Advertisement
Archival Report| Volume 85, ISSUE 7, P544-553, April 01, 2019

A Longitudinal Model of Human Neuronal Differentiation for Functional Investigation of Schizophrenia Polygenic Risk

  • Anil P.S. Ori
    Affiliations
    Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
    Search for articles by this author
  • Merel H.M. Bot
    Affiliations
    Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
    Search for articles by this author
  • Remco T. Molenhuis
    Affiliations
    Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
    Search for articles by this author
  • Loes M. Olde Loohuis
    Affiliations
    Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
    Search for articles by this author
  • Roel A. Ophoff
    Correspondence
    Address correspondence to Roel A. Ophoff, Ph.D., University of California, Center for Neurobehavioral Genetics, 695 Charles E. Young Drive South, Los Angeles, CA 90095.
    Affiliations
    Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California

    Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
    Search for articles by this author
Published:September 05, 2018DOI:https://doi.org/10.1016/j.biopsych.2018.08.019

      Abstract

      Background

      Common psychiatric disorders are characterized by complex disease architectures with many small genetic effects that contribute and complicate biological understanding of their etiology. There is therefore a pressing need for in vitro experimental systems that allow for interrogation of polygenic psychiatric disease risk to study the underlying biological mechanisms.

      Methods

      We have developed an analytical framework that integrates genome-wide disease risk from genome-wide association studies with longitudinal in vitro gene expression profiles of human neuronal differentiation.

      Results

      We demonstrate that the cumulative impact of risk loci of specific psychiatric disorders is significantly associated with genes that are differentially expressed and upregulated during differentiation. We find the strongest evidence for schizophrenia, a finding that we replicate in an independent dataset. A longitudinal gene cluster involved in synaptic function primarily drives the association with schizophrenia risk.

