Advertisement

Maternal Inflammation and Neurodevelopmental Programming: A Review of Preclinical Outcomes and Implications for Translational Psychiatry

  • Serena B. Gumusoglu
    Affiliations
    Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa
    Search for articles by this author
  • Hanna E. Stevens
    Correspondence
    Address correspondence to Hanna E. Stevens, M.D., Ph.D., 169 Newton Road, 1330 PBDB, Iowa City, IA 52246.
    Affiliations
    Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa

    Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, Iowa

    Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa
    Search for articles by this author

      Abstract

      Early disruptions to neurodevelopment are highly relevant to understanding both psychiatric risk and underlying pathophysiology that can be targeted by new treatments. Much convergent evidence from the human literature associates inflammation during pregnancy with later neuropsychiatric disorders in offspring. Preclinical models of prenatal inflammation have been developed to examine the causal maternal physiological and offspring neural mechanisms underlying these findings. Here we review the strengths and limitations of preclinical models used for these purposes and describe selected studies that have shown maternal immune impacts on the brain and behavior of offspring. Maternal immune activation in mice, rats, nonhuman primates, and other mammalian model species have demonstrated convergent outcomes across methodologies. These outcomes include shifts and/or disruptions in the normal developmental trajectory of molecular and cellular processes in the offspring brain. Prenatal developmental origins are critical to a mechanistic understanding of maternal immune activation–induced alterations to microglia and immune molecules, brain growth and development, synaptic morphology and physiology, and anxiety- and depression-like, sensorimotor, and social behaviors. These phenotypes are relevant to brain functioning across domains and to anxiety and mood disorders, schizophrenia, and autism spectrum disorder, in which they have been identified. By turning a neurodevelopmental lens on this body of work, we emphasize the importance of acute changes to the prenatal offspring brain in fostering a better understanding of potential mechanisms for intervention. Collectively, overlapping results across maternal immune activation studies also highlight the need to examine preclinical offspring neurodevelopment alterations in terms of a multifactorial immune milieu, or immunome, to determine potential mechanisms of psychiatric risk.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Meyer U.
        Prenatal poly(i:C) exposure and other developmental immune activation models in rodent systems.
        Biol Psychiatry. 2014; 75: 307-315
        • Barker D.J.
        • Osmond C.
        Childhood respiratory infection and adult chronic bronchitis in England and Wales.
        Br Med J (Clin Res Ed). 1986; 293: 1271-1275
        • Barker D.J.
        • Osmond C.
        Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales.
        Lancet. 1986; 1: 1077-1081
        • Barker D.J.
        Fetal origins of coronary heart disease.
        Br Heart J. 1993; 69: 195-196
        • Stevens H.E.
        • Vaccarino F.M.
        How animal models inform child and adolescent psychiatry.
        J Am Acad Child Adolesc Psychiatry. 2015; 54: 352-359
        • Hirabayashi Y.
        • Gotoh Y.
        Stage-dependent fate determination of neural precursor cells in mouse forebrain.
        Neurosci Res. 2005; 51: 331-336
        • Tau G.Z.
        • Peterson B.S.
        Normal development of brain circuits.
        Neuropsychopharmacology. 2010; 35: 147-168
        • Clancy B.
        • Finlay B.L.
        • Darlington R.B.
        • Anand K.J.
        Extrapolating brain development from experimental species to humans.
        Neurotoxicology. 2007; 28: 931-937
        • Lind N.M.
        • Moustgaard A.
        • Jelsing J.
        • Vajta G.
        • Cumming P.
        • Hansen A.K.
        The use of pigs in neuroscience: Modeling brain disorders.
        Neurosci Biobehav Rev. 2007; 31: 728-751
        • Hodyl N.A.
        • Walker F.R.
        • Krivanek K.M.
        • Clifton V.
        • Hodgson D.M.
        Modelling prenatal bacterial infection: Functional consequences of altered hypothalamic pituitary adrenal axis development.
        Behav Brain Res. 2007; 178: 108-114
        • Krishnan L.
        • Nguyen T.
        • McComb S.
        From mice to women: The conundrum of immunity to infection during pregnancy.
        J Reprod Immunol. 2013; 97: 62-73
        • Nemzek J.A.
        • Hugunin K.M.
        • Opp M.R.
        Modeling sepsis in the laboratory: Merging sound science with animal well-being.
        Comp Med. 2008; 58: 120-128
        • Seok J.
        • Warren H.S.
        • Cuenca A.G.
        • Mindrinos M.N.
        • Baker H.V.
        • Xu W.
        • et al.
        Genomic responses in mouse models poorly mimic human inflammatory diseases.
        Proc Natl Acad Sci U S A. 2013; 110: 3507-3512
        • Beckman D.A.
        • Koszalka T.R.
        • Jensen M.
        • Brent R.L.
        Experimental manipulation of the rodent visceral yolk sac.
        Teratology. 1990; 41: 395-404
        • Carter A.M.
        Animal models of human placentation—A review.
        Placenta. 2007; 28: S41-S47
        • Than N.G.
        • Romero R.
        • Goodman M.
        • Weckle A.
        • Xing J.
        • Dong Z.
        • et al.
