Advertisement

Error Processing and Inhibitory Control in Obsessive-Compulsive Disorder: A Meta-analysis Using Statistical Parametric Maps

  • Luke J. Norman
    Correspondence
    Address correspondence to Luke J. Norman, Ph.D., Rachel Upjohn Building, 4250 Plymouth Road, Ann Arbor, MI 48109.
    Affiliations
    Department of Psychiatry, Michigan Medicine, University of Michigan, Ann Arbor, Michigan

    Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
    Search for articles by this author
  • Stephan F. Taylor
    Affiliations
    Department of Psychiatry, Michigan Medicine, University of Michigan, Ann Arbor, Michigan
    Search for articles by this author
  • Yanni Liu
    Affiliations
    Department of Psychiatry, Michigan Medicine, University of Michigan, Ann Arbor, Michigan
    Search for articles by this author
  • Joaquim Radua
    Affiliations
    Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK

    Institut d’Investigacions Biomèdiques August Pi i Sunyer, Mental Health Research Networking Center, Barcelona, Spain

    Centre for Psychiatric Research and Education, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
    Search for articles by this author
  • Yann Chye
    Affiliations
    Brain and Mental Health Research Hub, Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, Monash University, Melbourne, Australia
    Search for articles by this author
  • Stella J. De Wit
    Affiliations
    Amsterdam Neuroscience, Amsterdam University Medical Centers, Department of Psychiatry, Amsterdam, The Netherlands

    Department of Anatomy & Neurosciences, Vrije Universiteit, GGZ inGeest Specialized Mental Health Care, Amsterdam, The Netherlands
    Search for articles by this author
  • Chaim Huyser
    Affiliations
    Bascule, Academic Centre for Children and Adolescent Psychiatry, Amsterdam, The Netherlands
    Search for articles by this author
  • F. Isik Karahanoglu
    Affiliations
    Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
    Search for articles by this author
  • Tracy Luks
    Affiliations
    Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
    Search for articles by this author
  • Dara Manoach
    Affiliations
    Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts

    Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts
    Search for articles by this author
  • Carol Mathews
    Affiliations
    Department of Psychiatry and Center for OCD, Anxiety and Related Disorders, University of Florida, Gainesville, Florida
    Search for articles by this author
  • Katya Rubia
    Affiliations
    Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
    Search for articles by this author
  • Chao Suo
    Affiliations
    Brain and Mental Health Research Hub, Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, Monash University, Melbourne, Australia
    Search for articles by this author
  • Odile A. van den Heuvel
    Affiliations
    Amsterdam Neuroscience, Amsterdam University Medical Centers, Department of Psychiatry, Amsterdam, The Netherlands

    OCD Team, Haukeland University Hospital, Bergen, Norway
    Search for articles by this author
  • Murat Yücel
    Affiliations
    Brain and Mental Health Research Hub, Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, Monash University, Melbourne, Australia

    Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, Melbourne, Australia
    Search for articles by this author
  • Kate Fitzgerald
    Affiliations
    Department of Psychiatry, Michigan Medicine, University of Michigan, Ann Arbor, Michigan
    Search for articles by this author
Published:November 29, 2018DOI:https://doi.org/10.1016/j.biopsych.2018.11.010

      Abstract

      Background

      Error processing and inhibitory control enable the adjustment of behaviors to meet task demands. Functional magnetic resonance imaging studies report brain activation abnormalities in patients with obsessive-compulsive disorder (OCD) during both processes. However, conclusions are limited by inconsistencies in the literature and small sample sizes. Therefore, the aim here was to perform a meta-analysis of the existing literature using unthresholded statistical maps from previous studies.

      Methods

      A voxelwise seed-based d mapping meta-analysis was performed using t-maps from studies comparing patients with OCD and healthy control subjects (HCs) during error processing and inhibitory control. For the error processing analysis, 239 patients with OCD (120 male; 79 medicated) and 229 HCs (129 male) were included, while the inhibitory control analysis included 245 patients with OCD (120 male; 91 medicated) and 239 HCs (135 male).

      Results

      Patients with OCD, relative to HCs, showed longer inhibitory control reaction time (standardized mean difference = 0.20, p = .03, 95% confidence interval = 0.016, 0.393) and more inhibitory control errors (standardized mean difference = 0.22, p = .02, 95% confidence interval = 0.039, 0.399). In the brain, patients showed hyperactivation in the bilateral dorsal anterior cingulate cortex, supplementary motor area, and pre-supplementary motor area as well as right anterior insula/frontal operculum and anterior lateral prefrontal cortex during error processing but showed hypoactivation during inhibitory control in the rostral and ventral anterior cingulate cortices and bilateral thalamus/caudate, as well as the right anterior insula/frontal operculum, supramarginal gyrus, and medial orbitofrontal cortex (all seed-based d mapping z value >2, p < .001).