      Conclusions

      These findings reveal that in vitro human neuronal differentiation can be used to translate the polygenic architecture of schizophrenia to biologically relevant pathways that can be modeled in an experimental system. Overall, this work emphasizes the use of longitudinal in vitro transcriptomic signatures as a cellular readout and the application to the genetics of complex traits.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Geschwind D.H.
        • Flint J.
        Genetics and genomics of psychiatric disease.
        Science. 2015; 349: 1489-1494
        • Polderman T.J.C.
        • Benyamin B.
        • de Leeuw C.A.
        • Sullivan P.F.
        • van Bochoven A.
        • Visscher P.M.
        • Posthuma D.
        Meta-analysis of the heritability of human traits based on fifty years of twin studies.
        Nat Genet. 2015; 47: 702-709
        • Sullivan P.F.
        • Agrawal A.
        • Bulik C.
        • Andreassen O.A.
        • Borglum A.
        • Breen G.
        • et al.
        Psychiatric genomics: An update and an agenda.
        Am J Psychiatry. 2017; 175: 15-27
        • Falk A.
        • Heine V.M.
        • Harwood A.J.
        • Sullivan P.F.
        • Peitz M.
        • Brüstle O.
        • et al.
        Modeling psychiatric disorders: From genomic findings to cellular phenotypes.
        Mol Psychiatry. 2016; 21: 1167-1179
        • Gulsuner S.
        • Walsh T.
        • Watts A.C.
        • Lee M.K.
        • Thornton A.M.
        • Casadei S.
        • et al.
        Spatial and temporal mapping of de novo mutations in schizophrenia to a fetal prefrontal cortical network.
        Cell. 2013; 154: 518-529
        • Purcell S.M.
        • Moran J.L.
        • Fromer M.
        • Ruderfer D.
        • Solovieff N.
        • Roussos P.
        • et al.
        A polygenic burden of rare disruptive mutations in schizophrenia.
        Nature. 2014; 506: 185-190
        • Olde Loohuis L.M.O.
        • Vorstman J.A.S.
        • Ori A.P.
        • Staats K.A.
        • Wang T.
        • Richards A.L.
        • et al.
        Genome-wide burden of deleterious coding variants increased in schizophrenia.
        Nat Commun. 2015; 6: 7501
        • Finucane H.K.
        • Bulik-Sullivan B.
        • Gusev A.
        • Trynka G.
        • Reshef Y.
        • Loh P.-R.
        • et al.
        Partitioning heritability by functional annotation using genome-wide association summary statistics.
        Nat Genet. 2015; 47: 1228-1235
        • Geschwind D.H.
        Genetics of autism spectrum disorders.
        Trends Cogn Sci. 2011; 15: 409-416
        • Rubeis S.D.
        • He X.
        • Goldberg A.P.
        • Poultney C.S.
        • Samocha K.
        Synaptic, transcriptional, and chromatin genes disrupted in autism A.
        Nature. 2014; 515: 209-215
        • Hyde C.L.
        • Nagle M.W.
        • Tian C.
        • Chen X.
        • Paciga S.A.
        • Wendland J.R.
        • et al.
        Identification of 15 genetic loci associated with risk of major depression in individuals of European descent.
        Nat Genet. 2016; 48: 1031-1036
        • Shi Y.
        • Kirwan P.
        • Smith J.
        • Robinson H.P.C.
        • Livesey F.J.
        Human cerebral cortex development from pluripotent stem cells to functional excitatory synapses.
        Nat Neurosci. 2012; 15: 477-486
        • van de Leemput J.
        • Boles N.C.
        • Kiehl T.R.
        • Corneo B.
        • Lederman P.
        • Menon V.
        • et al.
        CORTECON: A temporal transcriptome analysis of in vitro human cerebral cortex development from human embryonic stem cells.
        Neuron. 2014; 83: 51-68
        • Stein J.L.
        • de la Torre-Ubieta L.
        • Tian Y.
        • Parikshak N.N.
        • Hernández I.A.
        • Marchetto M.C.
        • et al.
        A quantitative framework to evaluate modeling of cortical development by neural stem cells.
        Neuron. 2014; 83: 69-86
        • Du P.
        • Kibbe W.A.
        • Lin S.M.
        lumi: A pipeline for processing Illumina microarray.
        Bioinformatics. 2008; 24: 1547-1548
        • Lin S.M.
        • Du P.
        • Huber W.
        • Kibbe W.A.
        Model-based variance-stabilizing transformation for Illumina microarray data.
        Nucleic Acids Res. 2008; 36: e11
        • Zhang Y.
        • Chen K.
        • Sloan S.A.
        • Bennett M.L.
        • Scholze A.R.
        • O’Keeffe S.
        • et al.
        An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex.
        J Neurosci. 2014; 34: 11929-11947
        • Tai Y.C.