        A primate subfamily of galectins expressed at the maternal-fetal interface that promote immune cell death.
        Proc Natl Acad Sci U S A. 2009; 106: 9731-9736
        • Hsiao E.Y.
        • Patterson P.H.
        Placental regulation of maternal-fetal interactions and brain development.
        Dev Neurobiol. 2012; 72: 1317-1326
        • Meyer U.
        • Feldon J.
        • Fatemi S.H.
        In-vivo rodent models for the experimental investigation of prenatal immune activation effects in neurodevelopmental brain disorders.
        Neurosci Biobehav Rev. 2009; 33: 1061-1079
        • Alexander C.
        • Rietschel E.T.
        Bacterial lipopolysaccharides and innate immunity.
        J Endotoxin Res. 2001; 7: 167-202
        • Homan E.R.
        • Zendzian R.P.
        • Schott L.D.
        • Levy H.B.
        • Adamson R.H.
        Studies on poly I:C toxicity in experimental animals.
        Toxicol Appl Pharmacol. 1972; 23: 579-588
        • Alexopoulou L.
        • Holt A.C.
        • Medzhitov R.
        • Flavell R.A.
        Recognition of double-stranded RNA and activation of NF-kappaB by toll-like receptor 3.
        Nature. 2001; 413: 732-738
        • Reisinger S.
        • Khan D.
        • Kong E.
        • Berger A.
        • Pollak A.
        • Pollak D.D.
        The poly(I:C)-induced maternal immune activation model in preclinical neuropsychiatric drug discovery.
        Pharmacol Ther. 2015; 149: 213-226
        • Zuckerman L.
        • Rehavi M.
        • Nachman R.
        • Weiner I.
        Immune activation during pregnancy in rats leads to a postpubertal emergence of disrupted latent inhibition, dopaminergic hyperfunction, and altered limbic morphology in the offspring: A novel neurodevelopmental model of schizophrenia.
        Neuropsychopharmacology. 2003; 28: 1778-1789
        • Cunningham C.
        • Campion S.
        • Teeling J.
        • Felton L.
        • Perry V.H.
        The sickness behaviour and CNS inflammatory mediator profile induced by systemic challenge of mice with synthetic double-stranded RNA (poly I:C).
        Brain Behav Immun. 2007; 21: 490-502
        • Triantafilou M.
        • Triantafilou K.
        Lipopolysaccharide recognition: CD14, TLRs and the LPS-activation cluster.
        Trends Immunol. 2002; 23: 301-304
        • Triantafilou M.
        • Miyake K.
        • Golenbock D.T.
        • Triantafilou K.
        Mediators of innate immune recognition of bacteria concentrate in lipid rafts and facilitate lipopolysaccharide-induced cell activation.
        J Cell Sci. 2002; 115: 2603-2611
        • Lin Y.L.
        • Lin S.Y.
        • Wang S.
        Prenatal lipopolysaccharide exposure increases anxiety-like behaviors and enhances stress-induced corticosterone responses in adult rats.
        Brain Behav Immun. 2012; 26: 459-468
        • Arsenault D.
        • St-Amour I.
        • Cisbani G.
        • Rousseau L.S.
        • Cicchetti F.
        The different effects of LPS and poly I:C prenatal immune challenges on the behavior, development and inflammatory responses in pregnant mice and their offspring.
        Brain Behav Immun. 2014; 38: 77-90
        • Schwartzer J.J.
        • Careaga M.
        • Onore C.E.
        • Rushakoff J.A.
        • Berman R.F.
        • Ashwood P.
        Maternal immune activation and strain specific interactions in the development of autism-like behaviors in mice.
        Transl Psychiatry. 2013; 3: e240
        • Stolp H.B.
        Neuropoietic cytokines in normal brain development and neurodevelopmental disorders.
        Mol Cell Neurosci. 2013; 53: 63-68
        • Roumier A.
        • Pascual O.
        • Bechade C.
        • Wakselman S.
        • Poncer J.C.
        • Real E.
        • et al.
        Prenatal activation of microglia induces delayed impairment of glutamatergic synaptic function.
        PLoS One. 2008; 3: e2595
        • Nakanishi M.
        • Niidome T.
        • Matsuda S.
        • Akaike A.
        • Kihara T.
        • Sugimoto H.
        Microglia-derived interleukin-6 and leukaemia inhibitory factor promote astrocytic differentiation of neural stem/progenitor cells.
        Eur J Neurosci. 2007; 25: 649-658
        • Brown A.G.
        • Tulina N.M.
        • Barila G.O.
        • Hester M.S.
        • Elovitz M.A.
        Exposure to intrauterine inflammation alters metabolomic profiles in the amniotic fluid, fetal and neonatal brain in the mouse.
        PLoS One. 2017; 12: e0186656
        • Gao Y.
        • Sheng C.
        • Xie R.H.
        • Sun W.
        • Asztalos E.
        • Moddemann D.
        • et al.
        New perspective on impact of folic acid supplementation during pregnancy on neurodevelopment/autism in the offspring children—A systematic review.
        PLoS One. 2016; 11: e0165626
        • Taylor R.M.
        • Fealy S.M.
        • Bisquera A.
        • Smith R.
        • Collins C.E.
        • Evans T.J.