      Conclusions

      A hyperactive error processing mechanism in conjunction with impairments in implementing inhibitory control may underlie deficits in stopping unwanted compulsive behaviors in the disorder.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ruscio A.M.
        • Stein D.J.
        • Chiu W.T.
        • Kessler R.C.
        The epidemiology of obsessive-compulsive disorder in the National Comorbidity Survey Replication.
        Mol Psychiatry. 2010; 15: 53-63
        • American Psychiatric Association
        Diagnostic and Statistical Manual of Mental Disorders.
        5th ed. American Psychiatric Association, Arlington, VA2013
        • Norman L.J.
        • Carlisi C.
        • Lukito S.
        • Hart H.
        • Mataix-Cols D.
        • Radua J.
        • Rubia K.
        Structural and functional brain abnormalities in attention-deficit/hyperactivity disorder and obsessive-compulsive disorder: A comparative meta-analysis.
        JAMA Psychiatry. 2016; 73: 815-825
        • Stern E.R.
        • Welsh R.C.
        • Fitzgerald K.D.
        • Gehring W.J.
        • Lister J.J.
        • Himle J.A.
        • et al.
        Hyperactive error responses and altered connectivity in ventromedial and frontoinsular cortices in obsessive-compulsive disorder.
        Biol Psychiatry. 2011; 69: 583-591
        • Carlisi C.O.
        • Norman L.J.
        • Lukito S.S.
        • Radua J.
        • Mataix-Cols D.
        • Rubia K.
        Comparative multimodal meta-analysis of structural and functional brain abnormalities in autism spectrum disorder and obsessive-compulsive disorder.
        Biol Psychiatry. 2017; 82: 83-102
        • van Velzen L.S.
        • Vriend C.
        • de Wit S.J.
        • van den Heuvel O.A.
        Response inhibition and interference control in obsessive-compulsive spectrum disorders.
        Front Hum Neurosci. 2014; 8: 419
        • Schlosser R.G.M.
        • Wagner G.
        • Schachtzabel C.
        • Peikert G.
        • Koch K.
        • Reichenbach J.R.
        • Sauer H.
        Fronto-cingulate effective connectivity in obsessive compulsive disorder: A study with fMRI and dynamic causal modeling.
        Hum Brain Mapp. 2010; 31: 1834-1850
        • Chamberlain S.R.
        • Blackwell A.D.
        • Fineberg N.A.
        • Robbins T.W.
        • Sahakian B.J.
        The neuropsychology of obsessive compulsive disorder: The importance of failures in cognitive and behavioural inhibition as candidate endophenotypic markers.
        Neurosci Biobehav Rev. 2005; 29: 399-419
        • Ullsperger M.
        • Danielmeier C.
        • Jocham G.
        Neurophysiology of performance monitoring and adaptive behavior.
        Physiol Rev. 2014; 94: 35-79
        • Ridderinkhof K.R.
        • Ullsperger M.
        • Crone E.A.
        • Nieuwenhuis S.
        The role of the medial frontal cortex in cognitive control.
        Science. 2004; 306: 443-447
        • Fitzgerald K.D.
        • Taylor S.F.
        Error-processing abnormalities in pediatric anxiety and obsessive compulsive disorders.
        CNS Spectr. 2015; 20: 346-354
        • Kerns J.G.
        • Cohen J.D.
        • MacDonald 3rd, A.W.
        • Cho R.Y.
        • Stenger V.A.
        • Carter C.S.
        Anterior cingulate conflict monitoring and adjustments in control.
        Science. 2004; 303: 1023-1026
        • Botvinick M.M.
        • Braver T.S.
        • Barch D.M.
        • Carter C.S.
        • Cohen J.D.
        Conflict monitoring and cognitive control.
        Psychol Rev. 2001; 108: 624-652
        • King J.A.
        • Korb F.M.
        • von Cramon D.Y.
        • Ullsperger M.
        Post-error behavioral adjustments are facilitated by activation and suppression of task-relevant and task-irrelevant information processing.
        J Neurosci. 2010; 30: 12759-12769
        • Mathews C.A.
        • Perez V.B.
        • Delucchi K.L.
        • Mathalon D.H.
        Error-related negativity in individuals with obsessive-compulsive symptoms: Toward an understanding of hoarding behaviors.
        Biol Psychol. 2012; 89: 487-494
        • Gillan C.M.
        • Fineberg N.A.