        • Speed T.P.
        A multivariate empirical Bayes statistic for replicated microarray time course data.
        Ann Stat. 2006; 34: 2387-2412
        • Aryee M.J.
        • Gutiérrez-Pabello J.A.
        • Kramnik I.
        • Maiti T.
        • Quackenbush J.
        An improved empirical bayes approach to estimating differential gene expression in microarray time-course data: BETR (Bayesian Estimation of Temporal Regulation).
        BMC Bioinformatics. 2009; 10: 409
        • Kumar L.
        • E Futschik M.
        Mfuzz: A software package for soft clustering of microarray data.
        Bioinformation. 2007; 2: 5-7
        • Schwämmle V.
        • Jensen O.N.
        A simple and fast method to determine the parameters for fuzzy c-means cluster analysis.
        Bioinformatics. 2010; 26: 2841-2848
        • Huang D.W.
        • Sherman B.T.
        • Lempicki R.A.
        Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources.
        Nat Protoc. 2009; 4: 44-57
        • Schizophrenia Working Group of the Psychiatric Genomics Consortium
        Biological insights from 108 schizophrenia-associated genetic loci.
        Nature. 2014; 511: 421-427
        • CONVERGE Consortium
        Sparse whole-genome sequencing identifies two loci for major depressive disorder.
        Nature. 2015; 523: 588-591
        • Psychiatric GWAS Consortium Bipolar Disorder Working Group
        Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4.
        Nat Genet. 2011; 43: 977-983
        • Autism Spectrum Disorders Working Group of the Psychiatric Genomics Consortium
        Meta-analysis of GWAS of over 16,000 individuals with autism spectrum disorder highlights a novel locus at 10q24.32 and a significant overlap with schizophrenia.
        Mol Autism. 2017; 8: 21
        • Demontis D.
        • Walters R.K.
        • Martin J.
        • Mattheisen M.
        • Als T.D.
        • Agerbo E.
        • et al.
        Discovery of the first genome-wide significant risk loci for ADHD.
        Nat Genet. 2019; 51: 63-75
        • Cross-Disorder Group of the Psychiatric Genomics Consortium
        Identification of risk loci with shared effects on five major psychiatric disorders: A genome-wide analysis.
        Lancet. 2013; 381: 1371-1379
        • Lambert J.C.
        • Ibrahim-Verbaas C.A.
        • Harold D.
        • Naj A.C.
        • Sims R.
        • Bellenguez C.
        • et al.
        Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease.
        Nat Genet. 2013; 45: 1452-1458
        • Wood A.R.
        • Esko T.
        • Yang J.
        • Vedantam S.
        • Pers T.H.
        • Gustafsson S.
        • et al.
        Defining the role of common variation in the genomic and biological architecture of adult human height.
        Nat Genet. 2014; 46: 1173-1186
        • Auton A.
        • Brooks L.D.
        • Durbin R.M.
        • Garrison E.P.
        • Kang H.M.
        • et al.
        • 1000 Genomes Project Consortium
        A global reference for human genetic variation.
        Nature. 2015; 526: 68-74
        • de Leeuw C.A.
        • Mooij J.M.
        • Heskes T.
        • Posthuma D.
        MAGMA: Generalized gene-set analysis of GWAS data.
        PLoS Comput Biol. 2015; 11: e1004219
        • Gazal S.
        • Finucane H.K.
        • Furlotte N.A.
        • Loh P.-R.
        • Palamara P.F.
        • Liu X.
        • et al.
        Linkage disequilibrium–dependent architecture of human complex traits shows action of negative selection.
        Nat Genet. 2017; 49: 1421-1427
        • Bulik-Sullivan B.K.
        • Loh P.R.
        • Finucane H.K.
        • Ripke S.
        • Yang J.
        • Schizophrenia Working Group of the Psychiatric Genomics Consortium
        • et al.
        LD score regression distinguishes confounding from polygenicity in genome-wide association studies.
        Nat Genet. 2015; 47: 291-295
        • Tanapat P.
        Neuronal cell markers.
        Mater Methods. 2013; 3: 196
        • Magavi S.S.P.
        • Macklis J.D.
        Immunocytochemical analysis of neuronal differentiation.
        Methods Mol Biol. 2002; 198: 291-297
        • von Bohlen Und Halbach O.
        Immunohistological markers for staging neurogenesis in adult hippocampus.
        Cell Tissue Res. 2007; 329: 409-420
        • Clancy B.
        • Darlington R.B.
        • Finlay B.L.
        Translating developmental time across mammalian species.
        Neuroscience. 2001; 105: 7-17
        • Stiles J.
        • Jernigan T.L.
        The basics of brain development.
        Neuropsychology Review. 2010; 20: 327-348
