        • Ruparel K.
        • Hopson R.D.
        • et al.
        Common and dissociable mechanisms of executive system dysfunction across psychiatric disorders in youth.
        Am J Psychiatry. 2016; 173: 517-526
        • Goodkind M.
        • Eickhoff S.B.
        • Oathes D.J.
        • Jiang Y.
        • Chang A.
        • Jones-Hagata L.B.
        • et al.
        Identification of a common neurobiological substrate for mental illness.
        JAMA Psychiatry. 2015; 72: 305-315
        • Millan M.J.
        • Agid Y.
        • Brune M.
        • Bullmore E.T.
        • Carter C.S.
        • Clayton N.S.
        • et al.
        Cognitive dysfunction in psychiatric disorders: Characteristics, causes and the quest for improved therapy.
        Nat Rev Drug Discov. 2012; 11: 141-168
        • Elliott M.L.
        • Romer A.
        • Knodt A.R.
        • Hariri A.R.
        A connectome-wide functional signature of transdiagnostic risk for mental illness.
        Biol Psychiatry. 2018; 84: 452-459
        • Sharma A.
        • Wolf D.H.
        • Ciric R.
        • Kable J.W.
        • Moore T.M.
        • Vandekar S.N.
        • et al.
        Common dimensional reward deficits across mood and psychotic disorders: A connectome-wide association study.
        Am J Psychiatry. 2017; 174: 657-666
        • Xia C.H.
        • Ma Z.
        • Ciric R.
        • Gu S.
        • Betzel R.F.
        • Kaczkurkin A.N.
        • et al.
        Linked dimensions of psychopathology and connectivity in functional brain networks.
        Nat Commun. 2018; 9: 3003
        • Williams L.M.
        Precision psychiatry: A neural circuit taxonomy for depression and anxiety.
        Lancet Psychiatry. 2016; 3: 472-480
        • Rubinov M.
        • Bullmore E.
        Fledgling pathoconnectomics of psychiatric disorders.
        Trends Cogn Sci. 2013; 17: 641-647
        • Buckholtz J.W.
        • Meyer-Lindenberg A.
        Psychopathology and the human connectome: Toward a transdiagnostic model of risk for mental illness.
        Neuron. 2012; 74: 990-1004
        • Menon V.
        Large-scale brain networks and psychopathology: A unifying triple network model.
        Trends Cogn Sci. 2011; 15: 483-506
        • Anticevic A.
        • Cole M.W.
        • Murray J.D.
        • Corlett P.R.
        • Wang X.J.
        • Krystal J.H.
        The role of default network deactivation in cognition and disease.
        Trends Cogn Sci. 2012; 16: 584-592
        • Wager T.D.
        • Smith E.E.
        Neuroimaging studies of working memory: A meta-analysis.
        Cogn Affect Behav Neurosci. 2003; 3: 255-274
        • Cole M.W.
        • Reynolds J.R.
        • Power J.D.
        • Repovs G.
        • Anticevic A.
        • Braver T.S.
        Multi-task connectivity reveals flexible hubs for adaptive task control.
        Nat Neurosci. 2013; 16: 1348-1355
        • Uddin L.Q.
        Salience processing and insular cortical function and dysfunction.
        Nat Rev Neurosci. 2015; 16: 55-61
        • Zhang J.
        • Wang J.
        • Wu Q.
        • Kuang W.
        • Huang X.
        • He Y.
        • et al.
        Disrupted brain connectivity networks in drug-naive, first-episode major depressive disorder.
        Biol Psychiatry. 2011; 70: 334-342
        • Gong Q.
        • Hu X.
        • Pettersson-Yeo W.
        • Xu X.
        • Lui S.
        • Crossley N.
        • et al.
        Network-level dysconnectivity in drug-naive first-episode psychosis: Dissociating transdiagnostic and diagnosis-specific alterations.
        Neuropsychopharmacology. 2017; 42: 933-940
        • Xia M.
        • He Y.
        Functional connectomics from a “big data” perspective.
        Neuroimage. 2017; 160: 152-167
        • Crossley N.A.
        • Mechelli A.
        • Scott J.
        • Carletti F.
        • Fox P.T.
        • McGuire P.
        • et al.
        The hubs of the human connectome are generally implicated in the anatomy of brain disorders.
        Brain. 2014; 137: 2382-2395
        • Sha Z.
        • Xia M.
        • Lin Q.
        • Cao M.
        • Tang Y.
        • Xu K.
        • et al.
        Meta-connectomic analysis reveals commonly disrupted functional architectures in network modules and connectors across brain disorders.
        Cereb Cortex. 2018; 28: 4179-4194
        • Wager T.D.
        • Lindquist M.A.
        • Nichols T.E.
        • Kober H.
        • Van Snellenberg J.X.
        Evaluating the consistency and specificity of neuroimaging data using meta-analysis.
        Neuroimage. 2009; 45: S210-S221
        • Kaiser R.H.
        • Andrews-Hanna J.R.
        • Wager T.D.
        • Pizzagalli D.A.