        • Robbins T.W.
        A trans-diagnostic perspective on obsessive-compulsive disorder.
        Psychol Med. 2017; 47: 1528-1548
        • Endrass T.
        • Ullsperger M.
        Specificity of performance monitoring changes in obsessive-compulsive disorder.
        Neurosci Biobehav Rev. 2014; 46: 124-138
        • Fitzgerald K.D.
        • Welsh R.C.
        • Gehring W.J.
        • Abelson J.L.
        • Himle J.A.
        • Liberzon I.
        • Taylor S.F.
        Error-related hyperactivity of the anterior cingulate cortex in obsessive-compulsive disorder.
        Biol Psychiatry. 2005; 57: 287-294
        • Maltby N.
        • Tolin D.F.
        • Worhunsky P.
        • O’Keefe T.M.
        • Kiehl K.A.
        Dysfunctional action monitoring hyperactivates frontal-striatal circuits in obsessive-compulsive disorder: An event-related fMRI study.
        NeuroImage. 2005; 24: 495-503
        • Ursu S.
        • Stenger V.A.
        • Shear M.K.
        • Jones M.R.
        • Carter C.S.
        Overactive action monitoring in obsessive-compulsive disorder: Evidence from functional magnetic resonance imaging.
        Psychol Sci. 2003; 14: 347-353
        • Tolin D.F.
        • Witt S.T.
        • Stevens M.C.
        Hoarding disorder and obsessive-compulsive disorder show different patterns of neural activity during response inhibition.
        Psychiatry Res. 2014; 221: 142-148
        • Fitzgerald K.D.
        • Stern E.R.
        • Angstadt M.
        • Nicholson-Muth K.
        • Maynor M.
        • Welsh R.C.
        • et al.
        Altered function and connectivity of the medial frontal cortex in pediatric obsessive compulsive disorder.
        Biol Psychiatry. 2010; 68: 1039-1047
        • Huyser C.
        • Veltman D.J.
        • Wolters L.H.
        • de Haan E.
        • Boer F.
        Developmental aspects of error and high-conflict-related brain activity in pediatric obsessive-compulsive disorder: A fMRI study with a Flanker task before and after CBT.
        J Child Psychol Psychiatry. 2011; 52: 1251-1260
        • Fitzgerald K.D.
        • Liu Y.
        • Johnson T.
        • Moser J.
        • Marsh R.
        • Hanna G.L.
        • Taylor S.F.
        Development of posterior medial frontal cortex function in pediatric obsessive-compulsive disorder.
        J Am Acad Child Adolesc Psychiatry. 2018; 57: 397-406
        • Kang D.-H.
        • Jang J.H.
        • Han J.Y.
        • Kim J.-H.
        • Jung W.H.
        • Choi J.-S.
        • et al.
        Neural correlates of altered response inhibition and dysfunctional connectivity at rest in obsessive-compulsive disorder.
        Prog Neuropsychopharmacol Biol Psychiatry. 2013; 40: 340-346
        • de Wit S.J.
        • de Vries F.E.
        • van der Werf Y.D.
        • Cath D.C.
        • Heslenfeld D.J.
        • Veltman E.M.
        • et al.
        Presupplementary motor area hyperactivity during response inhibition: A candidate endophenotype of obsessive-compulsive disorder.
        Am J Psychiatry. 2012; 169: 1100-1108
        • Rubia K.
        • Cubillo A.
        • Woolley J.
        • Brammer M.J.
        • Smith A.
        Disorder-specific dysfunctions in patients with attention-deficit/hyperactivity disorder compared to patients with obsessive-compulsive disorder during interference inhibition and attention allocation.
        Hum Brain Mapp. 2011; 32: 601-611
        • Woolley J.
        • Heyman I.
        • Brammer M.
        • Frampton I.
        • McGuire P.K.
        • Rubia K.
        Brain activation in paediatric obsessive compulsive disorder during tasks of inhibitory control.
        Br J Psychiatry. 2008; 192: 25-31
        • Marsh R.
        • Horga G.
        • Parashar N.
        • Wang Z.
        • Peterson B.S.
        • Simpson H.B.
        Altered activation in fronto-striatal circuits during sequential processing of conflict in unmedicated adults with obsessive-compulsive disorder.
        Biol Psychiatry. 2014; 75: 615-622
        • Page L.A.
        • Rubia K.
        • Deeley Q.
        • Daly E.
        • Toal F.
        • Mataix-Cols D.
        • et al.