        • et al.
        Effects of nutritional interventions during pregnancy on infant and child cognitive outcomes: A systematic review and meta-analysis.
        Nutrients. 2017; 9: E1265
        • Frick L.R.
        • Williams K.
        • Pittenger C.
        Microglial dysregulation in psychiatric disease.
        Clin Dev Immunol. 2013; 2013: 608654
        • Sacco R.
        • Gabriele S.
        • Persico A.M.
        Head circumference and brain size in autism spectrum disorder: A systematic review and meta-analysis.
        Psychiatry Res. 2015; 234: 239-251
        • Harrison P.J.
        The hippocampus in schizophrenia: A review of the neuropathological evidence and its pathophysiological implications.
        Psychopharmacology (Berl). 2004; 174: 151-162
        • Hercher C.
        • Turecki G.
        • Mechawar N.
        Through the looking glass: Examining neuroanatomical evidence for cellular alterations in major depression.
        J Psychiatr Res. 2009; 43: 947-961
        • Coley A.A.
        • Gao W.J.
        PSD95: A synaptic protein implicated in schizophrenia or autism?.
        Prog Neuropsychopharmacol Biol Psychiatry. 2018; 82: 187-194
        • Wang Q.
        • Jie W.
        • Liu J.H.
        • Yang J.M.
        • Gao T.M.
        An astroglial basis of major depressive disorder? An overview.
        Glia. 2017; 65: 1227-1250
        • Schmidt-Hieber C.
        • Nolan M.F.
        Synaptic integrative mechanisms for spatial cognition.
        Nat Neurosci. 2017; 20: 1483-1492
        • Teffer K.
        • Semendeferi K.
        Human prefrontal cortex: Evolution, development, and pathology.
        Prog Brain Res. 2012; 195: 191-218
        • Olson J.K.
        • Miller S.D.
        Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs.
        J Immunol. 2004; 173: 3916-3924
        • Czeh M.
        • Gressens P.
        • Kaindl A.M.
        The yin and yang of microglia.
        Dev Neurosci. 2011; 33: 199-209
        • Ginhoux F.
        • Greter M.
        • Leboeuf M.
        • Nandi S.
        • See P.
        • Gokhan S.
        • et al.
        Fate mapping analysis reveals that adult microglia derive from primitive macrophages.
        Science. 2010; 330: 841-845
        • Cuadros M.A.
        • Navascues J.
        The origin and differentiation of microglial cells during development.
        Prog Neurobiol. 1998; 56: 173-189
        • Paolicelli R.C.
        • Bolasco G.
        • Pagani F.
        • Maggi L.
        • Scianni M.
        • Panzanelli P.
        • et al.
        Synaptic pruning by microglia is necessary for normal brain development.
        Science. 2011; 333: 1456-1458
        • Paolicelli R.C.
        • Ferretti M.T.
        Function and dysfunction of microglia during brain development: Consequences for synapses and neural circuits.
        Front Synaptic Neurosci. 2017; 9: 9
        • Dean J.M.
        • van de Looij Y.
        • Sizonenko S.V.
        • Lodygensky G.A.
        • Lazeyras F.
        • Bolouri H.
        • et al.
        Delayed cortical impairment following lipopolysaccharide exposure in preterm fetal sheep.
        Ann Neurol. 2011; 70: 846-856
        • Hutton L.C.
        • Castillo-Melendez M.
        • Smythe G.A.
        • Walker D.W.
        Microglial activation, macrophage infiltration, and evidence of cell death in the fetal brain after uteroplacental administration of lipopolysaccharide in sheep in late gestation.
        Am J Obstet Gynecol. 2008; 198 (117 e111–111)
        • Ling Z.
        • Zhu Y.
        • Tong C.W.
        • Snyder J.A.
        • Lipton J.W.
        • Carvey P.M.
        Progressive dopamine neuron loss following supra-nigral lipopolysaccharide (LPS) infusion into rats exposed to LPS prenatally.
        Exp Neurol. 2006; 199: 499-512
        • Girard S.
        • Tremblay L.
        • Lepage M.
        • Sebire G.
        IL-1 receptor antagonist protects against placental and neurodevelopmental defects induced by maternal inflammation.
        J Immunol. 2010; 184: 3997-4005
        • Juckel G.
        • Manitz M.P.
        • Brune M.
        • Friebe A.
        • Heneka M.T.
        • Wolf R.J.
        Microglial activation in a neuroinflammational animal model of schizophrenia--a pilot study.
        Schizophr Res. 2011; 131: 96-100
        • Van den Eynde K.
        • Missault S.
        • Fransen E.
        • Raeymaekers L.
        • Willems R.
        • Drinkenburg W.
        • et al.
        Hypolocomotive behaviour associated with increased microglia in a prenatal immune activation model with relevance to schizophrenia.
        Behav Brain Res. 2014; 258: 179-186
        • Ratnayake U.
        • Quinn T.A.
        • Castillo-Melendez M.
        • Dickinson H.
        • Walker D.W.
        Behaviour and hippocampus-specific changes in spiny mouse neonates after treatment of the mother with the viral-mimetic Poly I:C at mid-pregnancy.