        Large-scale network dysfunction in major depressive disorder: A meta-analysis of resting-state functional connectivity.
        JAMA Psychiatry. 2015; 72: 603-611
        • Wager T.D.
        • Jonides J.
        • Reading S.
        Neuroimaging studies of shifting attention: A meta-analysis.
        Neuroimage. 2004; 22: 1679-1693
        • Nee D.E.
        • Wager T.D.
        • Jonides J.
        Interference resolution: Insights from a meta-analysis of neuroimaging tasks.
        Cogn Affect Behav Neurosci. 2007; 7: 1-17
        • Power J.D.
        • Barnes K.A.
        • Snyder A.Z.
        • Schlaggar B.L.
        • Petersen S.E.
        Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion.
        Neuroimage. 2012; 59: 2142-2154
        • Van Dijk K.R.
        • Sabuncu M.R.
        • Buckner R.L.
        The influence of head motion on intrinsic functional connectivity MRI.
        Neuroimage. 2012; 59: 431-438
        • Murphy K.
        • Fox M.D.
        Towards a consensus regarding global signal regression for resting state functional connectivity MRI.
        Neuroimage. 2017; 154: 169-173
        • Fox M.D.
        • Zhang D.
        • Snyder A.Z.
        • Raichle M.E.
        The global signal and observed anticorrelated resting state brain networks.
        J Neurophysiol. 2009; 101: 3270-3283
        • Etkin A.
        • Wager T.D.
        Functional neuroimaging of anxiety: A meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia.
        Am J Psychiatry. 2007; 164: 1476-1488
        • Dong D.
        • Wang Y.
        • Chang X.
        • Luo C.
        • Yao D.
        Dysfunction of large-scale brain networks in schizophrenia: A meta-analysis of resting-state functional connectivity.
        Schizophr Bull. 2018; 44: 168-181
        • Zalesky A.
        • Fornito A.
        • Harding I.H.
        • Cocchi L.
        • Yucel M.
        • Pantelis C.
        • et al.
        Whole-brain anatomical networks: Does the choice of nodes matter?.
        Neuroimage. 2010; 50: 970-983
        • Zalesky A.
        • Fornito A.
        • Bullmore E.T.
        Network-based statistic: Identifying differences in brain networks.
        Neuroimage. 2010; 53: 1197-1207
        • Fornito A.
        • Bullmore E.T.
        Connectomic intermediate phenotypes for psychiatric disorders.
        Front Psychiatry. 2012; 3: 32
        • Gandal M.J.
        • Haney J.R.
        • Parikshak N.N.
        • Leppa V.
        • Ramaswami G.
        • Hartl C.
        • et al.
        Shared molecular neuropathology across major psychiatric disorders parallels polygenic overlap.
        Science. 2018; 359: 693-697
        • Cross-Disorder Group of the Psychiatric Genomics Consortium
        Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs.
        Nat Genet. 2013; 45: 984-994
        • Smoller J.W.
        • Andreassen O.A.
        • Edenberg H.J.
        • Faraone S.V.
        • Glatt S.J.
        • Kendler K.S.
        Psychiatric genetics and the structure of psychopathology.
        Mol Psychiatry. 2018; ([published online ahead of print Jan 9])
        • Anttila V.
        • Bulik-Sullivan B.
        • Finucane H.K.
        • Walters R.K.
        • Bras J.
        • et al.
        • Brainstorm Consortium
        Analysis of shared heritability in common disorders of the brain.
        Science Jun 22. 2018; 360
        • Peters S.K.
        • Dunlop K.
        • Downar J.
        Cortico-striatal-thalamic loop circuits of the salience network: A central pathway in psychiatric disease and treatment.
        Front Syst Neurosci. 2016; 10: 104
        • Seeley W.W.
        • Menon V.
        • Schatzberg A.F.
        • Keller J.
        • Glover G.H.
        • Kenna H.
        • et al.
        Dissociable intrinsic connectivity networks for salience processing and executive control.
        J Neurosci. 2007; 27: 2349-2356
        • Dosenbach N.U.
        • Fair D.A.
        • Miezin F.M.
        • Cohen A.L.
        • Wenger K.K.
        • Dosenbach R.A.
        • et al.
        Distinct brain networks for adaptive and stable task control in humans.
        Proc Natl Acad Sci U S A. 2007; 104: 11073-11078
        • Chen A.C.
        • Oathes D.J.
        • Chang C.
        • Bradley T.
        • Zhou Z.W.
        • Williams L.M.
        • et al.
        Causal interactions between fronto-parietal central executive and default-mode networks in humans.
        Proc Natl Acad Sci U S A. 2013; 110: 19944-19949
        • McTeague L.M.
        • Huemer J.
        • Carreon D.M.
        • Jiang Y.
        • Eickhoff S.B.
        • Etkin A.
        Identification of common neural circuit disruptions in cognitive control across psychiatric disorders.
        Am J Psychiatry. 2017; 174: 676-685
        • Chang L.J.
        • Yarkoni T.
        • Khaw M.W.
        • Sanfey A.G.