        A functional magnetic resonance imaging study of inhibitory control in obsessive-compulsive disorder.
        Psychiatry Res. 2009; 174: 202-209
        • Nakao T.
        • Nakagawa A.
        • Yoshiura T.
        • Nakatani E.
        • Nabeyama M.
        • Yoshizato C.
        • et al.
        A functional MRI comparison of patients with obsessive-compulsive disorder and normal controls during a Chinese character Stroop task.
        Psychiatry Res. 2005; 139: 101-114
        • Nabeyama M.
        • Nakagawa A.
        • Yoshiura T.
        • Nakao T.
        • Nakatani E.
        • Togao O.
        • et al.
        Functional MRI study of brain activation alterations in patients with obsessive-compulsive disorder after symptom improvement.
        Psychiatry Res. 2008; 163: 236-247
        • Hou J.M.
        • Li H.T.
        • Wu W.J.
        • Qu W.
        • Ran J.F.
        • Chen Y.
        Functional MRI of brain dysfunction during Stroop task in obsessive compulsive disorder patients.
        Chin J Med Imaging Technol. 2011; 27: 1977-1980
        • Pena-Garijo J.
        • Barros-Loscertales A.
        • Ventura-Campos N.
        • Ruiperez-Rodriguez M.A.
        • Edo-Villamon S.
        • Avila C.
        [Involvement of the thalamic-cortical-striatal circuit in patients with obsessive-compulsive disorder during an inhibitory control task with reward and punishment contingencies].
        Rev Neurol. 2011; 53: 77-86
        • Yücel M.
        • Harrison B.J.
        • Wood S.J.
        • Fornito A.
        • Wellard R.M.
        • Pujol J.
        • et al.
        Functional and biochemical alterations of the medial frontal cortex in obsessive-compulsive disorder.
        Arch Gen Psychiatry. 2007; 64: 946-955
        • Roth R.M.
        • Saykin A.J.
        • Flashman L.A.
        • Pixley H.S.
        • West J.D.
        • Mamourian A.C.
        Event-related functional magnetic resonance imaging of response inhibition in obsessive-compulsive disorder.
        Biol Psychiatry. 2007; 62: 901-909
        • Rubia K.
        • Cubillo A.
        • Smith A.B.
        • Woolley J.
        • Heyman I.
        • Brammer M.J.
        Disorder-specific dysfunction in right inferior prefrontal cortex during two inhibition tasks in boys with attention-deficit hyperactivity disorder compared to boys with obsessive-compulsive disorder.
        Hum Brain Mapp. 2010; 31: 287-299
        • Morein-Zamir S.
        • Voon V.
        • Dodds C.M.
        • Sule A.
        • van Niekerk J.
        • Sahakian B.J.
        • Robbins T.W.
        Divergent subcortical activity for distinct executive functions: Stopping and shifting in obsessive compulsive disorder.
        Psychol Med. 2016; 46: 829-840
        • Pitman R.K.
        A cybernetic model of obsessive-compulsive psychopathology.
        Compr Psychiatry. 1987; 28: 334-343
        • Grutzmann R.
        • Endrass T.
        • Kaufmann C.
        • Allen E.
        • Eichele T.
        • Kathmann N.
        Presupplementary motor area contributes to altered error monitoring in obsessive-compulsive disorder.
        Biol Psychiatry. 2016; 80: 562-571
        • Agam Y.
        • Greenberg J.L.
        • Isom M.
        • Falkenstein M.J.
        • Jenike E.
        • Wilhelm S.
        • Manoach D.S.
        Aberrant error processing in relation to symptom severity in obsessive-compulsive disorder: A multimodal neuroimaging study.
        NeuroImage Clin. 2014; 5: 141-151
        • Radua J.
        • van den Heuvel O.A.
        • Surguladze S.
        • Mataix-Cols D.
        Meta-analytical comparison of voxel-based morphometry studies in obsessive-compulsive disorder vs other anxiety disorders.
        Arch Gen Psychiatry. 2010; 67: 701-711
        • Stroup D.F.
        • Berlin J.A.
        • Morton S.C.
        • Olkin I.
        • Williamson G.D.
        • Rennie D.
        • et al.
        Meta-analysis of observational studies in epidemiology: A proposal for reporting. Meta-analysis of Observational Studies in Epidemiology (MOOSE) group.
        JAMA. 2000; 283: 2008-2012
        • Lüdecke D.
        esc: Effect size computation for meta analysis.