        Brain Behav Immun. 2012; 26: 1288-1299
        • Cunningham C.L.
        • Martinez-Cerdeno V.
        • Noctor S.C.
        Microglia regulate the number of neural precursor cells in the developing cerebral cortex.
        J Neurosci. 2013; 33: 4216-4233
        • Paolicelli R.C.
        • Gross C.T.
        Microglia in development: Linking brain wiring to brain environment.
        Neuron Glia Biol. 2011; 7: 77-83
        • Welberg L.
        Synaptic plasticity: A synaptic role for microglia.
        Nat Rev Neurosci. 2014; 15: 69
        • Tremblay M.È.
        • Majewska A.K.
        A role for microglia in synaptic plasticity?.
        Commun Integr Biol. 2011; 4: 220-222
        • Levin S.G.
        • Godukhin O.V.
        Modulating effect of cytokines on mechanisms of synaptic plasticity in the brain.
        Biochemistry (Mosc). 2017; 82: 264-274
        • Cao M.
        • Cortes M.
        • Moore C.S.
        • Leong S.Y.
        • Durosier L.D.
        • Burns P.
        • et al.
        Fetal microglial phenotype in vitro carries memory of prior in vivo exposure to inflammation.
        Front Cell Neurosci. 2015; 9: 294
        • Schaafsma W.
        • Basterra L.B.
        • Jacobs S.
        • Brouwer N.
        • Meerlo P.
        • Schaafsma A.
        • et al.
        Maternal inflammation induces immune activation of fetal microglia and leads to disrupted microglia immune responses, behavior, and learning performance in adulthood.
        Neurobiol Dis. 2017; 106: 291-300
        • Zager A.
        • Peron J.P.
        • Mennecier G.
        • Rodrigues S.C.
        • Aloia T.P.
        • Palermo-Neto J.
        Maternal immune activation in late gestation increases neuroinflammation and aggravates experimental autoimmune encephalomyelitis in the offspring.
        Brain Behav Immun. 2015; 43: 159-171
        • Giovanoli S.
        • Engler H.
        • Engler A.
        • Richetto J.
        • Voget M.
        • Willi R.
        • et al.
        Stress in puberty unmasks latent neuropathological consequences of prenatal immune activation in mice.
        Science. 2013; 339: 1095-1099
        • Krstic D.
        • Madhusudan A.
        • Doehner J.
        • Vogel P.
        • Notter T.
        • Imhof C.
        • et al.
        Systemic immune challenges trigger and drive Alzheimer-like neuropathology in mice.
        J Neuroinflammation. 2012; 9: 151
        • O'Loughlin E.
        • Pakan J.M.P.
        • Yilmazer-Hanke D.
        • McDermott K.W.
        Acute in utero exposure to lipopolysaccharide induces inflammation in the pre- and postnatal brain and alters the glial cytoarchitecture in the developing amygdala.
        J Neuroinflammation. 2017; 14: 212
        • Schwarz J.M.
        • Sholar P.W.
        • Bilbo S.D.
        Sex differences in microglial colonization of the developing rat brain.
        J Neurochem. 2012; 120: 948-963
        • Manitz M.P.
        • Plumper J.
        • Demir S.
        • Ahrens M.
        • Esslinger M.
        • Wachholz S.
        • et al.
        Flow cytometric characterization of microglia in the offspring of PolyI:C treated mice.
        Brain Res. 2016; 1636: 172-182
        • Nelson L.H.
        • Lenz K.M.
        The immune system as a novel regulator of sex differences in brain and behavioral development.
        J Neurosci Res. 2017; 95: 447-461
        • McCarthy M.M.
        • Wright C.L.
        Convergence of Sex Differences and the Neuroimmune System in Autism Spectrum Disorder.
        Biol Psychiatry. 2017; 81: 402-410
        • Kalisch-Smith J.I.
        • Simmons D.G.
        • Pantaleon M.
        • Moritz K.M.
        Sex differences in rat placental development: From pre-implantation to late gestation.
        Biol Sex Differ. 2017; 8: 17
        • Wolstenholme J.T.
        • Rissman E.F.
        • Bekiranov S.
        Sexual differentiation in the developing mouse brain: Contributions of sex chromosome genes.
        Genes Brain Behav. 2013; 12: 166-180
        • Bittle J.
        • Stevens H.E.
        The role of glucocorticoid, interleukin-1β, and antioxidants in prenatal stress effects on embryonic microglia.
        J Neuroinflammation. 2018; 15: 44
        • Diz-Chaves Y.
        • Pernia O.
        • Carrero P.
        • Garcia-Segura L.M.
        Prenatal stress causes alterations in the morphology of microglia and the inflammatory response of the hippocampus of adult female mice.
        J Neuroinflammation. 2012; 9: 71
        • Diz-Chaves Y.
        • Astiz M.
        • Bellini M.J.
        • Garcia-Segura L.M.
        Prenatal stress increases the expression of proinflammatory cytokines and exacerbates the inflammatory response to LPS in the hippocampal formation of adult male mice.
        Brain Behav Immun. 2013; 28: 196-206
        • Gumusoglu S.B.
        • Fine R.S.
        • Murray S.J.
        • Bittle J.L.
        • Stevens H.E.