        Decoding the role of the insula in human cognition: Functional parcellation and large-scale reverse inference.
        Cereb Cortex. 2013; 23: 739-749
        • Deen B.
        • Pitskel N.B.
        • Pelphrey K.A.
        Three systems of insular functional connectivity identified with cluster analysis.
        Cereb Cortex. 2011; 21: 1498-1506
        • Power J.D.
        • Cohen A.L.
        • Nelson S.M.
        • Wig G.S.
        • Barnes K.A.
        • Church J.A.
        • et al.
        Functional network organization of the human brain.
        Neuron. 2011; 72: 665-678
        • Touroutoglou A.
        • Hollenbeck M.
        • Dickerson B.C.
        • Feldman Barrett L.
        Dissociable large-scale networks anchored in the right anterior insula subserve affective experience and attention.
        Neuroimage. 2012; 60: 1947-1958
        • Nelson S.M.
        • Dosenbach N.U.
        • Cohen A.L.
        • Wheeler M.E.
        • Schlaggar B.L.
        • Petersen S.E.
        Role of the anterior insula in task-level control and focal attention.
        Brain Struct Funct. 2010; 214: 669-680
        • Van Rheenen T.E.
        • Rossell S.L.
        Auditory-prosodic processing in bipolar disorder: From sensory perception to emotion.
        J Affect Disord. 2013; 151: 1102-1107
        • McGhie A.
        • Chapman J.
        Disorders of attention and perception in early schizophrenia.
        Br J Med Psychol. 1961; 34: 103-116
        • Piek J.P.
        • Dyck M.J.
        Sensory-motor deficits in children with developmental coordination disorder, attention deficit hyperactivity disorder and autistic disorder.
        Hum Mov Sci. 2004; 23: 475-488
        • Hampson M.
        • Driesen N.
        • Roth J.K.
        • Gore J.C.
        • Constable R.T.
        Functional connectivity between task-positive and task-negative brain areas and its relation to working memory performance.
        Magn Reson Imaging. 2010; 28: 1051-1057
        • Kelly A.M.
        • Uddin L.Q.
        • Biswal B.B.
        • Castellanos F.X.
        • Milham M.P.
        Competition between functional brain networks mediates behavioral variability.
        Neuroimage. 2008; 39: 527-537
        • Gong Q.
        • He Y.
        Depression, neuroimaging and connectomics: A selective overview.
        Biol Psychiatry. 2015; 77: 223-235
        • Sheffield J.M.
        • Barch D.M.
        Cognition and resting-state functional connectivity in schizophrenia.
        Neurosci Biobehav Rev. 2016; 61: 108-120
        • Fornito A.
        • Harrison B.J.
        • Zalesky A.
        • Simons J.S.
        Competitive and cooperative dynamics of large-scale brain functional networks supporting recollection.
        Proc Natl Acad Sci U S A. 2012; 109: 12788-12793
        • Lui S.
        • Wu Q.
        • Qiu L.
        • Yang X.
        • Kuang W.
        • Chan R.C.
        • et al.
        Resting-state functional connectivity in treatment-resistant depression.
        Am J Psychiatry. 2011; 168: 642-648
        • Eickhoff S.B.
        • Nichols T.E.
        • Laird A.R.
        • Hoffstaedter F.
        • Amunts K.
        • Fox P.T.
        • et al.
        Behavior, sensitivity, and power of activation likelihood estimation characterized by massive empirical simulation.
        Neuroimage. 2016; 137: 70-85
        • Marquand A.F.
        • Rezek I.
        • Buitelaar J.
        • Beckmann C.F.
        Understanding heterogeneity in clinical cohorts using normative models: Beyond case-control studies.
        Biol Psychiatry. 2016; 80: 552-561
        • Wolfers T.
        • Doan N.T.
        • Kaufmann T.
        • Alnaes D.
        • Moberget T.
        • Agartz I.
        • et al.
        Mapping the heterogeneous phenotype of schizophrenia and bipolar disorder using normative models.
        JAMA Psychiatry. 2018; 75: 1146-1155
        • Pinaya W.H.L.
        • Mechelli A.
        • Sato J.R.
        Using deep autoencoders to identify abnormal brain structural patterns in neuropsychiatric disorders: A large-scale multi-sample study.
        Hum Brain Mapp. 2019; 40: 944-954
        • Ojemann J.G.
        • Akbudak E.
        • Snyder A.Z.
        • McKinstry R.C.
        • Raichle M.E.
        • Conturo T.E.
        Anatomic localization and quantitative analysis of gradient refocused echo-planar fMRI susceptibility artifacts.
        NeuroImage. 1997; 6: 156-167
        • Lipschutz B.
        • Friston K.J.
        • Ashburner J.
        • Turner R.
        • Price C.J.
        Assessing study-specific regional variations in fMRI signal.
        Neuroimage. 2001; 13: 392-398
        • Xia M.
        • Wang J.
        • He Y.
        BrainNet Viewer: A network visualization tool for human brain connectomics.
        PLoS One. 2013; 8: e68910