        (Available at:) (Accessed January 10, 2018)
        • Viechtbauer W.
        Conducting meta-analyses in R with the metafor package.
        J Stat Softw. 2010; 36 (Available at:) (Accessed October 1, 2018)
        • Radua J.
        • Mataix-Cols D.
        Voxel-wise meta-analysis of grey matter changes in obsessive-compulsive disorder.
        Br J Psychiatry. 2009; 195: 393-402
        • Radua J.
        • Mataix-Cols D.
        • Phillips M.L.
        • El-Hage W.
        • Kronhaus D.M.
        • Cardoner N.
        • Surguladze S.
        A new meta-analytic method for neuroimaging studies that combines reported peak coordinates and statistical parametric maps.
        Eur Psychiatry. 2012; 27: 605-611
        • Egger M.
        • Davey Smith G.
        • Schneider M.
        • Minder C.
        Bias in meta-analysis detected by a simple, graphical test.
        BMJ. 1997; 315: 629-634
        • Benjamini Y.
        • Hochberg Y.
        Controlling the false discovery rate: A practical and powerful approach to multiple testing.
        J R Stat Soc B. 1995; 57: 289-300
        • Wise T.
        • Radua J.
        • Via E.
        • Cardoner N.
        • Abe O.
        • Adams T.M.
        • et al.
        Common and distinct patterns of grey-matter volume alteration in major depression and bipolar disorder: Evidence from voxel-based meta-analysis.
        Mol Psychiatry. 2016; 22: 1455-1463
        • Fitzgerald K.
        • Norman L.
        • Liu Y.
        • Hanna G.
        • Taylor S.
        Cognitive control networks in pediatric obsessive compulsive disorder: Target for treatment response?.
        Biol Psychiatry. 2017; 81: S316-S317
        • Hough C.M.
        • Luks T.L.
        • Lai K.
        • Vigil O.
        • Guillory S.
        • Nongpiur A.
        • et al.
        Comparison of brain activation patterns during executive function tasks in hoarding disorder and non-hoarding OCD.
        Psychiatry Res. 2016; 255: 50-59
        • Chamberlain S.R.
        • Fineberg N.A.
        • Menzies L.A.
        • Blackwell A.D.
        • Bullmore E.T.
        • Robbins T.W.
        • Sahakian B.J.
        Impaired cognitive flexibility and motor inhibition in unaffected first-degree relatives of patients with obsessive-compulsive disorder.
        Am J Psychiatry. 2007; 164: 335-338
        • Le Jeune F.
        • Verin M.
        • N’Diaye K.
        • Drapier D.
        • Leray E.
        • Du Montcel S.T.
        • et al.
        Decrease of prefrontal metabolism after subthalamic stimulation in obsessive-compulsive disorder: A positron emission tomography study.
        Biol Psychiatry. 2010; 68: 1016-1022
        • Norman L.J.
        • Carlisi C.O.
        • Christakou A.
        • Chantiluke K.
        • Murphy C.
        • Simmons A.
        • et al.
        Neural dysfunction during temporal discounting in paediatric attention-deficit/hyperactivity disorder and obsessive-compulsive disorder.
        Psychiatry Res. 2017; 269: 97-105
        • Rotge J.-Y.
        • Guehl D.
        • Dilharreguy B.
        • Cuny E.
        • Tignol J.
        • Bioulac B.
        • et al.
        Provocation of obsessive-compulsive symptoms: A quantitative voxel-based meta-analysis of functional neuroimaging studies.
        J Psychiatry Neurosci. 2008; 33: 405-412
        • Yamanishi T.
        • Nakaaki S.
        • Omori I.M.
        • Hashimoto N.
        • Shinagawa Y.
        • Hongo J.
        • et al.
        Changes after behavior therapy among responsive and nonresponsive patients with obsessive-compulsive disorder.
        Psychiatry Res. 2009; 172: 242-250
        • Carey P.D.
        • Warwick J.
        • Niehaus D.J.H.
        • van der Linden G.
        • van Heerden B.B.
        • Harvey B.H.
        • et al.
        Single photon emission computed tomography (SPECT) of anxiety disorders before and after treatment with citalopram.
        BMC Psychiatry. 2004; 4: 30
        • Nauczyciel C.
        • Le Jeune F.
        • Naudet F.
        • Douabin S.
        • Esquevin A.
        • Vérin M.
        • et al.