        • Hattori A.
        • Buac K.
        • Ito T.
        Regulation of stem cell self-renewal and oncogenesis by RNA-binding proteins.
        Adv Exp Med Biol. 2016; 907: 153-188
        • Barros C.S.
        • Franco S.J.
        • Muller U.
        Extracellular matrix: Functions in the nervous system.
        Cold Spring Harb Perspect Biol. 2011; 3: A005108
        • Bikbaev A.
        • Frischknecht R.
        • Heine M.
        Brain extracellular matrix retains connectivity in neuronal networks.
        Sci Rep. 2015; 5: 14527
        • Skene N.G.
        • Bryois J.
        • Bakken T.E.
        • Breen G.
        • Crowley J.J.
        • Gaspar H.
        • et al.
        Genetic identification of brain cell types underlying schizophrenia.
        Nat Genet. 2017; 50: 825-833
        • Genovese G.
        • Fromer M.
        • Stahl E.A.
        • Ruderfer D.M.
        • Chambert K.
        • Landén M.
        • et al.
        Increased burden of ultra-rare protein-altering variants among 4,877 individuals with schizophrenia.
        Nat Neurosci. 2016; 19: 1433-1441
        • Forrest M.P.
        • Zhang H.
        • Moy W.
        • McGowan H.
        • Leites C.
        • Dionisio L.E.
        • et al.
        Open chromatin profiling in hiPSC-derived neurons prioritizes functional noncoding psychiatric risk variants and highlights neurodevelopmental loci.
        Cell Stem Cell. 2017; 21: 305-318.e8
        • Finucane H.
        • Reshef Y.
        • Anttila V.
        • Slowikowski K.
        • Gusev A.
        • Byrnes A.
        • et al.
        Heritability enrichment of specifically expressed genes identifies disease-relevant tissues and cell types.
        Nat Genet. 2018; 50: 621-629
        • Hall J.
        • Trent S.
        • Thomas K.L.
        • O’Donovan M.C.
        • Owen M.J.
        Genetic risk for schizophrenia: Convergence on synaptic pathways involved in plasticity.
        Biol Psychiatry. 2015; 77: 52-58
        • Lips E.S.
        • Cornelisse L.N.
        • Toonen R.F.
        • Min J.L.
        • Hultman C.M.
        • Holmans P.A.
        • et al.
        Functional gene group analysis identifies synaptic gene groups as risk factor for schizophrenia.
        Mol Psychiatry. 2011; 17: 996-1006
        • Pocklington A.J.
        • O’Donovan M.
        • Owen M.J.
        The synapse in schizophrenia.
        Eur J Neurosci. 2014; 39: 1059-1067
        • Schwarz E.
        • Izmailov R.
        • Lio P.
        • Meyer-Lindenberg A.
        Protein interaction networks link schizophrenia risk loci to synaptic function.
        Schizophr Bull. 2016; 42: 1334-1342
        • O’Dushlaine C.
        • Rossin L.
        • Lee P.H.
        • Duncan L.
        • Parikshak N.N.
        • Newhouse S.
        • et al.
        Psychiatric genome-wide association study analyses implicate neuronal, immune and histone pathways.
        Nat Neurosci. 2015; 18: 199-209
        • Peterson R.E.
        • Cai N.
        • Bigdeli T.B.
        • Li Y.
        • Reimers M.
        • Nikulova A.
        • et al.
        The genetic architecture of major depressive disorder in Han Chinese women.
        JAMA Psychiatry. 2017; 74: 162-168
        • Tang X.
        • Zhou L.
        • Wagner A.M.
        • Marchetto M.C.N.
        • Muotri A.R.
        • Gage F.H.
        • Chen G.
        Astroglial cells regulate the developmental timeline of human neurons differentiated from induced pluripotent stem cells.
        Stem Cell Res. 2013; 11: 743-757
        • Johnson M.A.
        • Weick J.P.
        • Pearce R.A.
        • Zhang S.C.
        Functional neural development from human embryonic stem cells: Accelerated synaptic activity via astrocyte coculture.
        J Neurosci. 2007; 27: 3069-3077
        • Birnbaum R.
        • Jaffe A.E.
        • Hyde T.M.
        • Kleinman J.E.
        • Weinberger D.R.
        Prenatal expression patterns of genes associated with neuropsychiatric disorders.
        Am J Psychiatry. 2014; 171: 758-767
        • Pers T.H.
        • Timshel P.
        • Ripke S.
        • Lent S.
        • Sullivan P.F.
        • O’Donovan M.C.
        • et al.
        Comprehensive analysis of schizophrenia-associated loci highlights ion channel pathways and biologically plausible candidate causal genes.
        Hum Mol Genet. 2015; 25: 1247-1254
        • Sekar A.
        • Bialas A.R.
        • de Rivera H.
        • Davis A.
        • Hammond T.R.
        • Kamitaki N.
        • et al.
        Schizophrenia risk from complex variation of complement component 4.
        Nature. 2016; 530: 177-183

      Linked Article