        The role of IL-6 in neurodevelopment after prenatal stress.
        Brain Behav Immun. 2017; 65: 274-283
        • Smolders S.
        • Smolders S.M.
        • Swinnen N.
        • Gartner A.
        • Rigo J.M.
        • Legendre P.
        • et al.
        Maternal immune activation evoked by polyinosinic:polycytidylic acid does not evoke microglial cell activation in the embryo.
        Front Cell Neurosci. 2015; 9: 301
        • Golan H.M.
        • Lev V.
        • Hallak M.
        • Sorokin Y.
        • Huleihel M.
        Specific neurodevelopmental damage in mice offspring following maternal inflammation during pregnancy.
        Neuropharmacology. 2005; 48: 903-917
        • Garay P.A.
        • Hsiao E.Y.
        • Patterson P.H.
        • McAllister A.K.
        Maternal immune activation causes age- and region-specific changes in brain cytokines in offspring throughout development.
        Brain Behav Immun. 2013; 31: 54-68
        • Giovanoli S.
        • Notter T.
        • Richetto J.
        • Labouesse M.A.
        • Vuillermot S.
        • Riva M.A.
        • et al.
        Late prenatal immune activation causes hippocampal deficits in the absence of persistent inflammation across aging.
        J Neuroinflammation. 2015; 12: 221
        • Giovanoli S.
        • Weber-Stadlbauer U.
        • Schedlowski M.
        • Meyer U.
        • Engler H.
        Prenatal immune activation causes hippocampal synaptic deficits in the absence of overt microglia anomalies.
        Brain Behav Immun. 2016; 55: 25-38
        • Antonson A.M.
        • Radlowski E.C.
        • Lawson M.A.
        • Rytych J.L.
        • Johnson R.W.
        Maternal viral infection during pregnancy elicits anti-social behavior in neonatal piglet offspring independent of postnatal microglial cell activation.
        Brain Behav Immun. 2017; 59: 300-312
        • Bhattacharya A.
        • Drevets W.C.
        Role of Neuro-Immunological Factors in the Pathophysiology of Mood Disorders: Implications for Novel Therapeutics for Treatment Resistant Depression.
        Curr Top Behav Neurosci. 2017; 31: 339-356
        • Tong C.K.
        • Vidyadaran S.
        Role of microglia in embryonic neurogenesis.
        Exp Biol Med (Maywood). 2016; 241: 1669-1675
        • Fatemi S.H.
        • Reutiman T.J.
        • Folsom T.D.
        • Huang H.
        • Oishi K.
        • Mori S.
        • et al.
        Maternal infection leads to abnormal gene regulation and brain atrophy in mouse offspring: Implications for genesis of neurodevelopmental disorders.
        Schizophr Res. 2008; 99: 56-70
        • Fatemi S.H.
        • Earle J.
        • Kanodia R.
        • Kist D.
        • Emamian E.S.
        • Patterson P.H.
        • et al.
        Prenatal viral infection leads to pyramidal cell atrophy and macrocephaly in adulthood: Implications for genesis of autism and schizophrenia.
        Cell Mol Neurobiol. 2002; 22: 25-33
        • Smith S.E.
        • Elliott R.M.
        • Anderson M.P.
        Maternal immune activation increases neonatal mouse cortex thickness and cell density.
        J Neuroimmune Pharmacol. 2012; 7: 529-532
        • Le Belle J.E.
        • Sperry J.
        • Ngo A.
        • Ghochani Y.
        • Laks D.R.
        • Lopez-Aranda M.
        • et al.
        Maternal inflammation contributes to brain overgrowth and autism-associated behaviors through altered redox signaling in stem and progenitor cells.
        Stem Cell Reports. 2014; 3: 725-734
        • Piontkewitz Y.
        • Arad M.
        • Weiner I.
        Abnormal trajectories of neurodevelopment and behavior following in utero insult in the rat.
        Biol Psychiatry. 2011; 70: 842-851
        • Kriegstein A.
        • Noctor S.
        • Martinez-Cerdeno V.
        Patterns of neural stem and progenitor cell division may underlie evolutionary cortical expansion.
        Nat Rev Neurosci. 2006; 7: 883-890
        • Bauman M.D.
        • Iosif A.M.
        • Ashwood P.
        • Braunschweig D.
        • Lee A.
        • Schumann C.M.
        • et al.
        Maternal antibodies from mothers of children with autism alter brain growth and social behavior development in the rhesus monkey.
        Transl Psychiatry. 2013; 3: e278
        • Short S.J.
        • Lubach G.R.
        • Karasin A.I.
        • Olsen C.W.
        • Styner M.
        • Knickmeyer R.C.
        • et al.
        Maternal influenza infection during pregnancy impacts postnatal brain development in the rhesus monkey.
        Biol Psychiatry. 2010; 67: 965-973
        • Chen C.
        • Van Horn J.D.
        • Consortium G.R.
        Developmental neurogenetics and multimodal neuroimaging of sex differences in autism.
        Brain Imaging Behav. 2017; 11: 38-61
        • Liu Y.H.
        • Lai W.S.
        • Tsay H.J.
        • Wang T.W.
        • Yu J.Y.