        Repetitive transcranial magnetic stimulation over the orbitofrontal cortex for obsessive-compulsive disorder: A double-blind, crossover study.
        Transl Psychiatry. 2014; 4: e436
        • Scheinost D.
        • Stoica T.
        • Saksa J.
        • Papademetris X.
        • Constable R.T.
        • Pittenger C.
        • Hampson M.
        Orbitofrontal cortex neurofeedback produces lasting changes in contamination anxiety and resting-state connectivity.
        Transl Psychiatry. 2013; 3: e250
        • Scheinost D.
        • Stoica T.
        • Wasylink S.
        • Gruner P.
        • Saksa J.
        • Pittenger C.
        • Hampson M.
        Resting state functional connectivity predicts neurofeedback response.
        Front Behav Neurosci. 2014; 8: 338
        • Carlisi C.O.
        • Norman L.
        • Murphy C.M.
        • Christakou A.
        • Chantiluke K.
        • Giampietro V.
        • et al.
        Comparison of neural substrates of temporal discounting between youth with autism spectrum disorder and with obsessive-compulsive disorder.
        Psychol Med. 2017; 47: 2513-2527
        • Brennan B.P.
        • Tkachenko O.
        • Schwab Z.J.
        • Juelich R.J.
        • Ryan E.M.
        • Athey A.J.
        • et al.
        An examination of rostral anterior cingulate cortex function and neurochemistry in obsessive-compulsive disorder.
        Neuropsychopharmacology. 2015; 40: 1866-1876
        • de Wit S.J.
        • van der Werf Y.D.
        • Mataix-Cols D.
        • Trujillo J.P.
        • van Oppen P.
        • Veltman D.J.
        • van den Heuvel O.A.
        Emotion regulation before and after transcranial magnetic stimulation in obsessive compulsive disorder.
        Psychol Med. 2015; 45: 3059-3073
        • de Vries F.E.
        • de Wit S.J.
        • Cath D.C.
        • van der Werf Y.D.
        • van der Borden V.
        • van Rossum T.B.
        • et al.
        Compensatory frontoparietal activity during working memory: An endophenotype of obsessive-compulsive disorder.
        Biol Psychiatry. 2014; 76: 878-887
        • de Vries F.E.
        • de Wit S.J.
        • van den Heuvel O.A.
        • Veltman D.J.
        • Cath D.C.
        • van Balkom A.J.L.M.
        • van der Werf Y.D.
        Cognitive control networks in OCD: A resting-state connectivity study in unmedicated patients with obsessive-compulsive disorder and their unaffected relatives.
        World J Biol Psychiatry. 2017; ([published online ahead of print Sep 18])
        • Fitzgerald K.D.
        • Welsh R.C.
        • Stern E.R.
        • Angstadt M.
        • Hanna G.L.
        • Abelson J.L.
        • Taylor S.F.
        Developmental alterations of frontal-striatal-thalamic connectivity in obsessive compulsive disorder.
        J Am Acad Child Adolesc Psychiatry. 2011; 50: 938-948.e3
        • Boedhoe P.S.W.
        • Schmaal L.
        • Abe Y.
        • Ameis S.H.
        • Arnold P.D.
        • Batistuzzo M.C.
        • et al.
        Distinct subcortical volume alterations in pediatric and adult OCD: A worldwide meta- and mega-analysis.
        Am J Psychiatry. 2017; 174: 60-69
        • Menzies L.
        • Achard S.
        • Chamberlain S.R.
        • Fineberg N.
        • Chen C.-H.
        • del Campo N.
        • et al.
        Neurocognitive endophenotypes of obsessive-compulsive disorder.
        Brain J Neurol. 2007; 130: 3223-3236
        • de Wit S.J.
        • Alonso P.
        • Schweren L.
        • Mataix-Cols D.
        • Lochner C.
        • Menchon J.M.
        • et al.
        Multicenter voxel-based morphometry mega-analysis of structural brain scans in obsessive-compulsive disorder.
        Am J Psychiatry. 2014; 171: 340-349
        • Thorsen A.L.
        • Hagland P.
        • Radua J.
        • Mataix-Cols D.
        • Kvale G.
        • Hansen B.
        • van den Heuvel O.A.
        Emotional processing in obsessive-compulsive disorder: A systematic review and meta-analysis of 25 functional neuroimaging studies.
        Biol Psychiatry Cogn Neurosci Neuroimaging. 2018; 3: 563-571
        • Thorsen A.L.
        • de Wit S.J.
        • de Vries F.E.
        • Cath D.C.
        • Veltman D.J.