        Effects of maternal immune activation on adult neurogenesis in the subventricular zone-olfactory bulb pathway and olfactory discrimination.
        Schizophr Res. 2013; 151: 1-11
        • Khan D.
        • Fernando P.
        • Cicvaric A.
        • Berger A.
        • Pollak A.
        • Monje F.J.
        • et al.
        Long-term effects of maternal immune activation on depression-like behavior in the mouse.
        Transl Psychiatry. 2014; 4: e363
        • Aavani T.
        • Rana S.A.
        • Hawkes R.
        • Pittman Q.J.
        Maternal immune activation produces cerebellar hyperplasia and alterations in motor and social behaviors in male and female mice.
        Cerebellum. 2015; 14: 491-505
        • Wallace K.
        • Veerisetty S.
        • Paul I.
        • May W.
        • Miguel-Hidalgo J.J.
        • Bennett W.
        Prenatal infection decreases calbindin, decreases Purkinje cell volume and density and produces long-term motor deficits in Sprague-Dawley rats.
        Dev Neurosci. 2010; 32: 302-312
        • Wischhof L.
        • Irrsack E.
        • Osorio C.
        • Koch M.
        Prenatal LPS-exposure—a neurodevelopmental rat model of schizophrenia—differentially affects cognitive functions, myelination and parvalbumin expression in male and female offspring.
        Prog Neuropsychopharmacol Biol Psychiatry. 2015; 57: 17-30
        • Rousset C.I.
        • Chalon S.
        • Cantagrel S.
        • Bodard S.
        • Andres C.
        • Gressens P.
        • et al.
        Maternal exposure to LPS induces hypomyelination in the internal capsule and programmed cell death in the deep gray matter in newborn rats.
        Pediatr Res. 2006; 59: 428-433
        • Marx C.E.
        • Jarskog L.F.
        • Lauder J.M.
        • Lieberman J.A.
        • Gilmore J.H.
        Cytokine effects on cortical neuron MAP-2 immunoreactivity: Implications for schizophrenia.
        Biol Psychiatry. 2001; 50: 743-749
        • Fatemi S.H.
        • Emamian E.S.
        • Kist D.
        • Sidwell R.W.
        • Nakajima K.
        • Akhter P.
        • et al.
        Defective corticogenesis and reduction in Reelin immunoreactivity in cortex and hippocampus of prenatally infected neonatal mice.
        Mol Psychiatry. 1999; 4: 145-154
        • Meyer U.
        • Nyffeler M.
        • Engler A.
        • Urwyler A.
        • Schedlowski M.
        • Knuesel I.
        • et al.
        The time of prenatal immune challenge determines the specificity of inflammation-mediated brain and behavioral pathology.
        J Neurosci. 2006; 26: 4752-4762
        • Oskvig D.B.
        • Elkahloun A.G.
        • Johnson K.R.
        • Phillips T.M.
        • Herkenham M.
        Maternal immune activation by LPS selectively alters specific gene expression profiles of interneuron migration and oxidative stress in the fetus without triggering a fetal immune response.
        Brain Behav Immun. 2012; 26: 623-634
        • Corradini I.
        • Focchi E.
        • Rasile M.
        • Morini R.
        • Desiato G.
        • Tomasoni R.
        • et al.
        Maternal immune activation delays excitatory-to-inhibitory gamma-aminobutyric acid switch in offspring.
        Biol Psychiatry. 2018; 83: 680-691
        • Cassella S.N.
        • Hemmerle A.M.
        • Lundgren K.H.
        • Kyser T.L.
        • Ahlbrand R.
        • Bronson S.L.
        • et al.
        Maternal immune activation alters glutamic acid decarboxylase-67 expression in the brains of adult rat offspring.
        Schizophr Res. 2016; 171: 195-199
        • Paylor J.W.
        • Lins B.R.
        • Greba Q.
        • Moen N.
        • de Moraes R.S.
        • Howland J.G.
        • et al.
        Developmental disruption of perineuronal nets in the medial prefrontal cortex after maternal immune activation.
        Sci Rep. 2016; 6: 37580
        • Mauney S.A.
        • Athanas K.M.
        • Pantazopoulos H.
        • Shaskan N.
        • Passeri E.
        • Berretta S.
        • et al.
        Developmental pattern of perineuronal nets in the human prefrontal cortex and their deficit in schizophrenia.
        Biol Psychiatry. 2013; 74: 427-435
        • Connor C.M.
        • Dincer A.
        • Straubhaar J.
        • Galler J.R.
        • Houston I.B.
        • Akbarian S.
        Maternal immune activation alters behavior in adult offspring, with subtle changes in the cortical transcriptome and epigenome.
        Schizophr Res. 2012; 140: 175-184
        • Richetto J.
        • Massart R.
        • Weber-Stadlbauer U.
        • Szyf M.
        • Riva M.A.
        • Meyer U.
        Genome-wide DNA methylation changes in a mouse model of infection-mediated neurodevelopmental disorders.
        Biol Psychiatry. 2017; 81: 265-276
        • Coiro P.
        • Padmashri R.
        • Suresh A.
        • Spartz E.
        • Pendyala G.
        • Chou S.
        • et al.
        Impaired synaptic development in a maternal immune activation mouse model of neurodevelopmental disorders.