        • van der Werf Y.D.
        • et al.
        Emotion regulation in obsessive-compulsive disorder, unaffected siblings, and unrelated healthy control participants.
        Biol Psychiatry Cogn Neurosci Neuroimaging. 2018; ([published online ahead of print Mar 24])
        • Norman L.J.
        • Carlisi C.O.
        • Christakou A.
        • Cubillo A.
        • Murphy C.M.
        • Chantiluke K.
        • et al.
        Shared and disorder-specific task-positive and default mode network dysfunctions during sustained attention in paediatric attention-deficit/hyperactivity disorder and obsessive/compulsive disorder.
        NeuroImage Clin. 2017; 15: 181-193
        • Norman L.
        • Carlisi C.O.
        • Christakou A.
        • Murphy C.
        • Chantiluke K.
        • Giampietro V.
        • et al.
        Fronto-striatal dysfunction during decision-making in attention-deficit/hyperactivity disorder and obsessive-compulsive disorder.
        Biol Psychiatry Cogn Neurosci Neuroimaging. 2018; 3: 694-703
        • Vaghi M.M.
        • Hampshire A.
        • Fineberg N.A.
        • Kaser M.
        • Brühl A.B.
        • Sahakian B.J.
        • et al.
        Hypoactivation and dysconnectivity of a frontostriatal circuit during goal-directed planning as an endophenotype for obsessive-compulsive disorder.
        Biol Psychiatry Cogn Neurosci Neuroimaging. 2017; 2: 655-663
        • van Velzen L.S.
        • de Wit S.J.
        • Curcic-Blake B.
        • Cath D.C.
        • de Vries F.E.
        • Veltman D.J.
        • et al.
        Altered inhibition-related frontolimbic connectivity in obsessive-compulsive disorder.
        Hum Brain Mapp. 2015; 36: 4064-4075
        • Carlisi C.O.
        • Norman L.
        • Murphy C.M.
        • Christakou A.
        • Chantiluke K.
        • Giampietro V.
        • et al.
        Disorder-specific and shared brain abnormalities during vigilance in autism and obsessive-compulsive disorder.
        Biol Psychiatry Cogn Neurosci Neuroimaging. 2017; 2: 644-654
        • Manoach D.S.
        • Agam Y.
        Neural markers of errors as endophenotypes in neuropsychiatric disorders.
        Front Hum Neurosci. 2013; 7: 350
        • Figee M.
        • Vink M.
        • Luigjes J.
        • van Wingen G.
        • Denys D.
        Deep brain stimulation modulates frontostriatal inhibitory control in obsessive-compulsive disorder.
        Biol Psychiatry. 2017; 81: S96-S97
        • Banks G.P.
        • Mikell C.B.
        • Youngerman B.E.
        • Henriques B.
        • Kelly K.M.
        • Chan A.K.
        • et al.
        Neuroanatomical characteristics associated with response to dorsal anterior cingulotomy for obsessive-compulsive disorder.
        JAMA Psychiatry. 2015; 72: 127-135
        • Yin D.
        • Zhang C.
        • Lv Q.
        • Chen X.
        • Zeljic K.
        • Gong H.
        • et al.
        Dissociable frontostriatal connectivity: Mechanism and predictor of the clinical efficacy of capsulotomy in obsessive-compulsive disorder.
        Biol Psychiatry. 2018; 84: 926-936
        • Suetens K.
        • Nuttin B.
        • Gabriels L.
        • Van Laere K.
        Differences in metabolic network modulation between capsulotomy and deep-brain stimulation for refractory obsessive-compulsive disorder.
        J Nucl Med. 2014; 55: 951-959
        • Figee M.
        • Luigjes J.
        • Smolders R.
        • Valencia-Alfonso C.-E.
        • van Wingen G.
        • de Kwaasteniet B.
        • et al.
        Deep brain stimulation restores frontostriatal network activity in obsessive-compulsive disorder.
        Nat Neurosci. 2013; 16: 386-387
        • Holroyd C.B.
        • Coles M.G.H.
        The neural basis of human error processing: Reinforcement learning, dopamine, and the error-related negativity.
        Psychol Rev. 2002; 109: 679-709
        • Kerns J.G.
        Anterior cingulate and prefrontal cortex activity in an FMRI study of trial-to-trial adjustments on the Simon task.
        NeuroImage. 2006; 33: 399-405
        • Danielmeier C.
        • Allen E.A.
        • Jocham G.
        • Onur O.A.
        • Eichele T.
        • Ullsperger M.
        Acetylcholine mediates behavioral and neural post-error control.
        Curr Biol. 2015; 25: 1461-1468
        • Liu Y.
        • Gehring W.J.
        • Weissman D.H.
        • Taylor S.F.
        • Fitzgerald K.D.
        Trial-by-trial adjustments of cognitive control following errors and response conflict are altered in pediatric obsessive compulsive disorder.
        Front Psychiatry. 2012; 3: 41
        • Modirrousta M.
        • Meek B.P.
        • Sareen J.
        • Enns M.W.
        Impaired trial-by-trial adjustment of cognitive control in obsessive compulsive disorder improves after deep repetitive transcranial magnetic stimulation.
        BMC Neurosci. 2015; 16: 63
        • Gillan C.M.
        • Robbins T.W.
        Goal-directed learning and obsessive-compulsive disorder.
        Philos Trans R Soc Lond B Biol Sci. 2014; 369: 20130475
        • Lerner A.
        • Bagic A.
        • Hanakawa T.
        • Boudreau E.A.
        • Pagan F.
        • Mari Z.
        • et al.
        Involvement of insula and cingulate cortices in control and suppression of natural urges.
        Cereb Cortex. 2009; 19: 218-223
        • Hajcak G.
        • Foti D.
        Errors are aversive: Defensive motivation and the error-related negativity.
        Psychol Sci. 2008; 19: 103-108
        • Spunt R.P.
        • Lieberman M.D.
        • Cohen J.R.
        • Eisenberger N.I.
        The phenomenology of error processing: The dorsal ACC response to stop-signal errors tracks reports of negative affect.
        J Cogn Neurosci. 2012; 24: 1753-1765
        • Gillan C.M.
        • Sahakian B.J.
        Which is the driver, the obsessions or the compulsions, in OCD?.
        Neuropsychopharmacology. 2015; 40: 247-248
        • Kalanthroff E.
        • Abramovitch A.
        • Steinman S.A.
        • Abramowitz J.S.
        • Simpson H.B.
        The chicken or the egg: What drives OCD?.
        J Obsessive-Compuls Relat Disord. 2016; 11: 9-12
        • van Veen V.
        • Krug M.K.
        • Schooler J.W.
        • Carter C.S.
        Neural activity predicts attitude change in cognitive dissonance.
        Nat Neurosci. 2009; 12: 1469-1474
        • de Vries J.
        • Byrne M.
        • Kehoe E.
        Cognitive dissonance induction in everyday life: An fMRI study.
        Soc Neurosci. 2015; 10: 268-281
        • Danielmeier C.
        • Eichele T.
        • Forstmann B.U.
        • Tittgemeyer M.
        • Ullsperger M.
        Posterior medial frontal cortex activity predicts post-error adaptations in task-related visual and motor areas.
        J Neurosci. 2011; 31: 1780-1789
        • Abramovitch A.
        • Dar R.
        • Hermesh H.
        • Schweiger A.
        Comparative neuropsychology of adult obsessive-compulsive disorder and attention deficit/hyperactivity disorder: Implications for a novel executive overload model of OCD.
        J Neuropsychol. 2012; 6: 161-191
        • Boedhoe P.S.W.
        • Schmaal L.
        • Abe Y.
        • Alonso P.
        • Ameis S.H.
        • Anticevic A.
        • et al.
        Cortical abnormalities associated with pediatric and adult obsessive-compulsive disorder: Findings from the ENIGMA Obsessive-Compulsive Disorder Working Group.
        Am J Psychiatry. 2018; 175: 453-462
        • Ullsperger M.
        Performance monitoring in neurological and psychiatric patients.
        Int J Psychophysiol. 2006; 59: 59-69
        • de Bruijn E.R.A.
        • Ullsperger M.
        Pathological changes in performance monitoring.
        in: Mars R.B. Sallet J. Rushworth M.F.S. Yeung N. Neural Basis of Motivational and Cognitive Control. MIT Press, Cambridge, MA2011: 263-280
        • Zhang R.
        • Geng X.
        • Lee T.M.C.
        Large-scale functional neural network correlates of response inhibition: An fMRI meta-analysis.
        Brain Struct Funct. 2017; 222: 3973-3990
        • Sebastian A.
        • Pohl M.F.
        • Klöppel S.
        • Feige B.
        • Lange T.
        • Stahl C.
        • et al.
        Disentangling common and specific neural subprocesses of response inhibition.
        NeuroImage. 2013; 64: 601-615