        Brain Behav Immun. 2015; 50: 249-258
        • Pendyala G.
        • Chou S.
        • Jung Y.
        • Coiro P.
        • Spartz E.
        • Padmashri R.
        • et al.
        Maternal immune activation causes behavioral impairments and altered cerebellar cytokine and synaptic protein expression.
        Neuropsychopharmacology. 2017; 42: 1435-1446
        • Elmer B.M.
        • Estes M.L.
        • Barrow S.L.
        • McAllister A.K.
        MHCI requires MEF2 transcription factors to negatively regulate synapse density during development and in disease.
        J Neurosci. 2013; 33: 13791-13804
        • Fernandez de Cossio L.
        • Guzman A.
        • van der Veldt S.
        • Luheshi G.N.
        Prenatal infection leads to ASD-like behavior and altered synaptic pruning in the mouse offspring.
        Brain Behav Immun. 2017; 63: 88-98
        • Beattie E.C.
        • Stellwagen D.
        • Morishita W.
        • Bresnahan J.C.
        • Ha B.K.
        • Von Zastrow M.
        • et al.
        Control of synaptic strength by glial TNFalpha.
        Science. 2002; 295: 2282-2285
        • Gilmore J.H.
        • Fredrik Jarskog L.
        • Vadlamudi S.
        • Lauder J.M.
        Prenatal infection and risk for schizophrenia: IL-1beta, IL-6, and TNFalpha inhibit cortical neuron dendrite development.
        Neuropsychopharmacology. 2004; 29: 1221-1229
        • Stumm R.
        • Hollt V.
        CXC chemokine receptor 4 regulates neuronal migration and axonal pathfinding in the developing nervous system: Implications for neuronal regeneration in the adult brain.
        J Mol Endocrinol. 2007; 38: 377-382
        • Escobar M.
        • Crouzin N.
        • Cavalier M.
        • Quentin J.
        • Roussel J.
        • Lante F.
        • et al.
        Early, time-dependent disturbances of hippocampal synaptic transmission and plasticity after in utero immune challenge.
        Biol Psychiatry. 2011; 70: 992-999
        • Ito H.T.
        • Smith S.E.
        • Hsiao E.
        • Patterson P.H.
        Maternal immune activation alters nonspatial information processing in the hippocampus of the adult offspring.
        Brain Behav Immun. 2010; 24: 930-941
        • Patrich E.
        • Piontkewitz Y.
        • Peretz A.
        • Weiner I.
        • Attali B.
        Maturation- and sex-sensitive depression of hippocampal excitatory transmission in a rat schizophrenia model.
        Brain Behav Immun. 2016; 51: 240-251
        • Feleder C.
        • Tseng K.Y.
        • Calhoon G.G.
        • O'Donnell P.
        Neonatal intrahippocampal immune challenge alters dopamine modulation of prefrontal cortical interneurons in adult rats.
        Biol Psychiatry. 2010; 67: 386-392
        • Ronovsky M.
        • Berger S.
        • Zambon A.
        • Reisinger S.N.
        • Horvath O.
        • Pollak A.
        • et al.
        Maternal immune activation transgenerationally modulates maternal care and offspring depression-like behavior.
        Brain Behav Immun. 2017; 63: 127-136
        • Ronovsky M.
        • Berger S.
        • Molz B.
        • Berger A.
        • Pollak D.D.
        Animal models of maternal immune activation in depression research.
        Curr Neuropharmacol. 2016; 14: 688-704
        • Depino A.M.
        Early prenatal exposure to LPS results in anxiety- and depression-related behaviors in adulthood.
        Neuroscience. 2015; 299: 56-65
        • Majidi-Zolbanin J.
        • Doosti M.H.
        • Kosari-Nasab M.
        • Salari A.A.
        Prenatal maternal immune activation increases anxiety- and depressive-like behaviors in offspring with experimental autoimmune encephalomyelitis.
        Neuroscience. 2015; 294: 69-81
        • Zhang Z.
        • van Praag H.
        Maternal immune activation differentially impacts mature and adult-born hippocampal neurons in male mice.
        Brain Behav Immun. 2015; 45: 60-70
        • Babri S.
        • Doosti M.H.
        • Salari A.A.
        Strain-dependent effects of prenatal maternal immune activation on anxiety- and depression-like behaviors in offspring.
        Brain Behav Immun. 2014; 37: 164-176
        • Lin Y.L.
        • Wang S.
        Prenatal lipopolysaccharide exposure increases depression-like behaviors and reduces hippocampal neurogenesis in adult rats.
        Behav Brain Res. 2014; 259: 24-34
        • Smith S.E.
        • Li J.
        • Garbett K.
        • Mirnics K.
        • Patterson P.H.
        Maternal immune activation alters fetal brain development through interleukin-6.
        J Neurosci. 2007; 27: 10695-10702
        • Meyer U.
        • Murray P.J.
        • Urwyler A.
        • Yee B.K.
        • Schedlowski M.
        • Feldon J.
        Adult behavioral and pharmacological dysfunctions following disruption of the fetal brain balance between pro-inflammatory and IL-10-mediated anti-inflammatory signaling.
        Mol Psychiatry. 2008; 13: 208-221
        • Bitanihirwe B.K.
        • Peleg-Raibstein D.
        • Mouttet F.
        • Feldon J.
        • Meyer U.
        Late prenatal immune activation in mice leads to behavioral and neurochemical abnormalities relevant to the negative symptoms of schizophrenia.
        Neuropsychopharmacology. 2010; 35: 2462-2478
        • Mena A.
        • Ruiz-Salas J.C.
        • Puentes A.
        • Dorado I.
        • Ruiz-Veguilla M.
        • De la Casa L.G.
        Reduced prepulse inhibition as a biomarker of schizophrenia.
        Front Behav Neurosci. 2016; 10: 202
        • Borrell J.
        • Vela J.M.
        • Arevalo-Martin A.
        • Molina-Holgado E.
        • Guaza C.
        Prenatal immune challenge disrupts sensorimotor gating in adult rats. Implications for the etiopathogenesis of schizophrenia.
        Neuropsychopharmacology. 2002; 26: 204-215
        • Shi L.
        • Fatemi S.H.
        • Sidwell R.W.
        • Patterson P.H.
        Maternal influenza infection causes marked behavioral and pharmacological changes in the offspring.
        J Neurosci. 2003; 23: 297-302
        • Meehan C.
        • Harms L.
        • Frost J.D.
        • Barreto R.
        • Todd J.
        • Schall U.
        • et al.
        Effects of immune activation during early or late gestation on schizophrenia-related behaviour in adult rat offspring.
        Brain Behav Immun. 2017; 63: 8-20
        • Meyer U.
        • Feldon J.
        • Schedlowski M.
        • Yee B.K.
        Towards an immuno-precipitated neurodevelopmental animal model of schizophrenia.
        Neurosci Biobehav Rev. 2005; 29: 913-947
        • Careaga M.
        • Murai T.
        • Bauman M.D.
        Maternal immune activation and autism spectrum disorder: From rodents to nonhuman and human primates.
        Biol Psychiatry. 2017; 81: 391-401
        • Malkova N.V.
        • Yu C.Z.
        • Hsiao E.Y.
        • Moore M.J.
        • Patterson P.H.
        Maternal immune activation yields offspring displaying mouse versions of the three core symptoms of autism.
        Brain Behav Immun. 2012; 26: 607-616
        • Xuan I.C.
        • Hampson D.R.
        Gender-dependent effects of maternal immune activation on the behavior of mouse offspring.
        PLoS One. 2014; 9: e104433
        • Ehninger D.
        • Sano Y.
        • de Vries P.J.
        • Dies K.
        • Franz D.
        • Geschwind D.H.
        • et al.
        Gestational immune activation and Tsc2 haploinsufficiency cooperate to disrupt fetal survival and may perturb social behavior in adult mice.
        Mol Psychiatry. 2012; 17: 62-70
        • Bauman M.D.
        • Iosif A.M.
        • Smith S.E.
        • Bregere C.
        • Amaral D.G.
        • Patterson P.H.
        Activation of the maternal immune system during pregnancy alters behavioral development of rhesus monkey offspring.
        Biol Psychiatry. 2014; 75: 332-341
        • Martin L.A.
        • Ashwood P.
        • Braunschweig D.
        • Cabanlit M.
        • Van de Water J.
        • Amaral D.G.
        Stereotypies and hyperactivity in rhesus monkeys exposed to IgG from mothers of children with autism.
        Brain Behav Immun. 2008; 22: 806-816
        • Parker-Athill E.C.
        • Tan J.
        Maternal immune activation and autism spectrum disorder: Interleukin-6 signaling as a key mechanistic pathway.
        Neurosignals. 2010; 18: 113-128
        • Choi G.B.
        • Yim Y.S.
        • Wong H.
        • Kim S.
        • Kim H.
        • Kim S.V.
        • et al.
        The maternal interleukin-17a pathway in mice promotes autism-like phenotypes in offspring.
        Science. 2016; 351: 933-939
        • Miller G.W.
        Exposome: A primer.
        Elsevier/Academic Press, Amsterdam; Boston2014
        • Layeghifard M.
        • Hwang D.M.
        • Guttman D.S.
        Disentangling interactions in the microbiome: A network perspective.
        Trends Microbiol. 2017; 25: 217-228
        • Purcell S.M.
        • Wray N.R.
        • Stone J.L.
        • Visscher P.M.
        • O'Donovan M.C.
        • Sullivan P.F.
        • et al.
        Common polygenic variation contributes to risk of schizophrenia and bipolar disorder.
        Nature. 2009; 460: 748-752
        • McCarroll S.A.
        • Hyman S.E.
        Progress in the genetics of polygenic brain disorders: Significant new challenges for neurobiology.
        Neuron. 2013; 80: 578-587
        • Iossifov I.
        • Ronemus M.
        • Levy D.
        • Wang Z.
        • Hakker I.
        • Rosenbaum J.
        • et al.
        De novo gene disruptions in children on the autistic spectrum.
        Neuron. 2012; 74: 285-299
        • Ortutay C.
        • Vihinen M.
        Immunome: A reference set of genes and proteins for systems biology of the human immune system.
        Cell Immunol. 2006; 244: 87-89